Tag Archives: Top Story Right

BY ALLYN JACKSON, CyberOptics Corp., Minneapolis, MN

Key IC fabrication steps are sensitive to moisture in semiconductor wafer environments. As the technology node advances, the need for characterizing and minimizing the exposure to relative humidity (RH) has become critical in all 29nm geometry fabs and below. These RH control requirements create a need for a wireless wafer-like humidity sensor which simultaneously measures RH at several points across the wafer as well as throughout the entire IC manufacturing environment.

Challenges with current methods for characterizing N2 FOUPS

Current methods for characterizing N2 Purge FOUPs have problems. These methods are typically not real time, are time consuming, are hard to use and are not able to take RH measurements under production conditions therefore are not reflective of these conditions. In addition, wired (FIGURE 1) hand-held RH meters (FIGURE 2) and single trace hand-held meters are limited to one area and cannot move throughout the process environment. Other options are hand-made alternatives (FIGURE 3) such as a wafer with RH sensors simply taped on. Lastly, they are often limited without data files generated so conse- quently statistics and quality standards cannot be established.

FIGURE 1. FOUP with Wired RH Sensors Attached

FIGURE 1. FOUP with Wired RH Sensors Attached

FIGURE 2. Hand-held RH Meter with Single Trace RH Reading

FIGURE 2. Hand-held RH Meter with Single Trace RH Reading

FIGURE 3. Silicon Wafer With 4 RH Recording Sensors Taped on.

FIGURE 3. Silicon Wafer With 4 RH Recording Sensors Taped on.

RH environment test target and goals

The test at the customer involved putting an RH meter inside the FOUP pointing around slot 13. The goal was to repeat the RH meter profile for testing a FOUP on one loadport without the need to open the FOUP. Starting at 40% RH (cleanroom environment), the first step was to run high purity, high volumnet N2 pre-purge for 4-5 minute and then take the reading. The second step is to conduct a maintenance purge to 5% and measure the results in 5 locations across the wafer. The next step was to run a process purge to 20% and take sample readings across various locations. The goal of the testing it to test the efficiency of the N2 purge FOUP diffusers to ensure that uniform purge levels are maintained.

In response to the need for a reliable easy to use method of qualifying N2 and XCDA environments, the WaferSense® Auto Multi-Sensor (AMS) by CyberOptics (FIGURE 4) was developed. Wafer- Sense AMS is a wireless wafer-like device with five RH sensors to measure the RH profile across the entire wafer surface.

FIGURE 4. WaferSense® Auto Multi Sensor Measurement Device.

FIGURE 4. WaferSense® Auto Multi Sensor Measurement Device.

FIGURE 5. N2 Purge FOUP with 3 Inlet and one Outlet Ports.

FIGURE 5. N2 Purge FOUP with 3 Inlet and one Outlet Ports.

AMS is a complete and easy-to-use system which communicates wirelessly via Bluetooth to the MultiViewTM application (FIGURE 6) and moves like a normal wafer to all locations in the wafer process environment providing a true characterization of the N2 purge uniformity. Such previously hard to accomplish tasks such as characterizing purge FOUP diffuser uniformity and measuring actual RH percentages are now easily accomplished with AMS. (FIGURE 5) AMS is a true multi-functional device which also measures vibration and can be used for leveling to ensure proper wafer handling.

FIGURE 6. Profile of N2 Purge Using MultiViewTM Software to Displays RH Measurements in 4 Sensor Locations across the Wafer Surface.

FIGURE 6. Profile of N2 Purge Using MultiViewTM Software to Displays RH Measurements in 4 Sensor Locations across the Wafer Surface.

29nm geometry fabs and smaller require well controlled N2 and XCDA purge environments to prevent defects and yield loss. AMS300 simultaneously measures RH in real-time at five locations on the wafer while it transfers like a wafer to qualify N2 and XCDA environments. The AMS device significantly shortens the task of qualifying these environments. In addition, the AMS300 provides and vibration and leveling measurement capabilities to ensure proper wafer handling and reduced particles. The overall result for the fab is improved N2 purge environment uniformity which results in reduced defects and reduced labor costs.

Reducing reticle haze effects

193nm Immersion scanners are adversely affected by a phenomenon called “Reticle Haze” when proper measures are not taken to measure and control it. There are three areas that need to be controlled to reduce this haze effect on reticles, one of which is controlling RH. Reticle haze is accelerated when H2O is present. (FIGURE 7).

FIGURE 7. Reticle Haze Formation Accelerated with H2O

FIGURE 7. Reticle Haze Formation Accelerated with H2O

There is a key need for a measurement device that will eliminate the inefficiencies of the current methods.

