Tag Archives: letter-ap-business

Cadence Design Systems, Inc. (NASDAQ: CDNS) today announced that Anirudh Devgan, executive vice president and general manager of the Digital & Signoff Group and the System & Verification Group, has been appointed president of Cadence, effective immediately.

Dr. Devgan will report to Lip-Bu Tan, Cadence chief executive officer. Together, they will further the company’s System Design Enablement strategy by accelerating the momentum in the core electronic design automation (EDA) business and delivering to the expanding needs of its growing customer base.

As Cadence’s President, Dr. Devgan will oversee Cadence’s EDA products, including the digital implementation and signoff, functional verification, custom IC design, PCB and packaging businesses. Additionally, he will be responsible for the corporate strategy, marketing ­and business development functions.

“This is an exciting time for Cadence, and Anirudh will play a key leadership role as we capture opportunities that are being driven by groundbreaking trends in high-performance and edge computing, automotive electronics and machine learning, among others,” said Lip-Bu Tan, CEO of Cadence. “Anirudh is a visionary and an innovator and a strong team leader with broad operational experience. Both Cadence and its customers will benefit from his enhanced role. I am delighted to partner with him to further our System Design Enablement strategy by accelerating the strong momentum in our existing businesses and by expanding into new areas. The Cadence Board and management team join me in congratulating Anirudh on his promotion.”

“It is an honor to step into the role of president as Cadence continues to execute well across all areas of our business,” said Anirudh Devgan. “I look forward to working closely with Lip-Bu and my talented colleagues to accelerate our momentum and drive further growth.”

Anirudh Devgan is a 25-year industry veteran. Prior to joining Cadence in 2012, he was at Magma Design Automation, Inc. for seven years where he was general manager of the Custom Design Business Unit. He also spent 12 years at IBM in a variety of technical and management roles. He received numerous awards there, including the IBM Outstanding Innovation award. Dr. Devgan is an IEEE Fellow and has numerous research papers and patents. He received a Bachelor of Technology degree in electrical engineering from the Indian Institute of Technology, Delhi, and M.S. and Ph.D. degrees in electrical and computer engineering from Carnegie Mellon University.

Broadcom Limited (NASDAQ: AVGO) (“Broadcom”), a semiconductor device supplier to the wired, wireless, enterprise storage, and industrial end markets, today announced that it has completed its acquisition of Brocade Communications Systems, Inc. (NASDAQ: BRCD).

Brocade’s common stock will now cease to be traded on NASDAQ. Brocade will operate as an indirect subsidiary of Broadcom and will be led by Jack Rondoni as General Manager. Previously, Rondoni served as Senior Vice President of Storage Networking at Brocade, having joined the company in 2006. Rondoni brings over 20 years of experience in storage, networking and technology.

“We are pleased to complete this transaction, which strengthens Broadcom’s position as a leading provider of enterprise storage and networking solutions and enables us to better serve our OEM customers,” said Hock Tan, President and Chief Executive Officer of Broadcom. “Broadcom has a track record of successfully integrating and growing companies we acquire, enabling us to offer customers a leading portfolio of best-in-class franchises across a diverse set of technologies. We intend to invest in and grow the Brocade business to further enhance its capabilities in mission-critical storage networking.”

Tan continued, “We are pleased to announce Jack’s appointment as General Manager, and would like to welcome the outstanding team of employees at Brocade to the Broadcom family. Together, we will continue to exceed the expectations of our customers.”

“We are very excited to join the Broadcom team and provide compelling benefits for customers and new opportunities for Brocade’s employees,” said Jack Rondoni, General Manager, Brocade business unit. “Broadcom provides us with the scale, resources and complementary capabilities to accelerate growth, execute on our strategic initiatives and extend our market leadership in storage area networking. We share a common culture of innovation and execution, and we look forward to the exciting new growth opportunities we will have as part of the Broadcom team.”

