Tag Archives: letter-dd-business

With Korea expected to remain the world’s largest consumer of semiconductor equipment, building on its 18 percent share in 2018, SEMICON Korea 2019 is poised to connect global electronics manufacturing companies to new opportunities. More than 450 companies will gather at SEMICON Korea 23 – 25 January 2019, at the COEX in Seoul – for the latest microelectronics developments and trends from industry leaders and visionaries. Registration is now open.

SEMICON Korea, the premier event in Korea for electronics manufacturing, features key insights in artificial intelligence (AI), SMART manufacturing, talent and other critical industry issues. SEMICON Korea brings companies together to “Connect, Collaborate, and Innovate” as the event is poised to set a record of more than 2,000 booths.

  • CONNECT to business and technology leaders to uncover new industry relationships
  • COLLABORATE with industry experts across the electronics manufacturing supply chain
  • INNOVATE to drive new technologies and business

SEMICON Korea 2019 highlights include the following:

AI Summit – AI is powering the next phase of semiconductor industry growth with applications across automotive, manufacturing, and more. Summit attendees will meet industry leaders to discuss new AI collaborations and emerging business opportunities.

MEMS and Sensors Summit – Data acquisition from the edge is essential for IoT and AI to flourish, driving growth of the MEMS and sensor industry. Industry-leading MEMS and sensors companies will share their visions, technology roadmaps and business models for enabling IoT and AI.

SMART Manufacturing Forum – Manufacturing adaptability is a key enabler of advanced technologies and applications. Industry leaders will gather to explore what’s needed to leverage advanced analytics, improve the use of real-time simulation and cyber-physical systems and better integrate the supply chain to drive greater manufacturing flexibility.

Workforce Development – The new Workforce Pavilion at SEMICON Korea extends SEMI’s efforts to help tackle the industry’s vital need for talent. The Pavilion offers university students interviews with industry experts and tutorials on semiconductor production to help students explore career paths. SEMICON Korea will also launch a mentoring program to help students enter careers in semiconductor manufacturing.

SEMICON Korea 2019 will also feature its popular business matching program with seven device makers and original equipment manufacturers (OEMs) meeting with 100 potential customers.

“SEMICON Korea 2019 provides programs that help power industry growth,” said H.D. Cho, president of SEMI Korea. “We continue to expand our event offerings to offer new ways for the industry to “Connect, Collaborate and Innovate.”

For more event information, please click here.

SEMI Taiwan today announced the formation of the FlexTech Taiwan Steering Committee. Serving as a platform that connects industry, academia, research and government, the committee will focus on identifying market trends and needs, solving technical challenges and accelerating innovation and business development to advance the flexible hybrid electronics industry and open business opportunities for its members.

Lightweight and highly scalable, flexible hybrid electronics promise to bring new applications and capabilities to consumer electronics, medical and health care, defense, transportation, textile, sports and leisure, robotics and industrial automation. To fulfill the potential of flexible hybrid electronics, the industry must overcome challenges in areas such as yield, cost, regulation and technology standards.

Key focus areas of the FlexTech Taiwan Steering Committee will include:

  • Capitalizing on Taiwan’s success in semiconductor and LCD/LED displays to build a complete flexible hybrid electronics ecosystem
  • Advocating for government policies on developing emerging industries, technology research funding, and talent development
  • Organizing exhibitions and other events to raise awareness and communicate the value of flexible hybrid electronics the electronics industry
  • Establishing industry standards to accelerate research and development and facilitate technology and product development

The FlexTech Taiwan Steering Committee consists of key industry players spanning equipment, materials, design, manufacturing, systems and end applications. Committee members include E Ink, ASE Group, AUO, Hitachi, Brewer Science, CymMetrik, DuPont, Singular Wings Medical, BenQ Materials Corporation, Nagase, Flexterra, Wisechip Semiconductor, AiQ Smart Clothing, Makalot Industrial, Far Eastern New Century, Ritdisplay Corportation, Applied Materials, Industrial Technology Research Institute (ITRI), National Sun Yat-sen University, and Chang Gung University.