Challenges with current methods for monitoring RH in reticle environments

There are several limitations with the current reticle environment RH measurement methods, for example, hand-held RH sensors (FIGURE 9) are inconvenient and they can compromise the reticle environment. Plus, many areas are inaccessible by hand-held RH sensors, in-situ RH sensors or benchtop type RH sensors. (FIGURE 8)

FIGURE 8. Benchtop RH Sensor

FIGURE 8. Benchtop RH Sensor

Figure 9: Wired In-Situ RH Sensor

Figure 9: Wired In-Situ RH Sensor

Additionally, the importance of particle, leveling, vibration and RH control has rarely been overlooked in reticle environment. However, the need to maximize both yields and tool uptimes in reticle mask environments requires best-in-class practices.

Whether for diagnostics, qualification or preventative maintenance, equipment engineers need to efficiently and effectively make measurements and adjustments to the tools. Legacy particle, vibration, leveling and RH measurement methods are typically cumbersome, non-representative, not real time, compromise the production environment and are costly with downtime required to take the tool offline for these tasks.

By contrast, best practice methods involve collecting and displaying data in real-time, speeding equipment alignment or set-up. Real-time data also speeds equipment diagnostic processes, saving valuable time and resources. Equipment engineers can also make the right adjustments consistently by using objective and reproducible data that enhances process uniformity.

The ReticleSense® AMSR (FIGURE 10) is an actual glass reticle that measures H2O in the reticle environment and is compatible with ASML, Canon and Nikon scanners. AMSR is used to travel throughout the entire reticle environment and measures RH. (FIGURE 11) It helps locate the sources of the H2O which results in increased reticle lifetime. Two additional measurement capabilities of the device include measuring X, Y and X vibration (FIGURE 12) and inclination. (FIGURE 13).

FIGURE 10. ReticleSense® Auto Multi Sensor Measurement Device.

FIGURE 10. ReticleSense® Auto Multi Sensor Measurement Device.

FIGURE 11. RH Measurement

FIGURE 11. RH Measurement

FIGURE 12. Vibration Measurement

FIGURE 12. Vibration Measurement

FIGURE 13. Leveling Measurement

FIGURE 13. Leveling Measurement

Conclusion

The AMSR travels the entire path of the reticle and can measure humidity in all locations. In immersion scanner environments, monitoring humidity is critical in reticle reducing haze. Equipment qualifications can be done faster as the same device also measures vibration and leveling. Controlling inclination, RH and vibration are all important factors in increasing yield and reducing downtime.

For RH measurements in N2 and XCDA reticle mask environments, the use of a real-time measurement device, the Auto Multi Sensor, delivers on three compelling bottom lines for the fab – saving time, saving expense and improving yields.

The year 2016 is not expected to be a good one for the total memory market and the main culprit is DRAM. Declining shipments of desktop and notebook computers, the biggest users of DRAM, as well as declining tablet PC shipments and slowing growth of smartphone units have created excess inventory and suppliers have been forced to greatly reduce average selling prices in order to move parts. A DRAM ASP decline of 16% coupled with a forecast 3% decline in DRAM unit shipments is expected to result in the DRAM market declining 19% in 2016 (Figure 1), lowest among the 33 IC product categories IC Insights tracks in detail. This steep decline will be a drag on growth for the total memory market (-11%) and for the total IC market (-2%) in 2016.

Figure 1

Figure 1

Big swings in average selling price are not new to the DRAM market. Annual DRAM average selling price increases of 48% and 26% in 2013 and 2014 propelled the DRAM market to more than 30% growth each year. In fact, the DRAM market was the strongest growing IC product segment in each of those years (Figure 2). Then, marketshare grabs and excess inventory started the cycle of steep price cuts in the second half of 2015 and that continued through the first half of 2016.

Figure 2

Figure 2

Figure 3 plots changes in annual DRAM average selling prices starting in 2007.  Looking more like the profile of an alpine mountain range, DRAM ASP growth has taken several dramatic upward and downward turns since 2007, confirming the volatility of this IC market segment. When coupled with strength or weakness in DRAM unit shipments, bit volume demand, and the amount of capacity and capital spending dedicated to DRAM production each year, this market can turn quickly up or down.

