Tag Archives: letter-ap-top

By Lung Chu

Lung ChuThe growth of China’s semiconductor industry outstripped sector expansion in many other regions in 2017 thanks in part to heavy government investments and supportive state policies. But China’s chip industry also struggled under the weight of overheated investment, inconsistent project quality, insufficient investment in research and development, a poor ability to innovate, and barriers to international cooperation. To overcome these headwinds to growth, China must identify global trends in the development of global semiconductor industry and better understand the forces it needs to mobilize to further expand its own semiconductor sector.

AI and 5G fuel global semiconductor industry growth

In 2017, global semiconductor industry revenue reached a seven-year peak, expanding 22 percent to nearly USD 420 billion, and entered a new growth phase with artificial intelligence (AI), 5G and other new technologies leading the surge with greater market segmentation, diversification and decentralization. The emergence of smart automobiles, smart cities, smart medicine, AR/VR and other new markets headed the list of new applications. In the next three to five years, semiconductor industry growth is expected to remain stable, with no marked declines. In 2018, the growth rate is expected to fall to between 5 percent and 8 percent, with the expansion more comprehensive and balanced.

The memory market, in particular, will find it hard to match its 2017 blistering growth rate. The market’s expected growth of 10 percent to 20 percent will be chiefly driven by DRAM and 3D NAND Flash. In 2019, NAND growth will continue but DRAM shipments could decline.

Emphasis on both innovation and investment key to sustainable growth of Chinese IC

Under the China government’s Guidelines to Promote National IC Industry Development, designed to provide key policy guidance and capital support for the development of China’s IC industry, the Chinese semiconductor industry is seeing particularly rapid growth that is expected to be a key contributor to continuing global industry expansion. In IC design, HiSilicon and Unigroup Spreadtrum & RDA ranked among the top 10 in the world. In wafer fabrication, Chinese IC manufacturing accounted for 13 percent to 15 percent of global market capacity despite SMIC and Huahong Group lagging international competition in advanced processing. In packaging and testing – China’s strongest segment – JCET, NFME and Huatian Technology also ranked in the global top 10.

The Guidelines to Promote National IC Industry Development has fueled a boom in capital investments. However, investments must go well beyond fab construction to add new capacity for China’s semiconductor industry to flourish. A strategy for sustainable, long-term chip industry growth must focus more on technology innovation while continuing heavy capital investments, though it takes time for innovation to lead to higher capacity demand and GPD growth and more jobs.

Despite large investments by the 02 Special Project in semiconductor equipment and materials, China trails other regions of the world in advanced technologies. Global spending on semiconductor equipment reached a record-breaking USD 56 billion in 2017, with Korea a major driver. In 2017, Samsung alone invested USD 25 billion in semiconductor equipment, followed by TSMC (USD 10.8 billion), Intel (USD 11.5 billion), Hynix (USD 8.5 billion), Micron (USD 0.5 billion), SMIC (USD 2.3 billion) and YMTC (USD 2 billion). In 2018, Samsung’s equipment spending is expected to drop slightly, to USD 24 billion, while investments by Intel and TSMC will be remain roughly equal.

China’s equipment spending will continue to grow in 2018, with SMIC and YMTC maintaining investment levels similar to last year’s and other China semiconductor manufacturers starting to ramp up investments. In 2018, China is expected to surpass Taiwan in equipment spending to claim the number two position after Korea.

SIIP China dedicated to international connection and cooperation

The huge investments in China’s semiconductor industry need to be supported by robust business strategies, greater international cooperation, deeper expertise in advanced technologies, and more skilled workers. China lags the global industry in all of these areas. The rapid rise of China’s semiconductor industry has raised concerns among many countries over China’s growing influence, with some, most notably the United States, going so far as to implement containment measures. Other regions including Japan, Korea and Taiwan followed suit.

The continued growth of China’s semiconductor industry hinges on technological innovation enabled by international cooperation, as well as strong international communication to allay concerns and misunderstandings over the rising prominence of China’s chip sector. China must overcome these obstacles. One partial solution is for China to convince the rest of the world that its need a thriving semiconductor industry if only to meet enormous demand for electronics products within its own borders.

As the largest international semiconductor industry association, SEMI enjoys a unique ability to strengthen the connection between China’s semiconductor sector and its international counterparts. SEMI is well-known for its vital support of the traditional semiconductor equipment and materials markets, but SEMI’s work also spans IC design, manufacturing, packaging and testing. What’s more, SEMI has expanded into innovative market vertical applications such as AI, smart manufacturing, smart transportation and smart automotive as it aims to bring together supply chains across these growth areas.

For its part, SEMI China remains dedicated to improving communications and cooperation between the Chinese and global semiconductor industries. SEMI China will also continue to encourage deeper collaboration among individual enterprises and government institutions in the interest of industry growth while making full use of SEMI’s international, professional and localization platform to promote the development of China’s semiconductor industry.