Over the past 20 years, SEMI-FlexTech, a SEMI Strategic Association Partner, has promoted the development and commercialization of flexible hybrid electronics. Key achievements include:

  • Working with Boeing to develop a flexible electronic control device to reduce the weight of drones and commercial aircraft
  • Teaming with GE to develop RF stickers that measure human hydration
  • Collaborating with the U.S. Air Force to develop a non-invasive wearable device that measures biodata of aircraft pilots

For the past 17 years, SEMI and FlexTech have championed the development of the FHE industry through conferences and exhibitions in major microelectronics manufacturing regions such as North America, Europe, Taiwan, Japan, Korea, Singapore and China.

FLEX Taiwan, 29-30 May, 2019, is a one-day technical conference that provides a powerful platform for connecting with customers, suppliers, future partners and academia to drive collaboration and uncover new opportunities in flexible hybrid electronics. For more information, please click here.

MagnaChip Semiconductor Corporation (“MagnaChip”) (NYSE: MX), a designer and manufacturer of analog and mixed-signal semiconductor platform solutions, today announced that volume production of a new Display Driver IC (DDIC) for automotive panel displays has begun.

MagnaChip is planning to expand its business to various automotive display applications in the market, starting with the design-win of new product at a leading Japanese panel maker of automotive CSD (Center Stack Display) panels. The application of this LCD-based display driver product will be further extended to a wide range of automotive applications such as instrument cluster, GPS navigation and car entertainment displays in the future. Over time, it is widely anticipated that OLED display drivers also will be adopted for use in automotive applications.

The new automotive DDIC, S8311, has a maximum of 1440 channel outputs and an mLVDS (Mini Low-Voltage Differential Signaling) interface and supports all types of TFT-LCD such as a-Si (Amorphous silicon), LTPS (Low Temperature Poly Silicon) and IGZO (Indium Gallium Zinc Oxide) for various automotive applications. MagnaChip fabricates the product in-house using the 150nm process, which is a cost-effective method the company has successfully used for many different products in recent years.

According to market research firm IHS, automotive display shipments keep growing with three primary automotive display systems: instrument cluster, center stack and heads-up display system. Based on current trends, IHS forecasts that global shipments of automotive display panels will rise to 165Mpcs in 2018 and increase to 200Mpcs in 2022.

“As the global automotive display market continues to expand, demand for high quality display driver products is expected to grow,” said YJ Kim, CEO of MagnaChip. “With our know-how and long track record of success in the Display market, we will continue to cooperate with major automotive display panel makers to extend our automotive DDIC business from a-Si TFT-LCD to LTPS, IGZO TFT-LCD and further to OLED panel-type displays.”

Gartner, Inc. today highlighted the top strategic technology trends that organizations need to explore in 2019. Analysts presented their findings during Gartner Symposium/ITxpo, which is taking place here through Thursday.

Gartner defines a strategic technology trend as one with substantial disruptive potential that is beginning to break out of an emerging state into broader impact and use, or which are rapidly growing trends with a high degree of volatility reaching tipping points over the next five years.

“The Intelligent Digital Mesh has been a consistent theme for the past two years and continues as a major driver through 2019. Trends under each of these three themes are a key ingredient in driving a continuous innovation process as part of a ContinuousNEXT strategy,” said David Cearley, vice president and Gartner Fellow. “For example, artificial intelligence (AI) in the form of automated things and augmented intelligence is being used together with IoT, edge computing and digital twins to deliver highly integrated smart spaces. This combinatorial effect of multiple trends coalescing to produce new opportunities and drive new disruption is a hallmark of the Gartner top 10 strategic technology trends for 2019.”

The top 10 strategic technology trends for 2019 are:

Autonomous Things

Autonomous things, such as robots, drones and autonomous vehicles, use AI to automate functions previously performed by humans. Their automation goes beyond the automation provided by rigid programing models and they exploit AI to deliver advanced behaviors that interact more naturally with their surroundings and with people.

“As autonomous things proliferate, we expect a shift from stand-alone intelligent things to a swarm of collaborative intelligent things, with multiple devices working together, either independently of people or with human input,” said Mr. Cearley. “For example, if a drone examined a large field and found that it was ready for harvesting, it could dispatch an “autonomous harvester.” Or in the delivery market, the most effective solution may be to use an autonomous vehicle to move packages to the target area. Robots and drones on board the vehicle could then ensure final delivery of the package.”