Figure 3

Figure 3

On a positive note, DRAM ASPs strengthened in late 2Q16 and are forecast to continue growing through the balance of 2016 and into 2017.  The boost to DRAM ASP is expected to come from demand for enterprise (server) systems, which have been selling well due to the need to process “big data” (e.g., the Cloud and the Internet of Things).  Also, low-voltage DRAM continues to enjoy solid demand for use in mobile platforms, particularly smartphones.  Demand from new smartphone models is expected to help contribute to increasing DRAM ASPs through the end of this year and into 2017.

The upward DRAM ASP trend may be short lived, however, as two China-based companies, Sino King Technology in Hefei, China, and Fujian Jin Hua IC Company, plan to enter the DRAM marketplace beginning in late 2017 or early 2018.  It remains to be seen what devices and what technology the two new entrants will offer but their presence in the market could signal that another round of price declines is around the corner.

Further trends and analysis relating to DRAM and the total memory market through 2020 are covered in the 250 plus-page Mid-Year Update to the 2016 edition of The McClean Report.

Towards a better screen


August 9, 2016

Harvard University researchers have designed more than 1,000 new blue-light emitting molecules for organic light-emitting diodes (OLEDs) that could dramatically improve displays for televisions, phones, tablets and more.

OLED screens use organic molecules that emit light when an electric current is applied. Unlike ubiquitous liquid crystal displays (LCDs), OLED screens don’t require a backlight, meaning the display can be as thin and flexible as a sheet of plastic. Individual pixels can be switched on or entirely off, dramatically improving the screen’s color contrast and energy consumption. OLEDs are already replacing LCDs in high-end consumer devices but a lack of stable and efficient blue materials has made them less competitive in large displays such as televisions.

The interdisciplinary team of Harvard researchers, in collaboration with MIT and Samsung, developed a large-scale, computer-driven screening process, called the Molecular Space Shuttle, that incorporates theoretical and experimental chemistry, machine learning and cheminformatics to quickly identify new OLED molecules that perform as well as, or better than, industry standards.

“People once believed that this family of organic light-emitting molecules was restricted to a small region of molecular space,” said Alán Aspuru-Guzik, Professor of Chemistry and Chemical Biology, who led the research. “But by developing a sophisticated molecular builder, using state-of-the art machine learning, and drawing on the expertise of experimentalists, we discovered a large set of high-performing blue OLED materials.”

The research is described in the current issue of Nature Materials.

The biggest challenge in manufacturing affordable OLEDs is emission of the color blue.

Like LCDs, OLEDs rely on green, red and blue subpixels to produce every color on screen.  But it has been difficult to find organic molecules that efficiently emit blue light. To improve efficiency, OLED producers have created organometallic molecules with expensive transition metals like iridium to enhance the molecule through phosphorescence. This solution is expensive and it has yet to achieve a stable blue color.

Aspuru-Guzik and his team sought to replace these organometallic systems with entirely organic molecules.

The team began by building libraries of more than 1.6 million candidate molecules. Then, to narrow the field, a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), led by Ryan Adams, Assistant Professor of Computer Science, developed new machine learning algorithms to predict which molecules were likely to have good outcomes, and prioritize those to be virtually tested. This effectively reduced the computational cost of the search by at least a factor of ten.

“This was a natural collaboration between chemistry and machine learning,” said David Duvenaud, a postdoctoral fellow in the Adams lab and coauthor of the paper. “Since the early stages of our chemical design process starts with millions of possible candidates, there’s no way for a human to evaluate and prioritize all of them. So, we used neural networks to quickly prioritize the candidates based on all the molecules already evaluated.”

“Machine learning tools are really coming of age and starting to see applications in a lot of scientific domains,” said Adams.  “This collaboration was a wonderful opportunity to push the state of the art in computer science, while also developing completely new materials with many practical applications. It was incredibly rewarding to see these designs go from machine learning predictions to devices that you can hold in your hand.”

“We were able to model these molecules in a way that was really predictive,” said Rafael Gómez-Bombarelli, a postdoctoral fellow in the Aspuru-Guzik lab and first author of the paper.  “We could predict the color and the brightness of the molecules from a simple quantum chemical calculation and about 12 hours of computing per molecule. We were charting chemical space and finding the frontier of what a molecule can do by running virtual experiments.”

“Molecules are like athletes,” Aspuru-Guzik said. “It’s easy to find a runner, it’s easy to find a swimmer, it’s easy to find a cyclist but it’s hard to find all three. Our molecules have to be triathletes. They have to be blue, stable and bright.”

But finding these super molecules takes more than computing power — it takes human intuition, said Tim Hirzel, a senior software engineer in the Department of Chemistry and Chemical Biology and coauthor of the paper.