Last year, we established SEMI Innovation Investment Platform (SIIP) China to help grow China’s pool of skilled workers, promote advanced technology, generate industry capital, and expand China’s semiconductor industry while developing stronger connections with chip sectors in other regions. SIIP China is focused on the following:

  • Promoting sustainable development of the Chinese semiconductor industry
  • Establishing stronger connections to help take advantage of global technology and investment opportunities
  • Providing a platform for open communications between the Chinese and global semiconductor industries
  • Promoting greater coordination between China and its global partners
  • Helping newly enterprises secure funds for expansion

Encouraging greater cooperation with foreign semiconductor manufacturers in the interest of openness and mutual benefit will be the best way for China to overcome obstacles to the development of its semiconductor industry. Meanwhile, China will continue to strive to merge into the global semiconductor industry and become a key partner.

SEMICON China has witnessed the development of Chinese semiconductor industry

SEMICON China-1

SEMICON China marked its 30th anniversary this year. Over the past three decades, China’s semiconductor industry has seen remarkable growth. This year’s SEMICON China was the largest ever. SEMICON China and FPD China 2018 numbered 3,628 booths, covered 74,000 square meters of exhibition space and attracted 1,116 exhibitors from 21 countries and regions and 91,252 professional attendees from 58 countries and regions.

Most of China’s top device makers and global leading packaging houses, together with their equipment and materials suppliers, exhibited at SEMICON China and FPD China 2018, representing the global IC manufacturing ecosystem. The number of SEMICON China and FPD China 2018 visitors jumped 32.3 percent from last year, with representation by professionals from the design, manufacturing, assembly and test, equipment and materials sectors.

Lung Chu is President of SEMI China.

Originally published on the SEMI blog.

The spread of digital camera applications in vehicles, machine vision, human recognition and security systems, as well as for more powerful camera phones will drive CMOS image sensor sales to an eighth straight record-high level this year with worldwide revenues growing 10% to $13.7 billion, following a 19% surge in 2017, according to IC Insights’ 2018 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discretes. The new 375-page report shows nothing stopping CMOS image sensors from continuing to set record-high annual sales and unit shipments through 2022 (Figure 1).

Figure 1

Figure 1

CMOS image sensors continue to take marketshare from charge-coupled devices (CCDs) as embedded digital-imaging capabilities expand into a wider range of systems and new end-use applications, says the 2018 O-S-D Report.  With the smartphone market maturing, sales growth in CMOS image sensors slowed to 6% in 2016, but strong demand in other imaging applications played a major factor in boosting revenues by 19% to $12.5 billion last year.  Sales of CCD and other image sensor technologies fell 2% in 2017 to about $1.6 billion after rising 5% in 2016, according to the new IC Insights report.

Overall, CMOS image sensors grabbed 89% of total image sensor sales in 2017 compared to 74% in 2012 and 54% in 2007.  Unit shipments of CMOS imaging devices represented 81% of total image sensors sold in 2017 compared to 64% in 2012 and 63% in 2007.  New CMOS designs keep improving for a variety of light levels (including near darkness at night), high-speed imaging, and greater resolution as well as integrating more functions for specific applications, such as security video cameras, machine vision in robots and cars, human recognition, hand-gesture interfaces, virtual/augmented reality, and medical systems.

In new smartphones, CMOS image sensors are also seeing a new wave of growth with the increase of dual-lens camera systems (using two sensors) for enhanced photography.  Cellular camera phones accounted for 62% of CMOS image sensor sales in 2017, but that marketshare is forecast to slip to 45% in 2022. Automotive CMOS image sensors are projected to grow the fastest among major end-use applications through the five-year forecast shown in the new O-S-D Report, rising by a compound annual growth rate (CAGR) of 38.4% to about 15% of total CMOS image sensor sales in 2022 ($2.8 billion) while camera phone-generated revenues are expected to rise by a CAGR of just 2.2% to $8.6 billion that year.

SEMI Industry Research and Statistics, and Jan Vardaman, TechSearch International

The global semiconductor packaging materials market reached $16.7 billion in 2017. While slower growth of smartphones and personal computers – the industry’s traditional drivers – is reducing material consumption, the slowdown was offset by strong unit growth in the cryptocurrency market in 2017 and early 2018. Flip chip package shipments into the cryptocurrency market, while providing a windfall to many suppliers, are not expected to remain at high levels, SEMI, the industry association representing the global electronics manufacturing supply chain, and TechSearch International reported in The Global Semiconductor Packaging Materials Outlook.

The outlook shows that, despite growth in automotive electronics and high-performance computing, continuing price pressure and declining material consumption will constrain future material revenue growth to steady single-digits, with the materials market forecast to reach $17.8 billion in 2021. IC leadframes, underfill, and copper wire are among the materials segments that will see single-digit unit volume growth through 2021.

Laminate substrate suppliers participating in the sale of flip chip substrates for cryptocurrency saw volume increases in 2017, but this segment continues to be battered by increased use of multi-die solutions and the shift to wafer level packages (WLPs), including fan-out WLP, slowing growth. Wafer-level packaging (WLP) dielectrics and plating chemistry suppliers will experience stronger revenue growth as the adoption of advanced packaging continues.