SEMICON Europa 2017 will take place in Munich from 14 to 17 November, co-located with productronica. Consistent with SEMI’s theme “Connect, Collaborate, and Innovate,” co-locating SEMICON Europa with productronica gathers the full span of electronics manufacturing and end-products, creating the largest European electronics platform ever. More than 400 exhibitors will present their products and innovations at SEMICON Europa 2017. Over 40,000 attendees are expected at the co-located events.

After a period of slow growth, Europe’s semiconductor manufacturers are investing in new construction of 300mm fabs in Germany, Italy and France. Four semiconductor and MEMS manufacturers have announced investments in Europe totaling more than $10 billion. Bosch will build a new fab in Dresden; ST Microelectronics is planning two new 300mm fabs in Agrate and Crolles; and GLOBALFOUNDRIES and Infineon plan to expand their production capacity.

“The global industry will invest more than US$100 billion in equipment and materials this year. Forecasts for 2017 also predict that semiconductor manufacturers worldwide will exceed $400 billion in revenue ─ a new record,” says Ajit Manocha, president and CEO of SEMI.  “An unprecedented number of new inflections and applications will broadly expand the digital economy and drive increasing silicon content — in areas including IoT, assisted driving in automotive, Artificial Intelligence (AI), Big Data, and 5G. Assuming an average 7 percent CAGR, global chip sales could approach $1 trillion by 2030, and equipment and materials spending could similarly grow to nearly a quarter of a trillion dollars.”

The market segments in which European companies hold strong market positions also shape the conference program of SEMICON Europa 2017. More than 250 presentations, 50 conferences and high-caliber discussions provide an overview of current trends. Key issues this year include: materials, semiconductor manufacturing, advanced packaging, MEMS/sensors, power electronics, flexible and printed electronics. The focus is also on important applications such as the Internet of Things (IoT) and artificial intelligence (AI), smart manufacturing (“Industry 4.0”), automotive electronics and medical technology.

The Opening Ceremony will include a welcome speech by Ajit Manocha, president and CEO of SEMI,followed by Laith Altimime, president, SEMI Europe, plus four keynotes:

  • Bosch Sensortec: Stefan Finkbeiner, CEO, on how environmental sensing can contribute to a better quality of life in the context of the IoT
  • Rinspeed Inc.: Frank M. Rinderknecht, founder and CEO, on how to create innovative technologies, materials and mobility means of tomorrow
  • SOITEC: Carlos Mazure, CTO, executive VP, on contributions and benefits of engineered substrates solutions and thin-layer transfer technologies, focusing on applications in the smart space
  • TSMC Europe: Maria Marced, president, on opportunities for new business models to apply in the Smart City

On the exhibition show floor, the TechARENA free sessions are a highlight with the SEMI China Innovation and Investment Forum and the INNOVATION VILLAGE.

Automotive electronic system sales are forecast to rise by a compound annual growth rate (CAGR) of 5.4% from 2016 through 2021, which is the highest among six major end-use system categories (Figure 1), according to data presented in the 2018 edition of the IC Insights’ IC Market Drivers—A Study of Key System Applications Fueling Demand for Integrated Circuits that will be released later this year.

worldwide electronic systems 1

Demand is rising for electronic systems in new cars with increasing attention focused on self-driving (autonomous) vehicles, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, as well as on-board safety, convenience, and environmental features, and growing interest in electric vehicles.  Automotive electronics is growing as technology becomes more widely available on mid-range and entry-level cars and as consumers purchase technology-based aftermarket products.  For semiconductor suppliers, this is good news as analog ICs, MCUs, and a great number of sensors are required for many of these automotive systems.