To help bridge the gap between theoretical modeling and experimental practice, Hirzel and the team built a web application for collaborators to explore the results of more than half a million quantum chemistry simulations.

Every month, Gómez-Bombarelli and coauthor Jorge Aguilera-Iparraguirre, also a postdoctoral fellow in the Aspuru-Guzik lab, selected the most promising molecules and used their software to create “baseball cards,” profiles containing important information about each molecule. This process identified 2500 molecules worth a closer look.  The team’s experimental collaborators at Samsung and MIT then voted on which molecules were most promising for application. The team nicknamed the voting tool “molecular Tinder” after the popular online dating app.

“We facilitated the social aspect of the science in a very deliberate way,” said Hirzel.

“The computer models do a lot but the spark of genius is still coming from people,” said Gómez-Bombarelli.

“The success of this effort stems from its multidisciplinary nature,” said Aspuru-Guzik. “Our collaborators at MIT and Samsung provided critical feedback regarding the requirements for the molecular structures.”

“The high throughput screening technique pioneered by the Harvard team significantly reduced the need for synthesis, experimental characterization, and optimization,” said Marc Baldo, Professor of Electrical Engineering and Computer Science at MIT and coauthor of the paper. “It shows the industry how to advance OLED technology faster and more efficiently.”

After this accelerated design cycle, the team was left with hundreds of molecules that perform as well as, if not better than, state-of-the-art metal-free OLEDs.

Applications of this type of molecular screening also extend far beyond OLEDs.

“This research is an intermediate stop in a trajectory towards more and more advanced organic molecules that could be used in flow batteries, solar cells, organic lasers, and more,” said Aspuru-Guzik. “The future of accelerated molecular design is really, really exciting.”

In addition to the authors mentioned, the manuscript was coauthored by Dougal Maclaurin, Martin A. Blood-Forsythe, Hyun Sik Chae, Markus Einzinger, Dong-Gwang Ha, Tony Wu, Georgios Markopoulos, Soonok Jeon, Hosuk Kang, Hiroshi Miyazaki, Masaki Numata, Sunghan Kim, Wenliang Huang and Seong Ik Hong.

The research was supported by the Samsung Advanced Institute of Technology.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $79.1 billion during the second quarter of 2016, an increase of 1.0 percent over the previous quarter and a decrease of 5.8 percent compared to the second quarter of 2015. Global sales for the month of June 2016 reached $26.4 billion, an uptick of 1.1 percent over last month’s total of $26.1 billion, but down 5.8 percent from the June 2015 total of $28.0 billion. Cumulatively, year-to-date sales during the first half of 2016 were 5.8 percent lower than they were at the same point in 2015. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Global semiconductor sales increased slightly from Q1 to Q2 but remain behind the pace from last year, due largely to global economic uncertainty and sluggish demand,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Sales into Japan and China have been a bright spot midway through 2016, and a modest rebound in sales is projected during the second half of the year.”

Regionally, sales increased compared to June 2015 in China (1.7 percent), but fell in Asia Pacific/All Other (-11.0 percent), the Americas (-10.8 percent), Europe (-5.5 percent), and Japan (-1.3 percent). Sales were up slightly compared to last month in the Americas (3.0 percent), China (2.2 percent) and Europe (1.7 percent), but down somewhat in Japan (-1.0 percent) and Asia Pacific/All Other (-0.6 percent).

sales graph sales table

Beyond its gloom, the MEMS industry is showing numerous emerging devices that hold promise for future growth. These innovative MEMS solutions were listed by the MEMS & Sensors team of Yole Développement (Yole) in the Status of the MEMS Industry 2016 report (Yole Développement, May 2016). Today, more than 100 businesses, startups and large companies are involved in exciting developments using MEMS technology. The MEMS approach can be defined as a transfer function: It lowers cost and improves integration and performance.

transfer function

“MEMS can be seen as a ‘transfer function’ using semiconductor and micromachining technologies to create devices replacing devices that are more complex, bulky or less sensitive,” explains Dr. Eric Mounier, Sr. Technology & Market Analyst at Yole. Yole has identified at least 5 criteria that determine the success of a MEMS device. They are: size reduction, potential cost reduction, “good enough” specifications, batch manufacturing compared to existing solutions, and reliability.
At least 10 to 15 years of development are required to achieve all the successful criteria.

“Based on this segmentation, and out of all the MEMS devices in development that could undergo significant growth in the future, we foresee ultrasonic and gas sensors as well as microspeaker as the next success for the MEMS industry,” details Dr. Mounier.