Over the next several years, advances in the semiconductor materials market will present a number of opportunities driven by trends including:

  • Continued adoption of FO-WLP including FO-on-substrate solutions with high density geometries down to 2µm lines and spaces
  • Liquid crystal polymer (LCP) under consideration as a possible material option because of its good electrical performance and low moisture absorption, especially for mmWave applications such as 5G
  • Adoption of low-cost package solutions such as MIS and other routable-QFN technologies
  • PPF QFN volumes are rising with automotive applications, driving a requirement for roughened plating to deliver needed reliability
  • Expansion of photoresist plating capability for selective plating of leadframes
  • Thermally enhanced and high-voltage mold compounds for power and automotive devices
  • Thermally conductive die attach materials other than solder die attach for power applications

Report highlights include:

  • Laminate substrates represent the largest revenue segment of the materials market with more than $6 billion in sales for 2017.
  • Overall leadframe shipments are forecast to grow at a 3.9 percent CAGR from 2017 through to 2021, with LFCSP (QFN type) experiencing the strongest unit growth, an 8 percent CAGR.
  • Following five years of decline, gold wire shipments increased in both 2016 and 2017 though represent just 37 percent of the total bonding wire shipments in 2017.
  • Liquid encapsulant revenues totaled $1.3 billion in 2017 with single-digit expected through 2021. LED packaging applications are driving the revenue growth over the forecast period though downward pricing pressures are a constant in the market.
  • Die attach material revenues reached $741 million in 2017 with single digit growth to 2021. DAF materials will experience higher unit growth, though downward pricing trends continue.
  • Solder ball revenues reached $231 million in 2017. The revenue outlook depends on fluctuations in metal pricing.
  • The wafer-level plating chemical market was put at $263 million in 2017 with strong growth through 2021. RDL and Cu pillar will be the key growth segments.

SEMI and TechSearch International, Inc. teamed up again to develop the 8th edition of the Global Semiconductor Packaging Materials Outlook, a comprehensive market research study on the semiconductor packaging materials market. Interviews were conducted with more than 130 semiconductor manufacturers, packaging subcontractors, fabless semiconductor companies, and packaging material suppliers to gather information for the report. The report covers the following semiconductor packaging materials segments: substrates, leadframes, bonding wire, mold compounds, underfill materials, liquid encapsulants, die attach materials, solder balls, wafer level package dielectrics, and wafer-level plating chemicals.

For more information and to purchase the report, click here.

The Semiconductor Industry Association (SIA) today announced worldwide sales of semiconductors reached $111.1 billion during the first quarter of 2018, an increase of 20 percent compared to the first quarter of 2017, but 2.5 percent less than the fourth quarter of 2017. Sales for the month of March 2018 came in at $37.0 billion, an increase of 20 percent compared to the March 2017 total of $30.8 billion and 0.7 percent more than the February 2018 total of $36.8 billion. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“The global semiconductor market has demonstrated impressive growth through the first quarter of 2018, far exceeding sales through the same point in 2017, which was a record year for semiconductor revenues,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Sales in March increased year-to-year for the 20th consecutive month. All regional markets experienced double-digit growth compared to last year, and all major semiconductor product categories experienced year-to-year growth, with memory products continuing to lead the way.”

Year-to-year sales increased across all regions in March: the Americas (35.7 percent), Europe (20.6 percent), China (18.8 percent), Asia Pacific/All Other (13.3 percent), and Japan (12.4 percent). Month-to-month sales increased in Europe (3.9 percent), China (2.2 percent), Japan (0.5 percent), and Asia Pacific/All Other (0.2 percent), but decreased slightly in the Americas (-2.0 percent).

For comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, consider purchasing the WSTS Subscription Package. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2017 SIA Databook.

Mar 2018

Billions

Month-to-Month Sales                              

Market

Last Month

Current Month

% Change

Americas

8.26

8.09

-2.0%

Europe

3.43

3.57

3.9%

Japan

3.18

3.19

0.5%

China

11.70

11.95

2.2%

Asia Pacific/All Other

10.19

10.22

0.2%

Total

36.76

37.02

0.7%

Year-to-Year Sales                         

Market

Last Year

Current Month

% Change

Americas

5.96

8.09

35.7%

Europe

2.96

3.57

20.6%

Japan

2.84

3.19

12.4%

China

10.06

11.95

18.8%

Asia Pacific/All Other

9.02

10.22

13.3%

Total

30.84

37.02

20.0%

Three-Month-Moving Average Sales

Market

Oct/Nov/Dec

Jan/Feb/Mar

% Change

Americas

8.95

8.09

-9.6%

Europe

3.37

3.57

5.8%

Japan

3.24

3.19

-1.5%

China

12.01

11.95

-0.5%

Asia Pacific/All Other

10.41

10.22

-1.8%

Total

37.99

37.02

-2.5%

Samsung Electronics Co., Ltd. today announced that it has begun mass producing 10-nanometer (nm)-class* 16-gigabit (Gb) LPDDR4X DRAM for automobiles. The latest LPDDR4X features high performance and energy efficiency while significantly raising the thermal endurance level for automotive applications that often need to operate in extreme environments. The 10nm-class DRAM will also enable the industry’s fastest automotive DRAM-based LPDDR4X interface with the highest density.

