Tag Archives: letter-dd-top

Towards a better screen


August 9, 2016

Harvard University researchers have designed more than 1,000 new blue-light emitting molecules for organic light-emitting diodes (OLEDs) that could dramatically improve displays for televisions, phones, tablets and more.

OLED screens use organic molecules that emit light when an electric current is applied. Unlike ubiquitous liquid crystal displays (LCDs), OLED screens don’t require a backlight, meaning the display can be as thin and flexible as a sheet of plastic. Individual pixels can be switched on or entirely off, dramatically improving the screen’s color contrast and energy consumption. OLEDs are already replacing LCDs in high-end consumer devices but a lack of stable and efficient blue materials has made them less competitive in large displays such as televisions.

The interdisciplinary team of Harvard researchers, in collaboration with MIT and Samsung, developed a large-scale, computer-driven screening process, called the Molecular Space Shuttle, that incorporates theoretical and experimental chemistry, machine learning and cheminformatics to quickly identify new OLED molecules that perform as well as, or better than, industry standards.

“People once believed that this family of organic light-emitting molecules was restricted to a small region of molecular space,” said Alán Aspuru-Guzik, Professor of Chemistry and Chemical Biology, who led the research. “But by developing a sophisticated molecular builder, using state-of-the art machine learning, and drawing on the expertise of experimentalists, we discovered a large set of high-performing blue OLED materials.”

The research is described in the current issue of Nature Materials.

The biggest challenge in manufacturing affordable OLEDs is emission of the color blue.

Like LCDs, OLEDs rely on green, red and blue subpixels to produce every color on screen.  But it has been difficult to find organic molecules that efficiently emit blue light. To improve efficiency, OLED producers have created organometallic molecules with expensive transition metals like iridium to enhance the molecule through phosphorescence. This solution is expensive and it has yet to achieve a stable blue color.

Aspuru-Guzik and his team sought to replace these organometallic systems with entirely organic molecules.

The team began by building libraries of more than 1.6 million candidate molecules. Then, to narrow the field, a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), led by Ryan Adams, Assistant Professor of Computer Science, developed new machine learning algorithms to predict which molecules were likely to have good outcomes, and prioritize those to be virtually tested. This effectively reduced the computational cost of the search by at least a factor of ten.

“This was a natural collaboration between chemistry and machine learning,” said David Duvenaud, a postdoctoral fellow in the Adams lab and coauthor of the paper. “Since the early stages of our chemical design process starts with millions of possible candidates, there’s no way for a human to evaluate and prioritize all of them. So, we used neural networks to quickly prioritize the candidates based on all the molecules already evaluated.”

“Machine learning tools are really coming of age and starting to see applications in a lot of scientific domains,” said Adams.  “This collaboration was a wonderful opportunity to push the state of the art in computer science, while also developing completely new materials with many practical applications. It was incredibly rewarding to see these designs go from machine learning predictions to devices that you can hold in your hand.”

“We were able to model these molecules in a way that was really predictive,” said Rafael Gómez-Bombarelli, a postdoctoral fellow in the Aspuru-Guzik lab and first author of the paper.  “We could predict the color and the brightness of the molecules from a simple quantum chemical calculation and about 12 hours of computing per molecule. We were charting chemical space and finding the frontier of what a molecule can do by running virtual experiments.”

“Molecules are like athletes,” Aspuru-Guzik said. “It’s easy to find a runner, it’s easy to find a swimmer, it’s easy to find a cyclist but it’s hard to find all three. Our molecules have to be triathletes. They have to be blue, stable and bright.”

But finding these super molecules takes more than computing power — it takes human intuition, said Tim Hirzel, a senior software engineer in the Department of Chemistry and Chemical Biology and coauthor of the paper.

To help bridge the gap between theoretical modeling and experimental practice, Hirzel and the team built a web application for collaborators to explore the results of more than half a million quantum chemistry simulations.

Every month, Gómez-Bombarelli and coauthor Jorge Aguilera-Iparraguirre, also a postdoctoral fellow in the Aspuru-Guzik lab, selected the most promising molecules and used their software to create “baseball cards,” profiles containing important information about each molecule. This process identified 2500 molecules worth a closer look.  The team’s experimental collaborators at Samsung and MIT then voted on which molecules were most promising for application. The team nicknamed the voting tool “molecular Tinder” after the popular online dating app.

“We facilitated the social aspect of the science in a very deliberate way,” said Hirzel.