As Yole’s market forecast announces, the gas sensor market is showing a 7.3% CAGR for the 2014–2021 period. The market should reach US$920 million in 2021. Moreover Yole’s analysts highlight a potential upside market of almost US$65 million in 2021. This positive scenario might be possible if gas sensors are widely adopted in consumer products, analysts say (Source: Gas Sensor Technology & Market report, Yole Développement, February 2016).

Microspeakers could be part of the success story as well. Indeed a big transition is happening now: for the first time, silicon speakers are ready for volume production, enabling the creation of a brand-new multibillion-dollar market for MEMS manufacturers. Last month, Yole’s analysts had an interesting interview with USound, an Austrian company founded three years ago by several veterans of the MEMS industry.

“Prototypes of the first balanced-armature replacement and the first micro-tweeter are currently being sampled to selected customers,” USound asserted. “Pre-production will start at the end of the summer, along with internal qualification. The technology is ready for adoption and will revolutionize the personal-audio market, similar to what happened with the MEMS microphone.”

USound intends to evolve into an audio-system developer, offering complete solutions ranging from hardware to firmware, in order to simplify technology adoption and help our customers achieve optimum product performance. To read the full interview, click USound.

For the next few months, Yole will pursue its investigation into the MEMS world. Numerous technology and market reports will be released, and Yole’s MEMS & Sensors team will attend many key conferences to present its vision of the industry.

For example, in mid-September Yole will be part of two major events in Asia: MEMS & Sensors Conference Asia and Sensor Expo & Conference – China. At both conferences, Yole will present attendees with the status of the industry and its new virtuous cycle. Yole’s Speaker, Claire Troadec, MEMS & Semiconductor Manufacturing Analyst, will focus her presentation on the Chinese MEMS industry, which is steadily transforming from “Made in China” to “Created in China.” Claire will also review the Chinese MEMS players and the new virtuous cycle the MEMS industry.

Although liquid-crystal display (LCD) has dominated mobile phone displays for more than 15 years, organic light-emitting diode (OLED) display technology is set to become the leading smartphone display technology in 2020, according to IHS Markit (Nasdaq: INFO). AMOLED displays with a low-temperature polysilicon (LTPS) backplane will account for more than one-third (36 percent) of all smartphone displays shipped in 2020, becoming the most-used display technology in smartphone displays, surpassing a-Si (amorphous silicon) thin-film transistor (TFT) LCD and LTPS TFT LCD displays.

“While OLED is currently more difficult to manufacture, uses more complicated materials and chemical processes, and requires a keen focus on yield-rate management, it is an increasingly attractive technology for smartphone brands,” said David Hsieh, senior director, IHS Markit. “OLED displays are not only thinner and lighter than LCD displays, but they also boast better color performance and enable flexible display form factors that can lead to more innovative design.”

Samsung Electronics has already adopted OLED displays in its smartphone models, and there is also increasing demand from Chinese Huawei, OPPO, Vivo, Meizu and other smartphone brands. Apple is also now widely expected to use OLED displays in its upcoming iPhone models.

At one time, OLED displays were entirely glass-based and in terms of performance, there was little difference between LCD and OLED displays. Now, flexible OLED displays made from thinner and lighter plastic are enabled and have drawn Apple’s attention. “Apple’s upcoming adoption of OLED displays will be a milestone for OLED in the display industry,” Hsieh said.

Samsung Display, LG Display, Sharp, JDI, BOE, Tianma, GVO, Truly, and CSOT are also starting to ramp up their AMOLED manufacturing capacities and devote more resources to technology development. Samsung Display’s enormous sixth-generation A3 AMOLED fab, for example, will enable even more AMOLED displays to reach the market. Global AMOLED manufacturing capacity will increase from 5 million square meters in 2014 to 30 million square meters in 2020.

“Many display manufacturers were investing in LTPS LCD, thinking it would overtake a-Si technology,” Hsieh said. “However, many of the fabs under construction, especially in China, have had to change their plans to add OLED evaporation and encapsulation tools, because OLED penetration has been more rapid than previously expected.”

As the popularity and penetration of wearable and mobile devices increase, so too will demand for innovative flexible displays. In fact, revenue from flexible displays is expected to increase more than 300 percent, from just $3.7 billion in 2016 to $15.5 billion in 2022. Flexible displays will comprise 13 percent of total display market revenue in 2020, according to IHS Inc. (NYSE: IHS).

Samsung Electronics and LG Electronics launched the first smartphones with flexible active-matrix organic light-emitting diode (AMOLED) displays in 2013, and both companies continue to adapt flexible AMOLED displays for their smartphones, smartwatches and fitness trackers. Inspired by these successes, other mobile manufacturers are now developing their own flexible-display devices.