“The 16Gb LPDDR4X DRAM is our most advanced automotive solution yet, offering global automakers outstanding reliability, endurance, speed, capacity and energy efficiency,” said Sewon Chun, senior vice president of memory marketing at Samsung Electronics. “Samsung will continue to closely collaborate with manufacturers developing diverse automotive systems, in delivering premium memory solutions anywhere.”

Moving a step beyond its 20nm-class ‘Automotive Grade 2’ DRAM, which can withstand temperatures from -40°C to 105°C, Samsung’s 16Gb LPDDR4X is Automotive Grade 1-compliant, raising the high-end threshold to 125°C. By more than satisfying the rigorous on-system thermal cycling tests of global auto manufacturers, the 16Gb LPDDR4X has enhanced its reliability for a wide variety of automotive applications in many of the world’s most challenging environments.

Adding to the degree of reliability under high temperatures, production at an advanced 10nm-class node is key to enabling the 16Gb LPDDR4X to deliver its leading-edge performance and power efficiency. Even in environments with extremely high temperatures of up to 125°C, its data processing speed comes in at 4,266 megabits per second (Mbps), a 14 percent increase from the 8Gb LPDDR4 DRAM that is based on 20nm process technology, and the new memory also registers a 30 percent increase in power efficiency.

Along with a 256 gigabyte (GB) embedded Universal Flash Storage (eUFS) drive announced in February, Samsung has expanded its advanced memory solution lineup for future automotive applications with the 10nm-class 16Gb LPDDR4X DRAM, commercially available in 12Gb, 16Gb, 24Gb and 32Gb capacities. While extending its 10nm-class DRAM offerings, the company also plans on bolstering technology partnerships for automotive solutions that include vision ADAS (Advanced Driver Assistance Systems), autonomous driving, infotainment systems and gateways.

Research included in the recently released 50-page April Update to the 2018 edition of IC Insights’ McClean Report shows that in 2017, the top eight major foundry leaders (i.e., sales of ≥$1.0 billion) held 88% of the $62.3 billion worldwide foundry market (Figure 1).  The 2017 share was the same level as in 2016 and one point higher than the share the top eight foundries represented in 2015.  With the barriers to entry (e.g., fab costs, access to leading edge technology, etc.) into the foundry business being so high and rising, IC Insights expects this “major” marketshare figure to remain at or near this elevated level in the future.

TSMC, by far, was the leader with $32.2 billion in sales last year.  In fact, TSMC’s 2017 sales were over 5x that of second-ranked GlobalFoundries and more than 10x the sales of the fifth-ranked foundry SMIC.

Figure 1

Figure 1

China-based Huahong Group, which includes Huahong Grace and Shanghai Huali, displayed the highest growth rate of the major foundries last year with an 18% jump.  Overall, 2017 was a good year for many of the major foundries with four of the eight registering double-digit sales increases.

Of the eight major foundries, six of them are headquartered in the Asia-Pacific region. As shown, Samsung was the only IDM foundry in the ranking.  IBM, a former major IDM foundry, was acquired by GlobalFoundries in mid-2015 while IDM foundries Fujitsu and Intel fell short of the $1.0 billion sales threshold last year. Although growing only 4% last year, Samsung easily remained the largest IDM foundry in 2017, with over 5x the foundry sales of Fujitsu, the second-largest IDM foundry.

Driven by strong growth in the memory market, worldwide semiconductor revenue totaled $420.4 billion in 2017, a 21.6 percent increase from 2016 revenue of $345.9 billion, according to final results by Gartner, Inc.

“2017 saw two semiconductor industry milestones — revenue surpassed $400 billion, and Intel, the No. 1 vendor for the last 25 years, was pushed into second place by Samsung Electronics,” said George Brocklehurst, research director at Gartner. “Both milestones happened due to rapid growth in the memory market as undersupply drove pricing for DRAM and NAND flash higher.”

The memory market surged nearly $50 billion to reach $130 billion in 2017, a 61.8 percent increase from 2016. Samsung’s memory revenue alone increased nearly $20 billion in 2017, moving the company into the top spot in 2017 (see Table 1). However, Gartner predicts that the company’s lead will be short-lived and will disappear when the memory market goes into its bust cycle, most likely in late 2019.

Table 1. Top 10 Semiconductor Vendors by Revenue, Worldwide, 2017 (Millions of U.S. Dollars)

2017 Rank

2016 Rank

Vendor

2017 Revenue

2017 Market

Share (%)

2016 Revenue

2016-2017 Growth (%)

1

2

Samsung Electronics

59,875

14.2

40,104

49.3

2

1

Intel

58,725

14.0

54,091

8.6

3

4

SK hynix

26,370

6.3

14,681

79.6

4

5

Micron Technology

22,895

5.4

13,381

71.1

5

3

Qualcomm

16,099

3.8

15,415

4.4

6

6

Broadcom

15,405

3.7

13,223

16.4

7

7

Texas Instruments

13,506

3.2

11,899

13.5

8

8

Toshiba

12,408

3.0

9,918

25.1

9

17

Western Digital

9,159

2.2

4,170

119.6

10

9

NXP

8,750

2.1

9,314

-6.1

Others

177,201

42.2

159,655

11.0

Total Market

420,393

100.0

345,851

21.6

Source: Gartner (April 2018) 

The booming memory segment overshadowed strong growth in other categories in 2017. Nonmemory semiconductors grew $24.8 billion to reach $290 billion, representing a growth rate of 9.3 percent. Many of the broadline suppliers in the top 25 semiconductor vendors, including Texas Instruments, STMicroelectronics and Infineon, experience high growth as two key markets, industrial and automotive, continued double-digit growth, buoyed by broad-based growth across most other end markets.