“The computer models do a lot but the spark of genius is still coming from people,” said Gómez-Bombarelli.

“The success of this effort stems from its multidisciplinary nature,” said Aspuru-Guzik. “Our collaborators at MIT and Samsung provided critical feedback regarding the requirements for the molecular structures.”

“The high throughput screening technique pioneered by the Harvard team significantly reduced the need for synthesis, experimental characterization, and optimization,” said Marc Baldo, Professor of Electrical Engineering and Computer Science at MIT and coauthor of the paper. “It shows the industry how to advance OLED technology faster and more efficiently.”

After this accelerated design cycle, the team was left with hundreds of molecules that perform as well as, if not better than, state-of-the-art metal-free OLEDs.

Applications of this type of molecular screening also extend far beyond OLEDs.

“This research is an intermediate stop in a trajectory towards more and more advanced organic molecules that could be used in flow batteries, solar cells, organic lasers, and more,” said Aspuru-Guzik. “The future of accelerated molecular design is really, really exciting.”

In addition to the authors mentioned, the manuscript was coauthored by Dougal Maclaurin, Martin A. Blood-Forsythe, Hyun Sik Chae, Markus Einzinger, Dong-Gwang Ha, Tony Wu, Georgios Markopoulos, Soonok Jeon, Hosuk Kang, Hiroshi Miyazaki, Masaki Numata, Sunghan Kim, Wenliang Huang and Seong Ik Hong.

The research was supported by the Samsung Advanced Institute of Technology.

Because of seasonally very weak demand and the ramping of new capacity in China, flat-panel display (FPD) supply exceeded demand by 20 percent in the first quarter of 2016, the largest glut since early 2012. The market began to rapidly correct itself in the second quarter and is now trending toward surprising tightness in the second half of 2016. Supply is expected to tighten still further in 2017, according to IHS Markit (Nasdaq: INFO).

flat panel display correction

Rapidly falling panel prices late last year and early this year have encouraged consumers to buy larger TVs. At the same time, notebook and monitor demand has started to stabilize. Finally, capacity growth is restricted, as manufacturers adopt new and more complicated processes in some factories, and more importantly close less productive facilities.

“South Korean panel makers are being particularly aggressive in shutting down older LCD fabs, including Gen 5 and even Gen 7 facilities,” said Charles Annis, senior director at IHS Markit. “The South Korean Gen 7 facility expected to be taken off-line late this year accounts for approximately nearly 4 percent of capacity dedicated to large-area production. It would be the largest factory shutdown in the history of FPD manufacturing.”

Based on the latest IHS Markit Display Supply Demand & Equipment Tracker, demand for large-area FPD applications is expected to grow 5 percent to 6 percent per year from 2016 through 2018; however, capacity dedicated to large-area production is only expected to expand 1 percent in 2017 and 5 percent in 2018. By the second half of 2018, the market is again expected to start trending towards looseness, as even more Chinese capacity is brought on-line, including the world’s first Gen 10.5 factory.

“Historically, the FPD market has corrected itself by reducing factory utilization and delaying capacity expansion plans,” Annis said. “With the rise of Chinese FPD manufacturing, neither of these strategies seemed likely in 2016. This situation has pushed makers in other regions to rationalize their current production assets at unprecedented and unexpected rates ”

Although liquid-crystal display (LCD) has dominated mobile phone displays for more than 15 years, organic light-emitting diode (OLED) display technology is set to become the leading smartphone display technology in 2020, according to IHS Markit (Nasdaq: INFO). AMOLED displays with a low-temperature polysilicon (LTPS) backplane will account for more than one-third (36 percent) of all smartphone displays shipped in 2020, becoming the most-used display technology in smartphone displays, surpassing a-Si (amorphous silicon) thin-film transistor (TFT) LCD and LTPS TFT LCD displays.

“While OLED is currently more difficult to manufacture, uses more complicated materials and chemical processes, and requires a keen focus on yield-rate management, it is an increasingly attractive technology for smartphone brands,” said David Hsieh, senior director, IHS Markit. “OLED displays are not only thinner and lighter than LCD displays, but they also boast better color performance and enable flexible display form factors that can lead to more innovative design.”

Samsung Electronics has already adopted OLED displays in its smartphone models, and there is also increasing demand from Chinese Huawei, OPPO, Vivo, Meizu and other smartphone brands. Apple is also now widely expected to use OLED displays in its upcoming iPhone models.