“The varieties of flexible displays include screens that are bendable, curved and edge-curved, but fully foldable form factors are expected within the next two years,” said Jerry Kang, principal analyst of display research for IHS Technology. “Only a few suppliers — including Samsung Display, LG Display, E-ink and Futaba — are now regularly supplying flexible displays to the market. However, many more panel makers are now attempting to build flexible display capacity, leveraging the latest AMOLED display technology.”

According to the IHS Flexible Display Market Tracker, flexible displays are primarily used in smartphones and smartwatches in 2016; however, use in other applications, including tablet PCs, near-eye virtual reality devices, automotive monitors and OLED TVs is expected by 2022. “Consumer device manufacturers will eventually need to innovate their conventionally designed flat, rectangular form-factors to make way for the latest curved, foldable and rollable screens,” Kang said.

Flex_Display_Chart_IHS

By Pete Singer, Editor-in-Chief

The semiconductor industry is moving quickly to adopt a variety of new materials in an effort to increase chip performance. These new materials can create a host of safety concerns that must be addressed. Many of the new process chemicals have low vapor pressures, are highly reactive and present serious hazards to personnel and equipment. Many new CVD precursors and their associated reaction by-products are flammable, pyrophoric, toxic, corrosive or otherwise hazardous to personnel or destructive to equipment. “The problem’s always been there. It’s just becoming more acute as new processes emerge,” said Andrew Chambers, Senior Product Manager at Edwards Ltd., Clevedon, UK.

The Danger That Lurks Figure

Process byproducts are pumped through exhaust lines to a gas abatement system. Residual precursor materials or reaction byproducts often have a tendency to condense in pipe-work, including process exhausts. These exhaust pipes must be cleaned regularly, since condensed material will block the pipe, reduce its conductance and cause process problems.

Epitaxial silicon (“epi”) deposition processes, for example, are particularly notorious for the process decomposition products condensing in exhaust pipes or in the foreline of the pump. The hazard is greatest when the exhaust system is dismantled for cleaning. “The condensed material can react violently when it’s exposed to air and will burn vigorously or even explode. That presents a pretty serious hazard to the service engineers who are charged with taking the pipe apart and cleaning it,” Chambers said.

These problems can largely be avoided, however, by keeping the exhaust pipe or the pump foreline at a high temperature to avoid condensation of the material. If the surfaces in the exhaust system are warm enough, the processed products transit through the exhaust pipe and into the abatement system, where they can be combusted and dealt with in a safe fashion.

In many fabs, the heating is done with heating tape, but that’s not always the best (or safest) way to go. “In principle, that works up to a point but it’s quite difficult to apply that kind of technique when you’ve got accessories like a large ball valve in the line, where there are brackets attaching the exhaust pipe to the wall or there’s a system for injecting nitrogen dilution gas into the exhaust. The idea of heater tapes is convenient but not a very effective fix,” Chambers said. “Furthermore, removing heater tape to dismantle and clean the exhaust pipe can be inconvenient and time consuming” he added.

What’s really required is an approach that involves heating the pipe in a uniform fashion so that the pipe is universally at a high temperature to avoid the condensation. “You can’t afford to have cold spots in the pipe where there’s no heater or there’s no insulation because the moment you have a cold spot in the pipe, then material’s going to condense there and cause a local blockage,” he said.

Edwards offers a new Temperature Management System (SMART TMS) that ensures these compounds remain volatile until they enter the abatement device. SMART TMS is designed to heat both forelines and pump exhaust lines uniformly as far as the inlet of the abatement device. Molded high surface area heaters maximize contact with pipes and are designed to maintain them at a constant temperature between ambient and 180°C, recognizing that when choosing the temperature set point, knowledge of what process materials and byproducts are going to be in the exhaust pipe is invaluable.

Chambers said this approach is also superior to other heating methods using custom heater mats with integral insulation. “The difficulty you encounter with those kinds of systems is that the heater mat and jacket tend to be custom-designed to suit the particular installation. You spend a lot of time designing stuff, placing orders and waiting for it to be manufactured. Once it is manufactured and installed, there’s no flexibility. If you change the configuration of the exhaust pipe, you’ve got to go buy a whole set of new pipeline heating components,” he said.

With the Edwards SMART TMS approach, heater mats are provided separately from the insulation. “The heater mats are provided in standard lengths and as shaped components too, for elbows, valves, T-pieces and so on. You basically assemble the heater mats of sufficient length to heat your pipe from one end to the other. Then, since they’re made from low-particulate material, the insulation jackets can be cut to shape on assembly to fit the exhaust pipe. They’re all basically reusable,” Chambers said.