The automotive segment is expected to account for an estimated 9.1% of the $1.49 trillion total worldwide electronic systems market in 2017 (Figure 2), a slight increase from 8.9% in 2015, and 9.0% in 2016. Automotive’s share of global electronic system production has increased only incrementally through the years, and is forecast to show only marginal gains as a percent of total electronic systems market through 2021, when automotive electronics are forecast to account for 9.8% of global electronic systems sales.  Though many electronics systems are being added in new vehicles, IC Insights believes pricing pressures on both ICs and electronic systems will keep the automotive end-use application from accounting for much more than its current share of total electronic systems through the forecast period.

worldwide electronic systems 2

Other electronic system and IC market highlights from the 2018 IC Market Drivers Report include the following.

• The automotive segment is forecast to be the fastest growing electronic system market through 2021. This is good news for the total automotive IC market, which is forecast to surge 22% in 2017 and 16% in 2018.

• Industrial electronic systems are forecast to enjoy the second-fastest growth rate (4.6%) through 2021 as robotics, wearable health devices, and systems promoting the Internet of Things help drive growth in this segment. Analog ICs are forecast to hold 45% of the industrial IC market in 2017.

• The 2016-2021 communication systems CAGR is projected to be 4.2% as global sales of smartphones and other mobile devices reach saturation.  Asia-Pacific is forecast to show the strongest regional growth of communication systems and account for 69% of the total communications IC market in 2017.

• The consumer electronic systems market is forecast to display a CAGR of 2.8% through 2021.  The logic segment is forecast to be the largest consumer IC market throughout the forecast.  In total, the consumer IC market is expected to register a 2.4% CAGR across the 2016-2021 time period.

• Flat or marginal demand for personal computing devices (desktops, notebooks, tablets) is expected to result in the computer systems market showing the weakest CAGR through 2021. The total computer IC market is forecast to increase 25% in 2017 driven by much higher average selling prices for computer DRAM and NAND flash memory.

 

DARPA’s new initiative


November 8, 2017

BY DR. PHIL GARROU, Contributing Editor

Earlier this year, DARPA’s Microsystems Technology Office (MTO) announced a new Electronics Resurgence Initiative (ERI) “to open pathways for far-reaching improvements in electronics performance well beyond the limits of traditional scaling.” Key to the ERI will hopefully be new collab- orations among the commercial electronics community, defense industrial base, university researchers, and the DoD. The DoD proposed FY 2018 budget reportedly includes a $75 million allocation for DARPA in support of this, initiative. It is reported that in total we are looking at a $200,000MM program.

The program will focus on the development of new materials for devices, new architectures for integrating those devices into circuits, and software and hardware designs for using these circuits. The program seeks to achieve continued improvements in electronics performance without the benefit of traditional scaling. Bill Chappell, director of DARPA’s Microsystems Technology Office (MTO), which will lead the program, announced

“For nearly seventy years, the United States has enjoyed the economic and security advantages that have come from national leadership in electronics innovation…..If we want to remain out front, we need to foment an electronics revolution that does not depend on traditional methods of achieving progress. That’s the point of this new initiative – to embrace progress through circuit specialization and to wrangle the complexity of the next phase of advances, which will have broad implications on both commercial and national defense interests.” He continued: “We need to break away from tradition and embrace the kinds of innovations that the new initiative is all about…”

The chip research effort will complement the recently created Joint University Microelectronics Program (JUMP), an electronics research effort co-funded by DARPA and SRC (Semiconductor Research Corporation). Among the chip makers contributing to JUMP are IBM, Intel Corp., Micron Technology and Taiwan Semiconductor Manufacturing Co. SRC members and DARPA are expected to kick in more than $150 million for the five-year project. Focus areas include high-frequency sensor networks, distributed and cognitive computing along with intelligent memory and storage.

The materials portion of the ERI initiative will explore the use of unconventional materials to increase circuit performance without requiring smaller transistors. Although silicon is used for most of the circuits manufactured today, other materials like GaAs, GaN and SiC have made significant inroads into high performance circuits. It is hoped that the initiative will uncover other elements from the Periodic Table that can provide candidate materials for next-generation logic and memory components. One research focus will be to integrate different semiconductor materials on individual chips, and vertical (3D) rather than planar integration of microsystem components.