Augmented Analytics

Augmented analytics focuses on a specific area of augmented intelligence, using machine learning (ML) to transform how analytics content is developed, consumed and shared. Augmented analytics capabilities will advance rapidly to mainstream adoption, as a key feature of data preparation, data management, modern analytics, business process management, process mining and data science platforms. Automated insights from augmented analytics will also be embedded in enterprise applications — for example, those of the HR, finance, sales, marketing, customer service, procurement and asset management departments — to optimize the decisions and actions of all employees within their context, not just those of analysts and data scientists. Augmented analytics automates the process of data preparation, insight generation and insight visualization, eliminating the need for professional data scientists in many situations.

“This will lead to citizen data science, an emerging set of capabilities and practices that enables users whose main job is outside the field of statistics and analytics to extract predictive and prescriptive insights from data,” said Mr. Cearley. “Through 2020, the number of citizen data scientists will grow five times faster than the number of expert data scientists. Organizations can use citizen data scientists to fill the data science and machine learning talent gap caused by the shortage and high cost of data scientists.”

AI-Driven Development

The market is rapidly shifting from an approach in which professional data scientists must partner with application developers to create most AI-enhanced solutions to a model in which the professional developer can operate alone using predefined models delivered as a service. This provides the developer with an ecosystem of AI algorithms and models, as well as development tools tailored to integrating AI capabilities and models into a solution. Another level of opportunity for professional application development arises as AI is applied to the development process itself to automate various data science, application development and testing functions. By 2022, at least 40 percent of new application development projects will have AI co-developers on their team.

“Ultimately, highly advanced AI-powered development environments automating both functional and nonfunctional aspects of applications will give rise to a new age of the ‘citizen application developer’ where nonprofessionals will be able to use AI-driven tools to automatically generate new solutions. Tools that enable nonprofessionals to generate applications without coding are not new, but we expect that AI-powered systems will drive a new level of flexibility,” said Mr. Cearley.

Digital Twins

A digital twin refers to the digital representation of a real-world entity or system. By 2020, Gartner estimates there will be more than 20 billion connected sensors and endpoints and digital twins will exist for potentially billions of things. Organizations will implement digital twins simply at first. They will evolve them over time, improving their ability to collect and visualize the right data, apply the right analytics and rules, and respond effectively to business objectives.

“One aspect of the digital twin evolution that moves beyond IoT will be enterprises implementing digital twins of their organizations (DTOs). A DTO is a dynamic software model that relies on operational or other data to understand how an organization operationalizes its business model, connects with its current state, deploys resources and responds to changes to deliver expected customer value,” said Mr. Cearley. “DTOs help drive efficiencies in business processes, as well as create more flexible, dynamic and responsive processes that can potentially react to changing conditions automatically.”

Empowered Edge

The edge refers to endpoint devices used by people or embedded in the world around us. Edge computing describes a computing topology in which information processing, and content collection and delivery, are placed closer to these endpoints. It tries to keep the traffic and processing local, with the goal being to reduce traffic and latency.

In the near term, edge is being driven by IoT and the need keep the processing close to the end rather than on a centralized cloud server. However, rather than create a new architecture, cloud computing and edge computing will evolve as complementary models with cloud services being managed as a centralized service executing, not only on centralized servers, but in distributed servers on-premises and on the edge devices themselves.

Over the next five years, specialized AI chips, along with greater processing power, storage and other advanced capabilities, will be added to a wider array of edge devices. The extreme heterogeneity of this embedded IoT world and the long life cycles of assets such as industrial systems will create significant management challenges. Longer term, as 5G matures, the expanding edge computing environment will have more robust communication back to centralized services. 5G provides lower latency, higher bandwidth, and (very importantly for edge) a dramatic increase in the number of nodes (edge endoints) per square km.

Immersive Experience

Conversational platforms are changing the way in which people interact with the digital world. Virtual reality (VR), augmented reality (AR) and mixed reality (MR) are changing the way in which people perceive the digital world. This combined shift in perception and interaction models leads to the future immersive user experience.

“Over time, we will shift from thinking about individual devices and fragmented user interface (UI) technologies to a multichannel and multimodal experience. The multimodal experience will connect people with the digital world across hundreds of edge devices that surround them, including traditional computing devices, wearables, automobiles, environmental sensors and consumer appliances,” said Mr. Cearley. “The multichannel experience will use all human senses as well as advanced computer senses (such as heat, humidity and radar) across these multimodal devices. This multiexperience environment will create an ambient experience in which the spaces that surround us define “the computer” rather than the individual devices. In effect, the environment is the computer.”