The combined revenue of the top 10 semiconductor vendors increased by 30.6 percent during 2017 and accounted for 58 percent of the total market, outperforming the rest of the market, which saw a milder 11.0 percent revenue increase.

M&As are taking longer

2017 was a slower year for closing mergers and acquisitions (M&As), with roughly half the deal value and number of deals compared with 2016. However, the semiconductor industry continues to see escalating deal sizes with greater complexity, which are becoming more challenging to close. Avago set a record in its acquisition of Broadcom for $37 billion in 2016, and this record should soon be broken by Qualcomm’s acquisition of NXP Semiconductors for $44 billion.

The IoT is starting to pay vendor dividends

Growth in the Internet of Things (IoT) is having a significant impact on the semiconductor market, with application-specific standard products (ASSPs) for consumer applications up by 14.3 percent and industrial ASSPs rising by 19.1 percent in 2017. Semiconductors for wireless connectivity showed the highest growth with 19.3 percent in 2017, and topping $10 billion for the first time, despite reduced component prices and the static smartphone industry.

More detailed analysis is available to Gartner clients in the report “Market Share Analysis: Semiconductors, Worldwide, 2017.”

Technavio market research analysts forecast the global semiconductor assembly and packaging services market to grow at a CAGR of close to 5% during the period 2018-2022, according to their latest report.

In this report, Technavio highlights the advances in wafer size as one of the key emerging trends in the global semiconductor assembly and packaging services market. Since 2010, the semiconductor industry has seen a drastic transition in wafer size. To cut down costs by almost 20%-25%, the industry has shifted to large diameter wafers. Currently, the industry uses 300-mm wafers to manufacture ICs. As companies are investing a substantial amount in the construction and upgrading of fabs to manufacture 300-mm wafers, this trend is expected to continue during the forecast period.

However, the demand for 200-mm wafers will continue during the forecast period because semiconductor devices such as image sensors, microcontrollers, display drivers, and a few MEMS-based products like accelerometers still use 200-mm wafers for manufacturing. At the same time, the industry is planning to develop 450-mm wafer technology, which is expected to start during 2018-2019. This constant change in the wafer size will create the need for assembly and packaging services in the semiconductor industry.

In this report, Technavio analysts highlight the rising number of fabs as a key factor contributing to the growth of the global semiconductor assembly and packaging services market:

Rising number of fabs

Semiconductor fabs manufacture an array of semiconductor devices and components. These components are either designed in-house by IDMs or manufactured as per designs provided by the client to foundries. The need for silicon wafers to manufacture semiconductor components is increasing due to the rising application of these components in various emerging technologies such as IoT and AI. This will increase the need to develop more number of fabs. As the semiconductor foundry market is highly competitive, several companies are building new fabs.

According to a senior analyst at Technavio for semiconductor equipment, “The need for assembly and packaging services required for the timely manufacture of ICs is growing, due to the increasing demand for ICs in various emerging applications such as autonomous cars and robotics. Major foundries have announced various plans of constructing new fabs, which will be operational by 2019 onward.”

Global semiconductor assembly and packaging services market segmentation

This market research report segments the global semiconductor assembly and packaging services market into the following applications, including communication sector, computing and networking sector, industrial and automotive sector, and consumer electronics sector and key regions, including the Americas, APAC, and EMEA.

Of the four major applications, the communication sector held the largest market share in 2017, accounting for nearly 40% of the market. The market share for this application is expected to increase nearly 2% by 2022. The fastest growing application is industrial and automotive sector, which will account for nearly 24% of the total market share by 2022.

APAC was the leading region for the global semiconductor assembly and packaging services market in 2017, accounting for a market share of nearly 76%. By 2022, APAC is expected to continue dominating the market.

Worldwide PC shipments totaled 61.7 million units in the first quarter of 2018, a 1.4 percent decline from the first quarter of 2017, according to preliminary results by Gartner, Inc. The PC market experienced a 14th consecutive quarter of decline, dating back to the second quarter of 2012.

Asia/Pacific and the U.S. experienced declining shipments, while other regions saw some minimal growth, but it was not enough to drive overall growth for the PC industry. In the first quarter of 2018, PC shipments in Asia/Pacific declined 3.9 percent compared with the same period last year, while shipments in the U.S. decreased 2.9 percent.

“The major contributor to the decline came from China, where unit shipments declined 5.7 percent year over year,” said Mikako Kitagawa, principal analyst at Gartner. “This was driven by China’s business market, where some state-owned and large enterprises postponed new purchases or upgrades, awaiting new policies and officials’ reassignments after the session of the National People’s Congress in early March.