At one time, OLED displays were entirely glass-based and in terms of performance, there was little difference between LCD and OLED displays. Now, flexible OLED displays made from thinner and lighter plastic are enabled and have drawn Apple’s attention. “Apple’s upcoming adoption of OLED displays will be a milestone for OLED in the display industry,” Hsieh said.

Samsung Display, LG Display, Sharp, JDI, BOE, Tianma, GVO, Truly, and CSOT are also starting to ramp up their AMOLED manufacturing capacities and devote more resources to technology development. Samsung Display’s enormous sixth-generation A3 AMOLED fab, for example, will enable even more AMOLED displays to reach the market. Global AMOLED manufacturing capacity will increase from 5 million square meters in 2014 to 30 million square meters in 2020.

“Many display manufacturers were investing in LTPS LCD, thinking it would overtake a-Si technology,” Hsieh said. “However, many of the fabs under construction, especially in China, have had to change their plans to add OLED evaporation and encapsulation tools, because OLED penetration has been more rapid than previously expected.”

As the popularity and penetration of wearable and mobile devices increase, so too will demand for innovative flexible displays. In fact, revenue from flexible displays is expected to increase more than 300 percent, from just $3.7 billion in 2016 to $15.5 billion in 2022. Flexible displays will comprise 13 percent of total display market revenue in 2020, according to IHS Inc. (NYSE: IHS).

Samsung Electronics and LG Electronics launched the first smartphones with flexible active-matrix organic light-emitting diode (AMOLED) displays in 2013, and both companies continue to adapt flexible AMOLED displays for their smartphones, smartwatches and fitness trackers. Inspired by these successes, other mobile manufacturers are now developing their own flexible-display devices.

“The varieties of flexible displays include screens that are bendable, curved and edge-curved, but fully foldable form factors are expected within the next two years,” said Jerry Kang, principal analyst of display research for IHS Technology. “Only a few suppliers — including Samsung Display, LG Display, E-ink and Futaba — are now regularly supplying flexible displays to the market. However, many more panel makers are now attempting to build flexible display capacity, leveraging the latest AMOLED display technology.”

According to the IHS Flexible Display Market Tracker, flexible displays are primarily used in smartphones and smartwatches in 2016; however, use in other applications, including tablet PCs, near-eye virtual reality devices, automotive monitors and OLED TVs is expected by 2022. “Consumer device manufacturers will eventually need to innovate their conventionally designed flat, rectangular form-factors to make way for the latest curved, foldable and rollable screens,” Kang said.

Flex_Display_Chart_IHS

By Ed Korczynski, Sr. Technical Editor

Medical and health/wellness monitoring devices provide critical information to improve quality-of-life and/or human life-extension. To meet the anticipated product needs of wearable comfort and relative affordability, sensors and signal-processing circuits generally need to be flexible. The SEMICON West 2016 Flexible Electronics Forum provided two days of excellent presentations by industry experts on these topics, and the second day focused on the medical applications of flexible circuits.

Flexible ultra-thin silicon

While thin-film flexible circuits made with printed thin-film transistors (TFT) have been developed, they are inherently large and slow compared to silicon ICs. Beyond dozens or hundreds of transistors it is far more efficient to use traditional silicon wafer manufacturing technology…if the wafers can be repeatedly thinned down below 50 microns without damage.

Richard Chaney, general manager of American Semiconductor, presented on a “FleX Silicon-on-Polymer” approach that provides a replacement polymer substrate below <1 micron thin silicon to allow for handling and assembly. Processed silicon-on-insulator (SOI) wafers are front-side temporarily bonded to a “handle-wafer”, then back-side grinded to the buried oxide layer, then oxide chemically removed, and then an application-specific polymer is applied to the backside. After removing the FleX wafer from the handle-wafer, the polymer provides physical support for dicing and the rest of assembly.

For the last few years, the company has been doing R&D and limited pilot production by shipping lots of wafers through partner applications labs, but in the second-half of 2015 acquired a new manufacturing facility in Boise, ID. Process tools are being installed, and the first product dice are “FleX-OPA” operational amplifiers. Initial work was supported by the Air Force Research Laboratory (AFRL), but in the last 12-18 months the company has seen a major increase in sample requests and capability discussions from commercial companies.