Blockchain

Blockchain, a type of distributed ledger, promises to reshape industries by enabling trust, providing transparency and reducing friction across business ecosystems potentially lowering costs, reducing transaction settlement times and improving cash flow. Today, trust is placed in banks, clearinghouses, governments and many other institutions as central authorities with the “single version of the truth” maintained securely in their databases. The centralized trust model adds delays and friction costs (commissions, fees and the time value of money) to transactions. Blockchain provides an alternative trust mode and removes the need for central authorities in arbitrating transactions.

”Current blockchain technologies and concepts are immature, poorly understood and unproven in mission-critical, at-scale business operations. This is particularly so with the complex elements that support more sophisticated scenarios,” said Mr. Cearley. “Despite the challenges, the significant potential for disruption means CIOs and IT leaders should begin evaluating blockchain, even if they don’t aggressively adopt the technologies in the next few years.”

Many blockchain initiatives today do not implement all of the attributes of blockchain — for example, a highly distributed database. These blockchain-inspired solutions are positioned as a means to achieve operational efficiency by automating business processes, or by digitizing records. They have the potential to enhance sharing of information among known entities, as well as improving opportunities for tracking and tracing physical and digital assets. However, these approaches miss the value of true blockchain disruption and may increase vendor lock-in. Organizations choosing this option should understand the limitations and be prepared to move to complete blockchain solutions over time and that the same outcomes may be achieved with more efficient and tuned use of existing nonblockchain technologies.

Smart Spaces

A smart space is a physical or digital environment in which humans and technology-enabled systems interact in increasingly open, connected, coordinated and intelligent ecosystems. Multiple elements — including people, processes, services and things — come together in a smart space to create a more immersive, interactive and automated experience for a target set of people and industry scenarios.

“This trend has been coalescing for some time around elements such as smart cities, digital workplaces, smart homes and connected factories. We believe the market is entering a period of accelerated delivery of robust smart spaces with technology becoming an integral part of our daily lives, whether as employees, customers, consumers, community members or citizens,” said Mr. Cearley.

Digital Ethics and Privacy

Digital ethics and privacy is a growing concern for individuals, organizations and governments. People are increasingly concerned about how their personal information is being used by organizations in both the public and private sector, and the backlash will only increase for organizations that are not proactively addressing these concerns.

“Any discussion on privacy must be grounded in the broader topic of digital ethics and the trust of your customers, constituents and employees. While privacy and security are foundational components in building trust, trust is actually about more than just these components,” said Mr. Cearley. “Trust is the acceptance of the truth of a statement without evidence or investigation. Ultimately an organization’s position on privacy must be driven by its broader position on ethics and trust. Shifting from privacy to ethics moves the conversation beyond ‘are we compliant’ toward ‘are we doing the right thing.’”

Quantum Computing

Quantum computing (QC) is a type of nonclassical computing that operates on the quantum state of subatomic particles (for example, electrons and ions) that represent information as elements denoted as quantum bits (qubits). The parallel execution and exponential scalability of quantum computers means they excel with problems too complex for a traditional approach or where a traditional algorithms would take too long to find a solution. Industries such as automotive, financial, insurance, pharmaceuticals, military and research organizations have the most to gain from the advancements in QC. In the pharmaceutical industry, for example, QC could be used to model molecular interactions at atomic levels to accelerate time to market for new cancer-treating drugs or QC could accelerate and more accurately predict the interaction of proteins leading to new pharmaceutical methodologies.

“CIOs and IT leaders should start planning for QC by increasing understanding and how it can apply to real-world business problems. Learn while the technology is still in the emerging state. Identify real-world problems where QC has potential and consider the possible impact on security,” said Mr. Cearley. “But don’t believe the hype that it will revolutionize things in the next few years. Most organizations should learn about and monitor QC through 2022 and perhaps exploit it from 2023 or 2025.”

Gartner clients can learn more in the Gartner Special Report “Top 10 Strategic Technology Trends for 2019.” Additional detailed analysis on each tech trend can be found in the Gartner YouTube video “Gartner Top 10 Strategic Technology Trends 2019.”

“MicroLED displays could potentially match or exceed OLED performance in all critical attributes,” said Dr. Eric Virey, Senior Technology & Market Analyst at Yole Développement (Yole).It includes brightness, contrast, color gamut, refresh rate, viewing angle, ruggedness and durability, resolution and pixel density, lifetime, power consumption etc.