The architecture portion of the initiative will examine circuit structures such as Graphics processing units (GPUs), which underlie much of the ongoing progress in machine learning, have already demonstrated the performance improvement derived from specialized hardware architectures. The initiative will explore other opportunities, such as “reconfigurable physical structures that adjust to the needs of the software they support.”

The design portion of the initiative will focus on devel- oping tools for rapidly designing specialized circuits. Although DARPA has consistently invested in these appli- cation-specific integrated circuits (ASICs) for military use, ASICs can be costly and time-consuming to develop. New design tools and an open-source design paradigm could be transformative, enabling innovators to rapidly and cheaply create specialized circuits for a range of commercial applications.

As part of this overall Electronics Resurgence Initiative, DARPA had their kickoff meeting for the CHIPS program (Common Heterogeneous Integration and Intellectual Property (IP) Reuse). The CHIPS vision is an ecosystem of discrete modular, IP blocks, which can be assembled into a system using existing and emerging integration technologies. Modularity and reusability of such IP blocks will require electrical and physical interface standards to be widely adopted by the community supporting the CHIPS ecosystem. The CHIPS program hopes to develop the design tools and integration standards required for modular integrated circuit (IC) designs.

Program contractors include Intel, Micron, Cadence, Lockheed Martin, Northrop Grumman, Boeing, Synopsys, Intrinsix Corp., and Jariet Technologies, U. Michigan, Georgia Tech, and North Carolina State.

ArterisIP, the supplier of silicon-proven commercial system-on-chip (SoC) interconnect IP, today announced it has joined the FDXcelerator Partner Program. This program enables SoC designers to integrate ArterisIP interconnect IP into their projects with the ability to accelerate the timing closure process for FDX-based designs. The partnership speeds the development of pioneering products in applications from automotive ADAS and machine learning to small IoT processors.

ArterisIP offerings participating in the FDXcelerator program include:

  • The Ncore Cache Coherent Interconnect IP with Ncore Resilience Package, which has been chosen by the industry’s leading automotive ADAS, autonomous driving, and machine learning SoC vendors for its power, performance, and area advantages and ISO 26262 functional safety features.
  • The FlexNoC Interconnect IP with FlexNoC Resilience Package, which is the backbone interconnect for most mobility and consumer electronics SoC designs where power consumption, performance, and cost are key design metrics.
  • The PIANO Timing Closure Package, which assists back-end timing closure with technology that works earlier in the SoC design flow, thereby reducing schedule risk.

“The addition of ArterisIP to the FDXcelerator Partnership Program has already realized benefits with the implementation of an FD-SOI automotive ADAS multi-processor SoC with fellow FDXcelerator partner Dream Chip Technologies,” said Alain Mutricy, senior vice president of product management at GF. “ArterisIP’s commitment to GF’s FDX technology enables a scalable on-chip interconnect IP technology that will help our customers meet stringent automotive safety requirements.”

“GF’s FDXcelerator program plays an important role for ArterisIP, enabling us to gain access to FD-SOI technology process and design information to enable improved automation of our interconnect timing closure assistance technology,” said K. Charles Janac, President and CEO of ArterisIP. “Interconnect timing closure assistance is becoming imperative as technologies like FD-SOI shrink feature sizes and allow ever-increasing transistor and wire densities.”

Toshiba Corporation (TOKYO:6502) today announced that its board of directors has approved a further investment by Toshiba Memory Corporation (TMC), a wholly-owned subsidiary that manufactures Flash memory, in manufacturing equipment for the Fab 6 clean room under construction at Yokkaichi Operations. TMC will invest approximately 110 billion yen as a second investment in Fab 6 for the installation of additional manufacturing equipment in the Phase-1 clean room.