“In the first quarter of 2018, there was some inventory carryover from the fourth quarter of 2017,” Ms. Kitagawa said. “At the same time, vendors were cautious in overstocking due to the upcoming release of new models in the second quarter of 2018 with Intel’s new eighth-generation core processors.”

The top three vendors — HP, Lenovo and Dell — accounted for 56.9 percent of global PC shipments in the first quarter of 2018, compared with 54.5 percent of shipments in the first quarter of 2017 (see Table 1). Dell experienced the strongest growth rate among the top six vendors worldwide, as its shipments increased 6.5 percent.

Table 1
Preliminary Worldwide PC Vendor Unit Shipment Estimates for 1Q18 (Thousands of Units)

Company

1Q18 Shipments

1Q18 Market Share (%)

1Q17 Shipments

1Q17 Market Share (%)

1Q18-1Q17 Growth (%)

HP Inc.

12,856

20.8

12,505

20.0

2.8

Lenovo

12,346

20.0

12,305

19.7

0.3

Dell

9,883

16.0

9,277

14.8

6.5

Apple

4,264

6.9

4,199

6.7

1.5

Asus

3,900

6.3

4,458

7.1

-12.5

Acer Group

3,828

6.2

4,189

6.7

-8.6

Others

14,609

23.7

15,637

25.0

6.6

Total

61,686

100.0

62,569

100.0

-1.4

Notes: Data includes desk-based PCs, notebook PCs and ultramobile premiums (such as Microsoft Surface), but not Chromebooks or iPads. All data is estimated based on a preliminary study. Final estimates will be subject to change. The statistics are based on shipments selling into channels. Numbers may not add up to totals shown due to rounding.
Source: Gartner (April 2018)

HP Inc.’s worldwide PC shipments increased 2.8 percent in the first quarter of 2018 versus the same period last year. In EMEA, HP Inc. recorded double-digit growth in both desktop and mobile PCs. This was contrasted with a small decline in other regions. HP Inc. was adversely impacted by declining demand in the U.S., which generally accounts for one-third of its total shipments.

Lenovo’s global PC shipments remained flat in the first quarter of 2018. Lenovo achieved 6 percent growth in EMEA and double-digit shipment growth in Latin America. However, in Asia/Pacific (its largest market), PC shipments declined 4 percent.

After record holiday sales for consumer and gaming products in the fourth quarter of 2017, Dell continued to perform well in the first quarter of 2018. With double-digit shipment increases in EMEA, North America and Latin America, Dell grew in all regions except Asia/Pacific. Desktop and mobile PCs grew in equal measures, showing Dell’s strength in the business segment.

Rising ASPs

The average selling prices (ASPs) of PCs continue to rise. Acknowledging deceleration in the smartphone market, and uncertainty in PC replacement demand, component companies remain cautious about expanding their production capabilities. Therefore, persistent component shortages and a rising bill of materials continue to create an environment conductive to higher prices.

“In contrast to other DRAM-related price spikes, PC vendors are not reacting by reducing DRAM content. Rather they have passed the cost increase to consumers,” Ms. Kitagawa said. “With fewer people buying new machines, manufacturers need to get the highest profit margin from each sale. To do that, they are raising the selling points and focusing on customer experience or perception of value.”

Regional Overview

In the U.S., PC shipments totaled 11.8 million units in the first quarter of 2018, a 2.9 percent decrease from the first quarter of 2017. Dell moved into the No. 1 position in the U.S. based on shipments, as its market share increased to 29.1 percent. HP Inc. moved into the No. 2 position as its shipments declined 4.8 percent, and its market share totaled 28.4 percent in the first quarter of 2018 (see Table 2).

Table 2
Preliminary U.S. PC Vendor Unit Shipment Estimates for 1Q18 (Thousands of Units)

Company

1Q18 Shipments

1Q18 Market Share (%)

1Q17 Shipments

1Q17 Market Share (%)

1Q18-1Q17 Growth (%)

Dell

3,440

29.1

3,198

26.2

7.6

HP Inc.

3,363

28.4

3,532

29.0

-4.8

Lenovo

1,632

13.8

1,714

14.1

-4.8

Apple

1,491

12.6

1,484

12.2

0.5

Acer Group

321

2.7

429

3.5

-25.1

Others

1,586

13.4

1,836

15.1

-13.6

Total

11,833

100.0

12,193

100.0

-2.9

Notes: Data includes desk-based PCs, notebook PCs and ultramobile premiums (such as Microsoft Surface), but not Chromebooks or iPads. All data is estimated based on a preliminary study. Final estimates will be subject to change. The statistics are based on shipments selling into channels. Numbers may not add up to totals shown due to rounding.
Source: Gartner (April 2018)

PC shipments in EMEA totaled 18.6 million units in the first quarter of 2018, a 1.7 percent increase year over year. Enterprise shipments increased as many Windows 10 projects that were put on hold in 2017 began to be implemented. The fast approach of the compliance deadline for the General Data Protection Regulation (GDPR) in Europe, as well as earlier reports of cybersecurity breaches, made security a strong priority in the hardware refresh cycle among enterprises. Eurasia continued to be a bright spot for EMEA, as several countries, such as Russia, Ukraine and Kazakhstan, saw strong demand in the first quarter of 2018.