 

Yole and its partner Knowmade, both part of Yole Group of Companies release two microLEDs reports to reveal the status of the technology and give a deep understanding of the industry, the companies involved and the related supply chain. MicroLED Displays 2018 and MicroLED Displays: Intellectual Property Landscape are now available. A detailed description is available on i-micronews.com, Displays section.

This year again, Yole Group of Companies pursued its investigation to understand the technical issues and business challenges and confirms today its market positioning with a new online event: MicroLED Displays: Hype and Reality, Hopes and Challenges – Webcast on October 11, 2018 at 5 PM CEST – 8 AM PDT – Powered by Yole Développement. Make sure to get a clear vision of this emerging industry and REGISTER today.

Sony’s demonstration of a full HD 55” microLED TV at CES 2012, more than six years ago, was the first exposure for microLED displays and generated a lot of excitement. Since Apple acquired Luxvue in 2014, many leading companies such as Facebook, Google, Samsung, LG or Intel have entered the game via sizable internal developments, acquisitions, like those of mLED and eLux, or investments in startups such as glō or Aledia.

Analyzing Apple’s microLED patent activity shows that the company essentially halted its filing around 2015. This is a surprising finding in the light of the fact that the consumer electronics giant has maintained a large project team and consistently spent hundreds of millions of dollars annually on microLED development. A closer analysis however brought up the name of a possible strawman entity used by Apple to continue filing patents and shows that the company is still advancing key aspects of microLED technologies.

“Despite a later start compared to pioneers such as Sony or Sharp, Apple’s portfolio is one of the most complete, comprehensively covering all critical technologies pertinent to microLEDs,” explains Dr Virey from Yole. “The company is the most advanced and still one of the best positioned to bring high volume microLED products to the market. However, it also faces unique challenges”, he adds.
Apple can’t afford to tarnish its brand and introduce a product featuring such a highly differentiating technology that would be anything but flawless. Moreover, it requires high volumes, which makes setting up the supply chain more challenging than for any other company.

In addition, it has no prior experience in display manufacturing and due to its need for secrecy, has to develop pretty much everything internally, duplicating technologies and infrastructures that others have the option to outsource…

The smartphones sector is a good example to illustrate the leadership of Apple. Indeed smartwatch volumes could reach 100 million units by 2027 and Apple remains the single largest smartwatch maker, explains Yole’s analysts in microLED reports. Yole’s scenario assumes that Apple would start using microLEDs in 2021 in a new flagship model, and, as is common with the brand, will propagate the technology in a staggered fashion over the next three years as legacy products are discontinued… MicroLED Displays report invites you to discover the MicroLED world with a section dedicated to the patent landscape. With this focus, Yole Group of Companies offers you a unique opportunity to get a clear view of the competitive landscape, understand the current challenges and identify business opportunities.

MicroLED webcast will average both Yole’s reports, MicroLED Displays and MicroLED Displays: Intellectual Property Landscape report in order to provide a global overview and status of the microLED industry. Powered by Yole, this event taking place on October 11, will provide an update on the status of the microLED industry. Dr. Eric Virey will detail the activity of the major players as well as remaining technology and supply chain bottlenecks. In addition, cost aspects will also be discussed as well as an assessment of when products can realistically be expected to hit the market. Yole Group of Companies is pleased to welcome during this webcast, on October 11

In its Mid-Year Update to the 2018 McClean Report, IC Insights updated its forecast of sales growth for each of the 33 major IC product categories defined by WSTS (Figure 1).  IC Insights now projects that seven product categories will exceed the 16% growth rate expected from the total IC market this year. For the second consecutive year, the DRAM market is forecast to top all IC product segments with 39% growth. Overall, 13 product categories are forecast to experience double-digit growth and 28 total IC product categories are expected to post positive growth this year, down slightly from 29 segments in 2017.

Rising average selling prices for DRAM continued to boost the DRAM market through the first half of the year and into August.  However, IC Insights believes the DRAM ASP (and subsequent market growth) is at or near its peak, as a big rise in DRAM capital expenditures for planned capacity upgrades and expansions is likely put the brakes on steep market growth beginning in 2019.