Success in thermal management goes well beyond mechanical considerations, however. “A lot of the skill and judgment in temperature management of exhaust pipes is knowing what factors you need to take care of to get decent temperature control throughout the system,” Chambers said.

When handling flammable gases, for example, nitrogen is often used to dilute them below their lower flammable limit to make them safe. “Typically, you pour a whole lot of nitrogen dilution gas into your exhaust pipe. The way in which you do that has a very significant impact on the temperature of the gas and the temperature of the exhaust pipe,” Chambers said. “If you’ve heated your exhaust pipe up to a temperature based on the process gases flowing through it and then you flow into it a couple of hundred liters per minute of cold nitrogen, then your heating system is no longer going to be fully effective. You start to run into the kind of condensation problem you were trying to avoid in the first place.”

The Edwards solution to that problem is to employ a system to heat up the nitrogen dilution gas. “Providing a nitrogen heater system as an accompaniment to a temperature management system for the exhaust pipe is sometimes a desirable thing to do,” Chambers added.

SMART TMS includes a sophisticated control system. “In our system, we have a controller which takes care of exhaust pipes on a zone by zone basis. The controller can control nine zones. All of those nine zones may be nine separate pipes. It may be one long pipe with nine zones in it over a long distance,” Chambers said.

The controller has useful operational features such as the ability to set and log different control temperatures and user-defined limits in each zone. If a temperature strays outside the user-defined band, an alert is transmitted from the controller to the process tool, the fab central monitoring system or other fault reporting system, depending on the nature of the fault. Furthermore, recognizing that some processes can cause very hazardous byproduct build-up in cold exhausts, SMART TMS includes a “fail-on” function to ensure that in the event of a component failure or loss of temperature indication a high pipeline temperature is maintained until servicing can be scheduled. In these cases the integrated health-check function provides an alert, while dual safety devices in each heater provide intrinsic safety and protection against thermal runaway.

“In the future, we can imagine the process which is running in the tool can be used to inform the set-up of the sub-fab equipment, the dry pumps or even the temperature management system,” Chambers said. “We’ve come a long way from relatively simple electrical heaters installed on an ad hoc basis to a sophisticated combination of process knowledge, a wide range of heater mats and shaped heaters, very efficient insulation materials and intelligent controllers with data acquisition capability.”

By Pete Singer, Editor-in-Chief

On Wednesday, Solid State Technology and SEMI announced the recipient of the 2016 “Best of West” Award — Coventor — for its SEMulator3D. The award recognizes important product and technology developments in the electronics manufacturing supply chain. The Best of West finalists were selected based on their financial impact on the industry, engineering or scientific achievement, and/or societal impact.

Coventor won the “Best-of-West” award for its SEMulator 3D modeling software. Left to right, SEMI’s Karen Savala, Dinesh Bettadapur, vice president, business development at Coventor, who received the award, and Pete Singer, Editor-in-Chief of Solid State Technology.

Coventor won the “Best-of-West” award for its SEMulator 3D modeling software. Left to right, SEMI’s Karen Savala, Dinesh Bettadapur, vice president, business development at Coventor, who received the award, and Pete Singer, Editor-in-Chief of Solid State Technology.

Coventor’s SEMulator3D is a 3D semiconductor process modeling platform that can predictively model any fabrication process applied to any semiconductor design. Starting from a “virtual” silicon wafer, the product performs a series of unit processes like those in the fab to create highly accurate 3D computer models of the predicted structures on wafer.

“It’s a very powerful software modeling platform that has been widely adopted for advanced process development and integration for 10nm, 7nm nodes and beyond,” said Dinesh Bettadapur, vice president, business development at Coventor. Bettadapur accepted the award in the Coventor booth, presented by Solid State Technology’s Pete Singer and SEMI’s Karen Savala.

Bettadapur noted that advanced devices are increasingly becoming 3D, whether it’s finFET structures, 3D NAND or gate-all-around. “We enable you to both visualize the device you’re trying to build in advance without running a single wafer, and also accurately predict process variations,” he said.

Using unique physics-driven 3D modeling technology, the SEMulator3D modeling engine can model a wide variety of unit process steps. Each process step requires only a few geometric and physical input parameters that are easy to understand and calibrate. Just as in an actual fab, upstream unit process parameters (such as deposition conformality, etch anisotropy, selectivity, etc.) interact with each other and design data in a complex way to impact the final device structure.