PC shipments in Asia/Pacific totaled 21.9 million units in the first quarter of 2018, a 3.9 percent decline from the first quarter of 2017. As previously mentioned, the PC market in China drove the decline in Asia/Pacific. There is no significant sign of strong upgrading to the special version of Windows 10 from the Chinese government institutions. Consumer demand was weak as most buyers already took advantage of the aggressive promotions offered in the fourth quarter of 2017.

These results are preliminary. Final statistics will be available soon to clients of Gartner’s PC Quarterly Statistics Worldwide by Region program. This program offers a comprehensive and timely picture of the worldwide PC market, allowing product planning, distribution, marketing and sales organizations to keep abreast of key issues and their future implications around the globe.

 

By Emir Demircan, Senior Manager Advocacy and Public Policy, SEMI Europe

With its leading research and development hubs, materials and equipment companies and chipmakers, the EU is in a strategic position in the global electronics value chain to support the growth of emerging applications such as autonomous driving, internet of things, artificial intelligence and deep learning. Underpinning the European electronics industry’s competitive muscle requires a new EU-wide strategy aimed at strengthening the value chain and connecting various players. Specializing and investing in key application segments, such as automotive where the EU enjoys a central place at global level, is crucial to help European electronics industry hold its ground.  In parallel, Europe’s production capabilities need bolstered, requiring effective use of Important Projects of Common European Interest (IPCEI).

On research, development and innovation (RD&I), the upcoming Framework Programme 9 (FP9) must provide unprecedented collaboration and funding opportunities to Europe’s electronics players. Concerning small and medium enterprises (SMEs) and startups, it is vital that EU policies are aligned with global trends and small and young companies benefit from a business-friendly regulatory framework. And as an overarching action, building a younger, bigger and more diverse talent pipeline is paramount for Europe to innovate in the digital economy.

Laith Altimime, President at SEMI Europe, opening speech at ISS Europe 2018

Laith Altimime, President at SEMI Europe, opening speech at ISS Europe 2018

These were the clarion messages that emerged from the Industry Strategy Symposium (ISS) Europe organized by SEMI in March, an event that brought together more than 100 industry, research and government representatives for in-depth discussions on strategies and innovations for Europe to compete globally. Here are the key takeaways:

1) Build a strong electronics value chain with a focus on emerging demands

In recent years the EU has focused on beefing up semiconductor production in Europe within the 2020-25 window, starting with the EU 10|100|20 Electronic Strategy of 2013. The strategy aims to secure about 20 percent of global semiconductor manufacturing by 2020 with the help of € 10 billion in public and private funding and € 100 billion investment from the industry. Today, Europe is not nearly on track to achieving this target. Supply-side policies have done little to help grow the EU semiconductor industry. Now is the time to change our thinking.

To nourish the electronics industry in Europe, we need to shift our focus to demand. Semiconductors are a key-enabling technology for autonomous driving, wearables, healthcare, virtual and augmented reality (VR/AR), artificial intelligence (AI) and all other internet of things (IoT) and big data applications. To become a world leader in the data economy and energize its semiconductor industry, Europe needs to start by better understanding the evolution of data technologies and their requirements from electronics players, then design and implement an EU-wide strategy focused on strengthening collaboration within the value chain.

2) Specialize and invest in Europe’s strengths that are enabled by electronics

Jens Knut Fabrowsky, Executive VP Automotive Electronics at Bosch

Jens Knut Fabrowsky, Executive VP Automotive Electronics at Bosch

Fueled by increasing demand for smaller, faster and more reliable products with greater power, the global electronics industry has developed a sophisticated global value chain. Europe brings to this ecosystem leading equipment and materials businesses, world-class R&D and education organizations, and key microelectronics hubs throughout Europe that are home to multinationals headquartered both in and outside of the EU. Nevertheless, global competition is growing ever fiercer in the sectors where the European microelectronics industry is most competitive: automotive, energy, healthcare and industrial automation. In the future, Europe is likely to be more challenged between the disruptive business models of North America and the manufacturing capacity of East Asia. The European electronics industry must re-evaluate its strengths and set a strategic direction.

Make no mistake: Europe is in a strong position to advance its microelectronics industry. The EU already boasts leading industries that rely on advances made by electronics design and manufacturing. Take the automotive industry – crucial to Europe’s prosperity. Accounting for 4 percent of the EU GDP and providing 12 million jobs in Europe, according to the European Commission, the EU automotive industry exerts an important multiplier effect in the economy. Automotive is essential to both upstream and downstream industries such as electronics – a level of importance not lost on the EU’s GEAR 2030 Group. Since the 1980s, automotive industry components have increasingly migrated from mechanical to electrochemical and electronics.