In second place with 29% growth is the Automotive—Special-Purpose Logic market, which is being lifted by the growing number of onboard electronic systems now found on new cars. Backup cameras, blind-spot (lane-departure) detectors, and other “intelligent” systems are mandated or are being added across all new vehicles—entry level to luxury—and are expected to contribute to the semiconductor content per new car growing to more than $540 per vehicle in 2018.

Wireless Comm—Application-Specific Analog is forecast to grow 23% in 2018, as the world becomes increasingly dependent on the Internet and demand for wireless connectivity continues to rise. Similarly, demand for medical/health electronics systems connectivity using the Internet will help the market for Industrial/Other Application-Specific Analog outpace total IC market growth in 2018.

Among the seven categories showing better than total IC market growth this year, three are forecast to be among the largest of all IC product categories in terms of dollar volume. DRAM (#1 with $101.6 billion in sales), NAND Flash (#2 with $62.6 billion), Computer and Peripherals—Special Purpose Logic (#4 with $27.6 billion) prove that big markets can still achieve exceptional percentage growth.

Figure 1

MicroLEDs technologies are improving rapidly and new technology paths emerging at a rapid pace. According to Yole Développement’s analysts, technology solutions should start converging by the end of 2019.

The challenge is now focused on cost reduction. What is the feasibility of each solution? Can microLED TV or smartphone display manufacturing costs be compatible with these applications? Which cost reduction paths are the most realistic?

In its latest microLEDs report “MicroLED Displays 2018,” the market research and strategy consulting company Yole Développement (Yole) proposes a comprehensive technology and market overview including a detailed cost analysis with the contribution of die and assembly costs. Yole’s microLED report also highlights all critical technology blocks with a focus on the most recent advancements, emerging options and remaining challenges.

“Technology advancements pave the way for various cost reduction paths toward volume manufacturing,” commented Dr. Eric Virey, Senior Market & Technology Analyst at Yole. “But none are straightforward.”

In addition an overview of the key players, the supply chain and the competitive landscape analysis are available in Yole’s report (including front end and display assembly players). The consulting company did not see any major changes regarding market evolution. More and more companies are looking into the attractive microLEDs sector, and scrambling to figure out the best way to participate and which technology paths are the most suitable.

Yole’s analysts offer you today an up-to-date status of the microLEDs industry.

Dozens of technologies are being developed for microLED assembly and pixel structures. The cost and complexity range can be staggering. However, there are some fundamentals that anchor all those processes. Alignment dominates assembly cycle times, die size can’t get infinitely small, epitaxy cost has already been through a more than 20 years on the cost reduction curve. Cost analysis therefore allows companies to narrow the process parameters down to economically realistic windows and identify efficient cost reduction strategies.

“MicroLED companies must understand the cost targets for each application and work backward, making process choices and developing each step so it fits the cost envelope,” asserted Dr. Eric Virey from Yole. Processes that can’t deliver the right economics will disappear. If none can deliver the right economics, the opportunity will never materialize. MicroLED is entering the valley of death between technology development and industrialization and commercialization.

As the technology improves, there are credible cost reduction paths for microLED to compete in the high-end segment of various applications such as TV, augmented and virtual reality (AR/VR) and wearables. With the right approaches, assembly cost could become a minor contributor. For smartphones, however, approaching OLED cost implies pushing microLEDs toward what is likely to be the limits of the technology in term of die size. To succeed, microLEDs will have to count on some level of price elasticity. It must deliver performance and features that no other display technology can offer and that are perceived by the consumer as highly differentiating. Microdisplays for AR and head-up displays (HUD) will be the first commercial applications, followed by smartwatches. TVs and smartphones could follow 3-5 years from now.

By Walt Custer

Global economy

Manufacturing activity continues to expand – but at a slowing pace (Chart 1). The Global PMI was 52.5 in August, down from 52.8 in July and its recent high of 54.5 in December. PMI values >50 indicate an expansion.

World manufacturing growth has slowed but its growth rate varies significantly by region. Chart 2 compares the PMI values over time for the World, USA, Europe and China. Recently China and Europe have registered slower growth but U.S. growth is expanding (based on the Institute for Supply Management’s PMI). How long U.S. manufacturing will continue to accelerate remains to be seen. Geopolitical issues abound.