Production at Fab 6 will be entirely devoted to BiCS FLASH, Toshiba’s innovative 3D Flash memory. As Toshiba announced in its August 3, 2017 release “Update on Toshiba Memory Corporation’s Investment in Production Equipment for Fab 6 at Yokkaichi Operations”, TMC has previously invested approximately 195 billion yen in Fab 6 as its first investment covering the installation of manufacturing equipment in the Phase-1 clean room and the construction of the Phase-2 clean room.

Demand for TMC’s next generation 3D Flash memory devices is expected to increase significantly due to growing demand for enterprise SSDs in datacenters, SSDs for PCs, and memory for smartphones; TMC expects this strong market growth to continue in 2018. TMC’s investment timing will position it to capture this growth and expand its business.

The investment in Fab 6 will enable TMC to install manufacturing equipment for 96-layer 3D Flash memories, including deposition and etching equipment.

There is no change in the FY2017 Financial Forecast announced on Aug 10, 2017, as the impact of the additional investment will be realized after FY2018. However, the FY2017 investment plan for Toshiba Corporation Storage & Devices Solutions Segment will be revised from 330 billion yen, as announced on August 10, to 400 billion yen by accelerating a part of the investment previously planned for FY2018. This will be used with the remaining 40 billion yen in the FY2017 investment plan, bringing this second investment to 110 billion yen. As announced on March 17, 2016 announcement “Notice of Construction of New Semiconductor Fabrication Facility,” Toshiba decided on a construction and equipment investment plan for the new fabrication facility, with an estimated cost of approximately 360 billion yen from FY2016 to FY2018. The company will update its investments plans to reflect any subsequent changes.

TMC has recently asked SanDisk, its collaborator in three joint ventures for investment in manufacturing equipment at TMC’s Yokkaichi Operations, whether it intends to jointly participate in this second investment for the Phase-1 clean room in the Fab 6 facility.

The Semiconductor Industry Association (SIA) today announced worldwide sales of semiconductors reached $35.0 billion for the month of August 2017, an increase of 23.9 percent compared to the August 2016 total of $28.2 billion and 4.0 percent more than the July 2017 total of $33.6 billion. All major regional markets posted both year-to-year and month-to-month increases in August, and the Americas market led the way with growth of 39.0 percent year-to-year and 8.8 percent month-to-month. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Global semiconductor sales were up significantly in August, increasing year-to-year for the thirteenth consecutive month and reaching $35 billion for the first time,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Sales in August increased across the board, with every major regional market and semiconductor product category posting gains on a month-to-month and year-to-year basis. Memory products continue be a major driver of overall market growth, but sales were up even without memory in August.”

Year-to-year sales increased in the Americas (39.0 percent), China (23.3 percent), Asia Pacific/All Other (19.5 percent), Europe (18.8 percent), and Japan (14.3 percent). Month-to-month sales increased in the Americas (8.8 percent), China (3.7 percent), Japan (2.8 percent), Asia Pacific/All Other (2.2 percent), and Europe (0.6 percent).

“With about half of global market share, the U.S. semiconductor industry is the worldwide leader, but U.S. companies face intense global competition,” said Neuffer. “To allow our industry to continue to grow and innovate here at home, policymakers in Washington should enact corporate tax reform that makes the U.S. tax system more competitive with other countries. The corporate tax reform framework released last week by leaders in Congress and the Trump Administration is an important step forward. We look forward to working with policymakers to enact corporate tax reform that strengthens our industry and the U.S. economy.”