Printed possibilities

Bob Street of Xerox’s Palo Alto Research Center (PARC) presented on “Printed hybrid arrays for health monitoring.” There are of course fundamentally different sensor needs for different applications, and PARC is working on many thin-film transducers and circuits:

Gas sensing – outer environment or human breath,

Optical sensing – monitoring body signals such as blood oxygen,

Electrochemical sensing – detect specific enzymes, and

Pressure/Accelerometers – extreme physical conditions such as head concussions

“There are many and various ways that you can do health monitoring,” explained Street. “There will be sensors, and local electronics with amplifiers and logic and switches. One of the prime features of printing is that it is a versatile system for depositing different materials.”

PARC has built an amazing printing system for R&D that includes different functional dispense heads for ink-jet, aerosol, and extrusion so that a wide varieties of viscosities can be handled. The system also include integrated UV-cure capability. Printing tends to have the right spatial resolution on the scale of 50-100 microns for the target applications spaces.

PARC worked on an early system to monitor for head concussions and store event information. They used printed PVDF material to print accelerometers and pressure sensors, as well as ferroelectric analog memory. Various commercially available materials are used to print organic thin-film transistors (OTFT) for digital logic. For complementary digital logic, different metals would conventionally be needed for contacts to the n-type and p-type TFTs, but PARC found an additive layer that could be applied to one type such that a single metal could be used for both.

A gas sensor prototype that can can detect 100-1000ppm of carbon-monoxide was printed using carbon nano-tubes (CNT) as load resistors. They printed a 4-stage complementary inverter to provide gain, using 7 different materials. “This is a case where a very simple device uses many layers,” explained Street. “Four drops of one materials does it, so you wouldn’t look at using a subtractive process for this.”

Rigid/flex integration

Dr. Azar Alizadeh, GE Global Rsearch, presented on “Manufacturing of wearable sensors for human health & performance monitoring.” Wearables in healthcare applications include medical, high exertion, occupational, and wellness/fitness. The Figure shows a flexible blood pressure-sensor that measures from a finger-tip. Future flexible devices are expected to provide more nuanced biometric information to enable personalized medicine, but any commercially viable disposable device will have to cost <$10 to drive widespread adoption. Costs must be limited because just in the US alone the annual amount spent to serve ~50M patients in hospitals is >$880B.

Finger-tip optical blood-pressure sensor created with printed photodetector by GE Corp.

Finger-tip optical blood-pressure sensor created with printed photodetector by GE Corp.

By Shannon Davis, Web Editor

Kateeva is out to change the way displays are being made, and during Tuesday’s Silicon Innovation Forum keynote, Kateeva President and COO Conor Madigan, PhD, laid out how their YIELDJet inkjet system is making that happen.

In recent years, OLED displays have captured the imagination of the industry because of the materials’ capability to enable new kinds of form factors, specifically flexible displays. One of the compelling characteristics of OLED is designers can make a display on a thin piece of plastic, freeing them from rigid glass.

Another compelling aspect, Madigan explained, is that OLED displays have fewer subcomponents than their LCD counter parts, so manufacturing cost can be lower. And he believes inkjet technology will play a key role in making OLED more affordable. His company, Silicon Valley-based Kateeva, has focused their efforts on developing an inkjet platform for OLED manufacturing called YIELDJet, a completely different style of inkjet system.

Kateeva’s YIELDJet inkjet printing platform.

Kateeva’s YIELDJet inkjet printing platform.

When the concept of flexible OLEDs was first catching on, designers had some significant manufacturing obstacles to overcome, Madigan explained. Designers in R&D were using vacuum-based technique for depositing the films in the OLED structure.

“It was very slow; it required planarization to make a smooth surface, and this didn’t do that well,” said Madigan. “There were many particle defects, and the cost was high.”

Kateeva worked with adapting inkjet technology to this process. Madigan explained that YIELDJet uses individual droplets of ink in a pattern, merges that ink together, and then uses UV lights to cure into a single layer, which has improved the quality of the films.

“Nowadays, we’re focused on broadly enabling low cost, mass production OLEDs with inkjet printing,” Madigan said. “What we’re working on now is a general deposition platform for putting down patterned films at high speed over large areas, realizing the full potential of inkjet technology for the display industry.”

In developing Kateeva’s YIELDJet, Madigan said they focused on how the glass would be handled, how to perform maintenance on a printer system that would be completely enclosed in a nitrogen environment, and managing particle decontamination.

YIELDJet employs a technique that floats a panel of glass on a vacuum and pressure holds, holding it at the very edge, which significantly reduces the size of the system when compared to conventional system which requires glass be moved on a large, often bulky holder. To address accessibility of their complicated system, Kateeva engineers made the system fully automated and able to recover quickly if it needed to be opened up to air.