Semiconductor industry

In the semiconductor industry both semiconductors and SEMI capital equipment continued to register double-digit growth in July (Chart 3), but these growth rates are now moderating. In July, World semiconductor shipments were up 17.4 percent and SEMI capital equipment sales rose 13.9 percent on a 3-month growth basis.

However, SEMI equipment growth rates also vary widely by region. Per Chart 4, China growth is accelerating, Taiwan and South Korea are contracting, and Europe and the USA are still expanding but at slower rates.

Timely World and regional industry information is key to understanding present and future business conditions and this data requires careful watching in these fast-changing times.

Walt Custer of Custer Consulting Group is an analyst focused on the global electronics industry.

Originally published on the SEMI blog.

Avegant Corp. (“Avegant”) announced today that the company closed $12M in Series AA funding from new investors Walden SKT Venture Fund and China Walden Venture Investments III, L.P., as well as previous investors.

Ed Tang, CEO of Avegant, said, “The consumer AR industry faces significant challenges developing displays that are high resolution, small form factor, large field-of-view, light field, and low power. The industry is excited about our unique solutions to these technical challenges, which will enable previously impossible AR experiences.”

Earlier this year, Avegant focused its operations on its next generation display technologies which are targeted for the consumer market. Avegant’s current research builds on its industry-first light field technologies and the high resolution, low latency, and high brightness retinal displays first used in Avegant’s Video Headset.

According to Dr. Om Nalamasu, President of Applied Ventures and Chief Technology Officer of Applied Materials, “Applied is excited to use its materials engineering technologies to enable new inflections like AR/VR, which require advanced displays, high-performance computing and lots of memory. We are working with Avegant to accelerate the development of their light field technology to create compelling AR applications.”

“Many companies are trying to solve multiple, very difficult technical problems to bring AR experiences to consumers,” said Andrew Kau, Managing Director of Walden International. “We chose to invest in Avegant because their solutions elegantly tackle these problems in creative ways that consider human factors without losing sight of manufacturability.”

Avegant is a well-funded, venture-backed technology company developing next-generation display technology to enable previously impossible augmented reality experiences. The company uses its deep scientific understanding of human sight and head-mounted display ergonomics together with its consumer electronics manufacturing experience to develop displays that enable realistic AR experiences for consumers. Avegant’s Light Field Technology enables a compelling, up-close, hands-on AR experience, and its Consumer AR Display Technology makes these experiences possible in a consumer wearable AR device. For more information visit avegant.com or follow Avegant on Facebook, LinkedIn and Twitter.

Automotive electronics are a bright light for the semiconductor industry, as smartphone growth slows, and personal computing growth continues to decline. The expectation is that automotive electronics will become the next big technology market driver. The automotive semiconductor market will exceed the overall industry growth as semiconductor content expands with added features and functionality. The desire to put self-driving vehicles on the road is creating increased interest in innovative automotive solutions as well as increased semiconductor demand. A new research report from Semico Research, Automotive Semiconductors: Accelerating in the Fast Lane, states that the automotive segment of the semiconductor industry will grow to $73 billion by 2023.

“There are a number of challenges in the automotive industry that are unique for the system developers to navigate. Autonomous driving is a critical one,” says Jim Feldhan, President of Semico Research. “Many people feel AI is the key to the success of autonomous driving. Autonomous driving includes the ability to have optical character recognition, i.e. reading signs, distinguishing a sign from a person, and determining if the brakes should be turned on. Security surveillance, computer vision, virtual reality and image processing, real-time diagnosis and corrective solutions and strategic map planning are critical to autonomous driving. Increasing levels of processing are required as these systems become more sophisticated.”

Key findings in the report include:

The TAM market for automotive IP processor royalties will grow to $2.34 billion by 2023.
A fully autonomous vehicle (L5) is expected to require 74GB DRAM and 1TB NAND memory.
Powertrain requires the highest compute function and carries the highest ASP.

Revenue generated from processors in Autonomous Driving Systems will reach $422 million in 2018.
In its recent report, Automotive Semiconductors: Accelerating in the Fast Lane (MP118-18), Semico Research provides a comprehensive review of the current market and future opportunities for the semiconductor industry in the automotive segment. Topics covered in the report include Automotive Trends, Opportunities and Challenges, Manufacturing Technology for Auto ICs, Automotive Forecast, and Semiconductor IP in Automotive. The report is 56 pages long and includes 28 tables and 34 figures.