Aug 2017

Billions

Month-to-Month Sales                              

Market

Last Month

Current Month

% Change

Americas

6.94

7.55

8.8%

Europe

3.20

3.22

0.6%

Japan

3.04

3.13

2.8%

China

10.68

11.08

3.7%

Asia Pacific/All Other

9.77

9.98

2.2%

Total

33.63

34.96

4.0%

Year-to-Year Sales                         

Market

Last Year

Current Month

% Change

Americas

5.43

7.55

39.0%

Europe

2.71

3.22

18.8%

Japan

2.73

3.13

14.3%

China

8.99

11.08

23.3%

Asia Pacific/All Other

8.35

9.98

19.5%

Total

28.22

34.96

23.9%

Three-Month-Moving Average Sales

Market

Mar/Apr/May

Jun/Jul/Aug

% Change

Americas

6.27

7.55

20.5%

Europe

3.11

3.22

3.8%

Japan

2.95

3.13

6.0%

China

10.25

11.08

8.1%

Asia Pacific/All Other

9.43

9.98

5.9%

Total

31.99

34.96

9.3%

Today, SEMI announced the lineup of keynotes coming to SEMICON Japan’s “SuperTHEATER” ─ focusing on the future of the electronics manufacturing supply chain. SEMICON Japan 2017, the largest exhibition in Japan for electronics manufacturing, will take place at Tokyo Big Sight in Tokyo on December 13-15. Registration is now open for the exhibition and programs.

With the theme “Dreams Start Here,” SEMICON Japan 2017 will bring together the connections between people, technologies and businesses across the electronics manufacturing supply chain ─ extending to the internet of things (IoT) applications that inspire the dreams that shape the future.

Japan has the world’s third-largest 300mm wafer installed fab capacity and the world’s largest 200mm and smaller wafer fab capacity (including discrete devices production). Japan also supplies one third of the semiconductor equipment and more than half of the semiconductor materials that are purchased in the global market.

The SuperTHEATER offers nine keynote forums, all with simultaneous English-Japanese translation. On December 13, keynotes at SEMICON Japan’s SuperTHEATER include:

  • Opening Keynotes ─ Visions of the Game Changing Era
    • Soft Bank:  Ken Miyauchi, president and CEO, “The Information Revolution beyond the Singularity”
    • Qualcomm Technologies: Raj Talluri, senior VP of product management, “Qualcomm Viewpoint: Accelerating the Internet of Things”
       
  • Semiconductor Executive Forum ─ Growth Strategy in New Business Environment
    • TowerJazz Semiconductor: Russell Ellwanger, CEO, “Value Creation”
    • SMIC: Haijun Zhao, CEO, Considerations in Developing Manufacturable IC Technologies”
    • Micron Technology: Wayne Allan, senior VP of global manufacturing, “Enabling Smart Manufacturing in Today’s Industry 4.0”

The SEMI Market Forum, also on December 13, will offer presentations from IHS Markit and SEMI, with the theme “In the Light and Shadow of Awaking China”

Additional SEMICON Japan 2017 highlights include:

  • IT/AI Forum on U.S. companies’ artificial intelligence strategies
  • IoT Global Trends Forum on semiconductors for IoT
  • IoT Key Technology Forum on Smart Transportation
  • Manufacturing Innovation Forum n “Manufacturing Technology for the Diversified Future”
  • Electronics Trends
  • Mirai (the Future) Vision

 

For more information and to register for SEMICON Japan, visit www.semiconjapan.org/en/

By Yoichiro Ando, SEMI Japan

Shinzo Abe, the prime minister of Japan, plans to stage a Robot Olympics in 2020 alongside the summer Olympic Games to be hosted in Tokyo. Abe said he wants to showcase the latest global robotics technology, an industry in which Japan has long been a pioneer. Japan’s Robot Strategy developed by the Robot Revolution Initiative Council plans to increase Japanese industrial robot sales to 1.2 trillion JPY by 2020. This article discusses how the robotics industry is not just a key pillar of Japan’s growing strategy but also a key application segment that may lead Japan’s semiconductor industry growth.

Japan leads robotics industry

According to International Federation of Robotics (IFR), the 2015 industrial robot sales increased by 15 percent to 253,748 units compared to the 2014 sales. Among the 2015 record sales, Japanese companies shipped 138,274 units that represent 54 percent of the total sales according to Japan Robot Association (JARA). The robotics companies in Japan include Yaskawa Electric, Fanuc, Kawasaki Heavy Industries, Fujikoshi and Epson.