Today, electronic components represent close to a third of the cost of an automobile, a proportion that will grow to as high as 50 percent by 2030 with the rise of autonomous and connected vehicles. Automotive experts anticipate that over the next five to 10 years, new cars will feature at least some basic automated driving and data exchange capabilities as electronics deepen their penetration into the automotive value chain. Europe’s leadership position and competitive edge in automotive are under threat by competitors across the world as they invest heavily in information and communications technologies (ICT) and electronics for autonomous driving and connected vehicles. Investing in next-generation cars will help the European electronics industry retain its strong competitive position, as will investments in other key application areas such as healthcare, energy and industrial automation where Europe is a global power.

3) Make better use of Important Projects of Common European Interest (IPCEI)

Microelectronics is capital-intensive, with a state-of-the-art fab easily costing billions of euros. That’s why countries around the world are making heavy government-backed investments to build domestic fabs. For instance, China’s “Made in China 2025” initiative, which establishes an Integrated Circuit Fund to support the development of the electronics industry, calls for 150 billion USD in funding to replace imported semiconductors with homegrown devices. In 2014, the European Commission adopted new rules to IPCEI, giving Member States a tool for financing large, strategically important transnational projects. IPCEI should help Member States fill funding gaps to overcome market failures and reinvigorate projects that otherwise would not have taken off. To fully benefit from the IPCEI, the industry requires Member States involved in a specific IPCEI to work in parallel and at the same pace and faster approvals of state-supported manufacturing projects.

4) Use FP9 to strengthen Europe’s RD&I capabilities

Panel Discussion on growing Europe in the global value chain. (L-R) Bryan Rice, GLOBALFOUNDRIES; James Robson, Applied Materials Europe; Joe De Boeck, imec; Leo Clancy, IDA Ireland; James O’Riordan, S3; Colette Maloney, European Commission; Moderator: Andreas Wild

Panel Discussion on growing Europe in the global value chain. (L-R) Bryan Rice, GLOBALFOUNDRIES; James Robson, Applied Materials Europe; Joe De Boeck, imec; Leo Clancy, IDA Ireland; James O’Riordan, S3; Colette Maloney, European Commission; Moderator: Andreas Wild

A top EU priority in recent years has been to enhance Europe’s position as a world leader in the digital economy. Fulfilling this mission requires an innovative electronics industry in Europe. To this end, FP9 should encourage greater collaboration between large and small companies to leverage their complementary strengths – the dynamism, agility and innovation of smaller companies and the ability of larger companies to mature and scale new product ideas on the strength of their extensive private funding instruments and testing and demonstration facilities. Also, future EU-funded research actions should prioritize electronics projects involving players across the value chain, starting with materials and equipment providers and spanning chipmakers, system integrators and players from emerging “smart” verticals such as automotive, medical technology and energy. FP9 should also play the pivotal role of setting clear objectives, increasing investments, and easing rules for funding. These measures would help expand the European electronics ecosystem, accelerate R&D results and defray the rising costs of developing cutting-edge solutions key to the growth of emerging industry verticals.

5) Support high-tech SMEs, entrepreneurship and startups to become globally competitive

European SMEs, the backbone of EU’s manufacturing, are already strong players in the global economy, making outsize contributions to Europe’s innovation. Yet more of Europe’s small and young businesses with limited resources are challenged in Europe’s regulatory labyrinth. Only by improving the European regulatory environment in a way that supports young and small businesses can Europe fulfill its vision of a dynamic electronics ecosystem and digital economy. Access to finance must also be easier, particularly as underinvested startups struggle under a European venture capital apparatus that is smaller and more fragmented than those in North America and Asia. Early-stage funding instruments such as bank loans are essential for young businesses but they often face barriers to finance due to the sophistication of their proposed business models that are difficult to be understood and supported by banks.

One answer is to better familiarize Europe’s financial sector with industrial SMEs and startups so they can co-develop financial tools that support the growth of small and young businesses. Also, the narrow European definition of SME with staff headcount limited to 250 block innovative companies from access to financial tools exclusively provided to SMEs. By contrast, the United States defines SMEs as businesses with as many as 500 employees, placing their EU counterparts at distinct funding disadvantage. EU should ensure that its SME policy is aligned with global trends and industry needs.

6) Create a bigger and more diverse talent pipeline with a hybrid skills set 

Europe’s world-class education and research capabilities help supply the electronics industry with skilled workforce. Yet the blistering pace of technology innovation calls for rapidly evolving skills sets, a trend that has led to worker shortages at electronics companies and left the sector fighting to diversify its workforce and strengthen its talent pipeline. The deepening penetration of electronics in AI, IoT, AR/VR, high-performance computing (HPC), cybersecurity and smart verticals is giving rise to a new set of skills that blend production technologies, software and data analytics. As more technologies converge, the gap between university education and business needs continues to widen.

One solution is work-based learning – allowing students to build job skills in a setting related to their career pathway. Encouraging higher female participation in STEM education programs at the high school and university levels is also a must to overcome the traditionally low number of females entering high technology. To build on its reputation as “a place to work” in the eyes of the international job seekers, Europe also needs a more flexible immigration framework to attract skilled labour to high-tech jobs.

Save the Date: Industry leaders, research and government representatives will meet again next year at the ISS Europe organized by SEMI on 28-30 April 2019 in Milan, Italy. More details regarding the event will be published soon on www.semi.org/eu.