“It was a new thing to make a printer that was low particle contaminating,” said Madigan. “In one of these printers, you have about ten thousand nozzles, to do fast coating.”

Kateeva was able to develop techniques to monitor all of these nozzles simultaneously, resulting in completely uniform coatings and films.

“The analysis that we’ve done with our customers is that, once they can move to inkjet printing, then you’ll quickly see OLED come down to cost parity and even be below LCD in cost,” Madigan concluded.

Gigaphoton Inc., a major semiconductor lithography light source manufacturer, announced the successful development of a new series of excimer lasers, the GIGANEX series, an application of Gigaphoton’s highly reliable semiconductor lithography excimer laser technology. In addition, Gigaphoton announced shipment for low-temperature polycrystalline silicon (LTPS) at large-scale liquid crystal display (LCD) manufacturing plants, mounting the GIGANEX excimer lasers on ultra-compact laser annealing equipment from V-Technology Co., Ltd., a company listed in the first section of the Tokyo Stock Exchange as 7717.

In recent years, Gigaphoton has continued its development work to apply the technologies that arose with the semiconductor lithography excimer laser program to other fields. It has succeeded in developing an excimer laser for use in the ultra-compact laser annealing process for amorphous silicon (a-Si) membranes in FPD manufacturing. A prototype of this new excimer laser, successfully resulting from this development program and known as GIGANEX, has been delivered to a panel manufacturer. It was subsequently used to great effect, to create a prototype, in use at Display Week 2016, held this year from May 22 to 27 in the United States.

The new GIGANEX series excimer lasers for annealing was developed for exclusive use with equipment from V-Technology for use as a light source during the ultra-compact laser annealing process. By incorporating the ultra-compact laser annealing process characteristics into the existing a-Si panel manufacturing process to crystallize the a-Si into poly-silicon (p-Si), enables the manufacturing of incredibly detailed panels, such as 8K panels, which were previously impossible to create using older a-Si processes. The new process is also suited to larger panel production, affording support for large-scale manufacturing plants that manufacture TV panels ranging from 50 to 70 inches, diagonally. This could not have been possible with existing laser annealing processes.

Gigaphoton President and CEO Hitoshi Tomaru notes that he is extremely happy that Gigaphoton’s excimer laser, GIGANEX, has, ahead of its entry into new industries, advanced into the FPD industry and greatly contributed to the success of an LTPS thin-film transistor LCD panel prototype. He went on to say that, moving forward, GIGANEX will become a new solution for flat-panel display (FPD) manufacturing, and that he expects great things for the industry.

GIGANEX

The new GIGANEX excimer laser, which was developed using the immense technical prowess that resulted from Gigaphoton’s experience with semiconductor lithography, is a new brand of excimer laser that targets many fields, beyond FPD manufacturing, flexible device processes, and lithography. Working together with Gigaphoton’s partner companies to give rise to new innovations, Gigaphoton will rely on GIGANEX to provide unique solutions, expanding the possibilities for excimer lasers.

Shipment area of wide color gamut (WCG)  displays is expected to reach 32 million square meters in 2018, which represents 17 percent of total display shipment area, according to IHS Inc. (NYSE: IHS),the leading global source of critical information and insight. WCG displays include organic light-emitting diode (OLED) and quantum dot technologies.

“As competition in the display market intensifies, display and TV manufacturers are looking for new and emerging technologies to differentiate their offerings from competitors and to provide consumers with higher screen resolution,” said Richard Son, senior analyst, IHS Technology. “WCG technologies are therefore becoming more popular.”

There are two different kinds of quantum dot materials. One is cadmium-included quantum dot and the other is cadmium-free (Cd-free) quantum dot. Since cadmium is an unsafe and toxic element, the display industry developed Cd-free quantum dot technology to replace it. Cd-free quantum dot displays are forecast to comprise 80 percent of the total quantum dot display market in 2016. Quantum dot is just beginning to be used in TV displays to compete against OLED displays. Active-matrix-OLED (AMOLED), by comparison, is primarily used in smartphone displays.

OLED WCG display shipment area is forecast to reach 4.4 million square meters in 2016, growing to 9.2 million square meters in 2018. Quantum-dot WCG display shipment area will reach 13.4 million square meters in 2018, rising from 6.1 million square meters in 2016.

wide color gamut

Almost two years after GTAT’s bankruptcy, the sapphire industry is still there. Its decor and characters have, of course, changed but the story is still unfolding. Survival strategies, emerging applications and niche markets, mergers and acquisitions. All the protagonists are contributing to altering the landscape, trying to identify new business opportunities to absorb the sapphire overcapacity. China is a major contributor to the story with new investments and emerging companies in this already saturated industry. What is the impact on the sapphire supply chain? What are the strategies to be adopted to succeed? What are the long-term perspectives?