Source: International Federation of Robotics (global sales) and Japan Robot Association (Japan shipment)

Source: International Federation of Robotics (global sales) and Japan Robot Association (Japan shipment)

The automotive industry was the most important customer of industrial robots in 2015 that purchased 97,500 units or 38 percent of the total units sold worldwide. The second largest customer was the electrical/electronics industry (including computers and equipment, radio, TV and communication devices, medical equipment, precision and optical instruments) that showed significant growth of 41 percent to 64,600 units.

Semiconductors devices used in robotics industry

Robotics needs semiconductor devices to improve both performance and functionality. As the number of chips used in a robot increases and more advanced chips are required, the growing robotics market is expected to generate significant semiconductor chip demands.

FEA-RO-IA-R2000-SpotWeld-3

Semiconductor devices in robots are used for collecting information; information processing and controlling motors and actuators; and networking with other systems.

  • Sensing Devices: Sensors are used to collect information including external information such as image sensors, sound sensors, ultrasonic sensors, infrared ray sensors, temperature sensors, moisture sensors and pressure sensors; and movement and posture of the robot itself such as acceleration sensors and gyro sensors.

    Enhancing these sensors’ sensitivity would improve the robot performance. However, for robot applications, smaller form factors, lighter weight, lower power consumption, and real-time sensing are also important. Defining all those sensor requirements for a specific robot application is necessary to find an optimal and cost-effective sensor solution.

    In addition, noise immunity is getting more important in selecting sensors as robot applications expand in various environments that include noises. Another new trend is active sensing technology that enhances sensors’ performance by actively changing the position and posture of the sensors in various environments.

  • Data Processing and Motor Control Devices: The information collected by the sensors is then processed by microprocessors (MPUs) or digital signal processors (DSPs) to generate control signals to the motors and actuators in the robot. Those processors must be capable of operating real-time to quickly control the robot movement based on processed and analyzed information. To further improve robot performance, new processors that incorporate artificial intelligence (AI) and ability to interact with the big data cloud database are needed.
  • As robotics is adapted to various industry areas as well as other services and consumer areas, the robotics industry will need to respond to multiple demands. It is expected that more field programmable gate arrays (FPGAs) will be used in the industry to manufacture robots to those demands.

    In the control of motors and actuators, power devices play important roles. For precise and lower-power operation of the robot, high performance power devices using high band gap materials such as Silicon Carbide and Gallium Nitride will likely used in the industrial applications.

  • Networking Devices: Multiple industrial robots used in a production line are connected with a network. Each robot has its internal network to connect its components. Thus every robot is equipped with networking capability as a dedicated IC, FPGA or a function incorporated in microcontrollers.

Ando--industrial-automation

Smart Manufacturing or Industry 4.0 requires all equipment in a factory to be connected to a network that enables the machine-to-machine (M2M) communication as well as connection to the external information (such as ordering information and logistics) to maximize factory productivity. To be a part of such Smart Factories, industrial robots must be equipped with high-performance and high-reliability network capability.

Opportunities for semiconductor industry in Japan

Japanese semiconductor companies are well-positioned in the key semiconductor product segments for robotics such as sensors, microcontrollers and power devices. These products do not require the latest process technology to manufacture and can be fabricated on 200mm or smaller wafers at a reasonable cost. Japan is the region that holds the largest 200mm and smaller wafer fab capacity in the world and the lines are quite versatile in these product categories.

The robotics market will likely be a large-variety and small-volume market. Japanese semiconductor companies will have an advantage over companies in other regions because they can collaborate with leading robotics companies in Japan from early stages of development. Also, Japan may lead the robotics International Standards development which would be another advantage to Japanese semiconductor companies.

For more information about the robotics and semiconductor, attend SEMICON Japan on December 13 to 15 in Tokyo. Event and program information will be available at www.semiconjapan.org soon.