“You can analyze any process variation, whether it’s film thicknesses, sidewall angles, etch depths, litho biases and so forth. You can vary any process parameter that you have entered in our process simulator and then look at the upstream and downstream process effects,” Bettadapur said.

Starting from input design data, SEMulator3D follows an integrated process flow description to create the virtual equivalent of the complex 3D structures created in the fab. Because the full integrated process sequence is modeled, SEMulator3D has the ability to predict downstream ramifications of process changes that would otherwise require build-and-test cycles in the fab.

On display at Coventor’s booth is 3D sculpture modeled on 14nm FinFET Technology (see photo). This piece received the grand prize at the Design Automation Conference (DAC) last month.

The piece was produced on a state-of-the-art 3D printer from Stratasys, using SEMulator3D to generate the data. The effort was supported by GrabCad, a digital manufacturing hub that helps designers and engineers build great products faster.

With SEMulator3D, Coventor created a large model of 14nm FinFET transistors, across a wide area of SRAM design, at high resolution, integrated from starting wafer through Metal 3, with some artistic cut-outs for visibility.   The resulting model reinforced all the key advanced capabilities of SEMulator3D, including multietch, visibility-limited deposition, selective epitaxy and many others.

As DAC grand prize winner, the 14nm FinFET 3D Sculpture will now be moved to the Computer History Museum in Mountain View, CA where it will be on display for one year.

Hear more about the SEMulator 3D and all of the Best of West finalists today at the Best of West Showcase in the Advanced Manufacturing Forum at TechXPOT South from 2:00pm-3:30pm.

SEMulator3D Viewer, showing a hypothetical 22nm FinFET SRAM cell

SEMulator3D Viewer, showing a hypothetical 22nm FinFET SRAM cell

By Shannon Davis, Web Editor

“There’s never been a better time to connect” was the theme of John Kern’s keynote address at SEMICON West 2016 Tuesday morning, though it was clear from his speech that connecting – or digitizing – supply chains is not just a good idea, but imperative in the current ever-changing climate of the electronics supply chain.

John Kern, Vice President of Supply Chains, Cisco Systems, speaking at SEMICON West 2016 on Tuesday morning. (Source: SEMI)

John Kern, Senior Vice President of Supply Chains, Cisco Systems, speaking at SEMICON West 2016 on Tuesday morning. (Source: SEMI)

“If you’re not investing in digitization today, it’s going to be very, very difficult for you to remain relevant over the next decade,” Kern urged his audience.

Kern, who is Senior Vice President of Supply Chains at Cisco Systems, came equipped with several compelling case studies from his team’s own experiments, to make the case for why connecting the supply chain is so vital to innovation and profitability.

The first case study that Kern presented showed Cisco’s results from monitoring energy and energy costs in a factory setting. His team deployed a network of thousands of sensors that monitored energy readings of every piece of equipment in one of Cisco’s Malaysian factories, so teams could gather data and analytics on each piece’s performance. This initiative allowed the factory team to make changes in equipment to optimize performance, which resulted in a 12% energy reduction and a 1 million USD cost savings, which amounted to a full return on investment achieved in less than 10 months.

Kern also envisions a path to tens of millions of dollars in capital savings each year with adaptive testing, an initiative that’s currently saving Cisco test engineers man hours and allowing them to return to high value work. Kern said that Cisco was able to leverage analytics capabilities of a software they owned called Auto Test, along with Cisco’s own 10-15 years of test information, to build a test system that is now capable of machine-to-machine learning.

“The tests are becoming adaptive; they’re changing themselves,” said Kern, “and they’re notifying the engineers when they’re making a change.”

In addition to the cost and time savings, Kern believes this also allows for engineers to develop higher quality products.

And these products are also reaching the market faster, thanks to a Cloud-based supplier collaboration platform Cisco is using, that is allowing all of their suppliers to see real-time changes in demand and real-time changes in supply response, eliminating the bull-whip effect in the supply chain.

“We’ve also seen substantial improvement in product lead time,” Kern said. “We’re able to solve issues [with our suppliers] in a much faster way.”

Ultimately, this is where Kern says Cisco and its supply chain is headed: to what he calls supply chain orchestration.

“We’re trying to move this from a big IT project to having literally hundreds of people in our supply chain that are equipped to change the nature of their work every day,” he said. “If they understand the technology, they’re empowered to change the nature of their work.”

“This is the path for breakthrough productivity,” he concluded. “If you’re not investing heavily in these concepts today, it will be hard for you to stay relevant in the next decade.”