Figure 1

Figure 1

In this tense economic environment, Yole Développement (Yole) and its partner CIOE are organizing a 1.5 day conference to learn more about the status of the sapphire industry. The event will provide an opportunity for all the participants to discuss the future of this industry and to find answers. Sapphire is now more affordable than ever and new capabilities have enabled the manufacturing of components for very diverse applications. The 2nd International Forum on Sapphire Market & Technologies is the place to be to understand today’s economic and technical challenges and build tomorrow’s industry.

The Yole & CIOE Forum will take place from September 6 to 7 in Shenzhen, China, alongside the 18th China International Optoelectronic Expo 2016. To find out more about this event, visit: Sapphire Forum Agenda – Sapphire Forum Registration.

Figure 2

Figure 2

 The LED sector still has the highest demand for sapphire, but the expected volumes cannot sustain the one hundred or so sapphire producers currently competing in the industry.
Some sapphire companies are leaving the most commoditized markets and shifting their development strategies toward niche markets with higher added-value such as medical, industrial and military applications. Other business opportunities could materialize, including microLED arrays and other consumer applications.

Most sapphire companies are chasing any opportunity to survive and optimize their cost structure within a market which is currently characterized by a relentless price war. In Q1- 2016, the sapphire price plunged to its lowest ever level and most companies experienced a drastic decrease in revenue.

In this highly competitive market with significant economic constraints, Yole and CIOE are organizing the 2nd International Forum on Sapphire Market & Technologies (Shenzhen, China – September 6&7, 2016).

“The Sapphire Forum is an opportunity for the entire supply chain to come together to assess the current status of the industry, understand what lies ahead and determine the best strategies to make it through the crisis”, comments Dr. Eric Virey, Senior Technology & Market Analyst, Yole.

Today, SEMI announced that 19 new fabs and lines are forecasted to begin construction in 2016 and 2017, according to the latest update of the SEMI World Fab Forecast report. While semiconductor fab equipment spending is off to a slow start in 2016, it is expected to gain momentum through the end of the year. For 2016, 1.5 percent growth over 2015 is expected while 13 percent growth is forecast in 2017.

Fab equipment spending ─ including new, secondary, and in-house ─ was down 2 percent in 2015. However, activity in the 3D NAND, 10nm Logic, and Foundry segments is expected to push equipment spending up to US$36 billion in 2016, 1.5 percent over 2015, and to $40.7 billion in 2017, up 13 percent. Equipment will be purchased for existing fabs, lines that are being converted to leading-edge technology, as well as equipment going into new fabs and lines that began construction in the prior year.

Table 1 shows the regions where new fabs and lines are expected to be built in 2016 and 2017. These projects have a probability of 60 percent or higher, according to SEMI’s data. While some projects are already underway, others may be subject to delays or pushed into the following year. The SEMI World Fab Forecast report, published May 31, 2016, provides more details about the construction boom.

new fab lines

Breaking down the 19 projects by wafer size, 12 of the fabs and lines are for 300mm (12-inch), four for 200mm, and three LED fabs (150mm, 100mm, and 50mm). Not including LEDs, the potential installed capacity of all these fabs and lines is estimated at almost 210,000 wafer starts per month (in 300mm equivalents) for fabs beginning construction in 2016 and 330,000 wafer starts per month (in 300mm equivalents) for fabs beginning construction in 2017.

In addition to announced and planned new fabs and lines, SEMI’s World Fab Forecast provides information about existing fabs and lines with associated construction spending, e.g. when a cleanroom is converted to a larger wafer size or a different product type.

In addition, the transition to leading-edge technologies (as we can see in planar technologies, but also in 3D technologies) creates a reduction in installed capacity within an existing fab. To compensate for this reduction, more conversions of older fabs may take place, but also additional new fabs and lines may begin construction.

For insight into semiconductor manufacturing in 2016 and 2017 with details about capex for construction projects, fab equipping, technology levels, and products, visit the SEMI Fab Database webpage and order the SEMI World Fab Forecast Report. The report, in Excel format, tracks spending and capacities for over 1,100 facilities including over 60 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities.