Tag Archives: letter-dd-top

Full high-definition (FHD) panels reached a record 21 percent of the smartphone display market in the third quarter (Q3) of 2015, due in large part to increases in active-matrix organic light-emitting diode (AMOLED) panel adoption by Samsung and others. Increasing demand from the Chinese smartphone market, and the popularity of the Apple iPhone 6S Plus, also added to growth in unit shipments of FHD panels that are able to show 1080p images, according to IHS Inc. (NYSE: IHS), a global source of critical information and insight. AMOLED displays comprised 18 percent of all smartphone display unit shipments in Q3 2015, up from 10 percent in Q3 2014.

The Samsung group has relied on AMOLED as an important differentiating feature in its proprietary Galaxy smartphones for six years, as it helps the company achieve better color performance, on-cell touch, and slimmer and lighter form factors. To expand market adoption, Samsung Display recently changed its smartphone display strategy to begin selling AMOLED panels to external customers.

Beginning in the second half of 2015, OPPO, Gionee, vivo, Meizu, Lenovo, Huawei and other smartphone brands, installed AMOLED in their devices. Meanwhile, products like the Google Nexus 6P, the Microsoft Lumia 950XL, the Meizhu Pro 5, and the recently announced BlackBerry Priv now have AMOLED displays.

“2015 will be a banner year for AMOLED as the technology will soon be included in high-end smartphones from many other companies,” said David Hsieh, senior analyst for IHS Technology. “The simpler structure and better picture performance of AMOLED screens may even encourage Apple to consider adopting the technology in the future.”

The plus-sizing of smartphones continues

Led by the rising popularity of the iPhone 6S Plus and other large smartphones, unit shipments of 5.0-inch-and-larger displays surpassed those of smaller displays for the first time in Q3 2015. While quarter-over-quarter unit shipments of 5.0-inch-and-larger displays grew 21 percent to reach 247 million units in Q3, smartphone displays smaller than 5.0 inches fell 6 percent to 156 million units.

Unit shipments of 5.0-inch smartphone panels experienced the largest growth of any size, jumping from 93 million in Q2 2015 to 104 million in Q3, which is the first time 5.0-inch shipments exceeded 100 million units in a single quarter. Thanks to the iPhone 6S Plus and other new models manufactured in China, 5.5-inch smartphone panels grew from 65.6 million in Q2 2015 to 79.8 million in Q3. Screen sizes of 6 inches and larger have not been as popular with smartphone buyers, so growth in that size range has been marginal.

Apple’s use of Force Touch technology in the Apple Watch and 3D Touch in the iPhone 6S line is leading to growth in force sensing and other touch-panel enhancements in mobile devices. Other brands and integrated-circuit (IC) makers are now responding by preparing their own force sensing solutions, mainly for high-end and mid-range smartphones due to the high cost. In 2016, force sensing module shipments are expected to grow 317 percent to reach 461 million units in 2016. Nearly one quarter (24 percent) of new smartphones shipped will include the technology, according to IHS Inc. (NYSE: IHS), a global source of critical information and insight.

“Aside from force sensing solutions, touch controller IC makers are aggressively expanding production of in-cell and on-cell touch displays to further improve touch interfaces for smartphone users,” said Calvin Hsieh, director of touch and user interface research for IHS Technology. According to the latest IHS Touch User Interface Reportin-cell and on-cell touch panel shipments will reach 40 percent of all mobile phone touch-panel shipments in 2015, rising to 50 percent in 2018. “Smartphone touch controller IC makers are focused on developing new features to spur growth in the maturing touch panel market.”

The ongoing evolution in the touch-panel industry is also changing the supply chain and affecting competition. Touch controller IC makers, primarily in Taiwan and China, accounted for more than 45 percent of the market for major information technology and consumer electronics products in the first half of 2015.

2016 bounce to modest gains


December 14, 2015

By Christian G. Dieseldorff, Industry Research & Statistics Group, SEMI

SEMI just published the latest quarterly update of its World Fab Forecast report.  While the year started with a positive outlook, the initial optimism has largely deflated, and the year will end largely flat. Fab equipment spending growth (new and used) for 2015 is expected to be 0.5 percent (US$ 35.8 billion). For 2016, spending is forecast to grow by 2.6 percent ($36.7 billion), with a possible continued upward trend.

Past trends prove again the close correlation of spending to global GDP and revenue.  The IMF predicted worldwide GDP to grow by 3.5 percent back in May, and has revised it down to only 3.1 percent.  Likewise, as of May, the year’s average revenue growth for the semiconductor industry was predicted to be in the mid- to high-single digits (according to ten leading market research firms).  Now these firms have revised their 2015 predictions to an average of just 1.3 percent.

Fab equipment spending (new, used and in-house) follows the same rollercoaster as revenue, and is now expected to grow by only 0.5 percent by the end of 2015, possibly 1 percent, according to SEMI.

Fab-Equipment-Spending

In 2015, 80 to 90 percent of fab equipment spending went to 300mm fabs, while only 10 percent was for 200mm or smaller.  SEMI’s recently published “Global 200mm Fab Outlook” provides more detail about past and future 200mm activities.

Cherish the Memory

Examining fab equipment spending by product type, Memory accounts for the largest share in 2015 and 2016. In 2015, DRAM spending was second in place but in 2016 3D Flash will, by far, outspend DRAM.

Most DRAM spending in 2015 went towards 21/20nm ramp.  In 2016, DRAM companies are expected to start risk production of 1xnm (for example, Samsung in 1H 2016; Hynix in 2H 2016; and Micron in 2016).

While 2015’s spending was dominated by DRAM, SEMI reports that 2016 will be dominated by Flash, mainly 3D-related architectures.  Capacity for 3D-NAND will continue to surge.  SEMI’s report tracks 10 major 3D producing facilities, with a capacity expansion of 47 percent in 2015 and 86 percent in 2016.

Foundry Segment Holds Steady

The Foundry segment is next in terms of the largest share of fab equipment spending in 2015 and 2016.  In general, the foundry segment shows steadier, more predictable spending patterns than other device product segments. The largest foundry player, TSMC, has a strong impact on the foundry industry.  In the second half of 2015, TSMC cut 2015 capex from $10.5 billion to $8 billion, due to a flagging market.  SEMI expects a stronger fourth quarter in 2015 for equipment spending for foundry as TSMC fulfills its capital expenditure for the year and we expect an increased capex in 2016.

TSMC recently announced revenue expectation for 2016 to be in double digits and expects to increase capex for 2016 as it ramps 16nm and adds initial 10nm capacity.

It’s Only Logical (and MPU)

Coming in third place in fab equipment spending, MPU had lower spending in 2015.  Intel revised its planned capex down four times, from $10 billion to $8.7 billion then to $7.7 billion, and finally to $7.3 billion, and it decided to delay the launch of 10nm products (Cannonlake) to 2H17.  Intel still announced lofty plans for 2016 capex, around $10 billion.  Especially in 2H16, spending will pick up for anticipated 10nm activities.

Meanwhile for Logic spending has been very strong in 2015, with 90 percent growth, driven by SONY’s CMOS image sensors.  This exuberant growth, however, is expected to slow down in 1H16.

Consequence of Consolidations: the End of Wild Times?

Between 2010 and 2014, change rates for equipment spending fluctuated wildly, from +16 percent in 2011 to -16 percent in 2012, -8 percent in 2013 to 15 percent in 2014. These drastic changes have been replaced by dampened spending growth rate for 2015 and into 2016.  Multiple reasons may apply: a more mature and lower growth industry, increased caution regarding capacity ramp, or perhaps the recent frenzy of consolidations further concentrating capex spending.  SEMI’s next quarterly publication, in February 2016, will give further insight into early indicators of 2017.  Will sedate, positive spending growth continue?

The SEMI World Fab Forecast Report in Excel format, tracks spending and capacities for 1,167 facilities across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities. It uses a bottoms-up approach methodology, providing high-level summaries and graphs and in-depth analyses of capital expenditures, capacities, technology and products by fab.  Learn more about the SEMI fab databases at: www.semi.org/MarketInfo/FabDatabase and www.youtube.com/user/SEMImktstats

Worldwide semiconductor fab equipment capital expenditure growth (new and used) for 2015 is expected to be 0.5 percent (total capex of US$35.8 billion), increasing another 2.6 percent (to a total of $36.7 billion) in 2016, according to the latest update of the quarterly SEMI World Fab Forecast report.

SEMI reports that in 2015, Korea outspent all other countries ($9.0 billion) on front-end semiconductor fab equipment, and is expected to drop to second place in 2016 as Taiwan takes over with the largest capex spending at $8.3 billion. In 2015, Americas ranked third in overall regional capex spending with about $5.6 billion and is forecast to increase only slightly to (5.1 percent) in 2016.

fab equipment spending 2016

In 2015, 80 to 90 percent of fab equipment spending went to 300mm fabs, while only 10 percent was for 200mm or smaller.  SEMI’’s recently published “Global 200mm Fab Outlook” provides more detail about past and future 200mm activities.

Examining fab equipment spending by product type, Memory accounts for the largest share in 2015 and 2016.  While 2015’s spending was dominated by DRAM, the SEMI World Fab Forecast reports that 2016 will be dominated by Flash, mainly 3D-related architectures.  Capacity for 3D-NAND will continue to surge. SEMI’’s report tracks 10 major 3D producing facilities, with a capacity expansion of 47 percent in 2015 and 86 percent in 2016.

The Foundry segment is next in terms of the largest share of fab equipment spending in 2015 and 2016.  In general, the foundry segment shows steadier, more predictable spending patterns than other device product segments. Coming in third place in fab equipment spending, MPU had lower spending in 2015.  Logic spending was very strong in 2015, with 90 percent growth, driven by SONY’s CMOS image sensors.

Throughout 2015, SEMI anticipates that there will be 1,167 facilities worldwide investing in semiconductor equipment in 2016, including 56 future facilities across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities. For further details, please reference to the latest edition of SEMI’s World Fab Forecast report.

Demand for LTPS TFT LCD shipments rose 30 percent in September 2015 to reach 51.6 million units, due to strong demand from Apple and Chinese brands. Total smartphone panel shipments grew 4 percent month over month to reach 160 million units in September 2015. While amorphous silicon (a-Si) thin-film transistor (TFT) liquid-crystal display (LCD) panels continue to lead the smartphone display market, low-temperature polysilicon (LTPS) TFT LCD panel shipment share is growing, according to IHS Inc., a of critical information and insight.

“TFT-LCD, based on a-Si substrate, has been the leading panel technology for mobile phones because it is easy to manufacture and costs less to produce than other display technologies. However, since Apple adopted LTPS for its popular iPhones, demand for the new technology has continued to increase,” said Brian Huh, senior analyst for IHS Technology. “While LTPS panels cost greater, they boast lower power consumption and higher resolution compared to a-Si LCD panels. Greater demand for higher definition screens, especially in China, has also increased the adoption of LTPS LCD mobile phone displays.”

Based on the latest information in the IHS Smartphone Display Shipment Trackerthe market share for the a-Si TFT LCD panel fell 10 percent month over month, but the panel still comprised the majority of smartphone display shipments, reaching 79.6 million in September 2015. Active-matrix organic light-emitting diode (AMOLED) panel shipments grew 7 percent to reach just 25 million units.

As a point of differentiation in the smartphone display market, Samsung Electronics adopted AMOLED-based LTPS displays in 2009. At that time Samsung Display was not looking to expand its customer base because Samsung Electronics digested almost all of the company’s AMOLED capacity. However as Samsung Electronics’ AMOLED smartphone business began to decline last year, Samsung Display has been expanding its customer lineup. “Since the end of last year, Samsung Display has been actively and aggressively promoting AMOLED displays to other electronics companies, especially in China, and AMOLED panel shipments for Chinese brands have increased remarkably since September,” Huh said.

Year-over-year large-area display shipments are forecast to fall 5 percent, reaching 682 million units in 2015. This decline in unit shipments will be offset by an increase in large area thin-film transistor (TFT) liquid crystal display (LCD) shipment area, which is expected to grow 5 percent this year, according to IHS Inc., the global source of critical information and insight.

In addition to global currency issues that resulted in higher import prices for displays in most regions, slowing demand for information technology (IT) panels is driving down total unit shipments of large area TFT LCD displays. Combined year-over-year unit shipments for tablets, notebook PC and PC monitors will decline 12 percent. At the same time, TFT LCD TV panel unit shipments will increase by just 7 percent this year.

Similar to the unit-shipment trend, combined shipment area for displays used in PCs, notebooks and tablets is expected to decline 10 percent in 2015; however, year-over-year area shipments of TV panels is forecast to grow 9 percent this year. Increasing TV panel area shipment is leading to growth in the overall TFT LCD panel market, because TV displays comprise the vast majority (78 percent) of total panel area, according to the latest IHS Large Area Display Market Tracker

“Maintaining television panel production is the most important factor in maintaining the display industry’s fab utilization,” said Yoonsung Chung, director of large area display research for IHS Technology. “Chinese panel manufacturers have focused on increasing Gen 8 fabs for some time now. To consume this added capacity, TV panel makers must produce more panels, which means the industry could end up adding excess panels to inventory, leading to sharp TV panel price erosion in the second half of this year.”

Although the average selling price (ASP) for TV panels has already dropped dramatically, as inventory issues remain, prices will likely continue to decline in the coming year. “Panel price erosion will lower the cost of 55-inch-and-larger TVs, which could end up stimulating consumer demand for larger televisions,” Chung said.

While conventional thin film transistor liquid crystal (TFT LCD) displays are rapidly trending towards commoditization and currently suffering from declining prices and margins, China is quickly adding capacity in all flat-panel display (FPD) manufacturing segments. Supported by financial incentives from local governments, Chinese TFT capacity is projected to grow 40 percent per year between 2010 and 2018. In 2010 China accounted for just 4 percent of total TFT capacity. However by 2018, China is forecast to become the largest FPD-producing region in the world, accounting for 35 percent of the global market, according to IHS Inc. (NYSE: IHS), a global source of critical information and insight.

While Chinese capacity expands, Japan, South Korea and Taiwan have restricted investments to focus mainly on advanced technologies. TFT capacity for flat panel display (FPD) production in these countries is forecast to grow on average at less than 2 percent per year between 2010 and 2018.

Based on the latest IHS Display Supply Demand & Equipment Tracker, BOE Technology Group stands out as the leading producer of FPDs in China. With a capacity growth rate of 44 percent per year between 2010 and 2018, BOE will become the main driver for Chinese share gains. By 2018, the company will have ramped up more FPD capacity than any other producers, except for LG Display and Samsung Display.

“Despite growing concerns of oversupply for the next several years in most parts of the display industry, there is still little evidence that Chinese makers are reconsidering or scaling back their ambitious expansion plans,” said Charles Annis, senior director at IHS. “On the contrary, there continues to be a steady stream of announcements of new factory plans by various regional governments and panel makers.”

In China, the central government has generally encouraged investment in FPDs, in order to shift the economy to higher technology manufacturing, to increase domestic supply and to support gross domestic product (GDP) growth. Provincial governments have become the main enabler of capacity expansion through product and technology subsidies, joint ventures and other direct investments, by providing land and facilities and through tax incentives. In return, new FPD fabs increase tax revenue, support land value appreciation, increase employment and spur the local economy. The economic benefits generated from the feedback loop between local governments, panel makers and new FPD factories are still considered sufficiently positive in China to warrant application of significant public resources.

“China currently produces only about a third of the FPD panels it consumes. However, by rapidly expanding capacity, panel makers and government officials are expecting to double domestic production rates in the next few years and are also looking to export markets,” Annis said. “How excessive global supply, falling prices and lower profitability will affect these plans over time is not yet exactly clear. Even so, there is now so much new capacity in the pipeline that China will almost certainly become the top producer of FPDs by 2018.”

The IHS Display Supply Demand & Equipment Tracker covers metrics used to evaluate supply, demand, and capital spending for all major FPD technologies and applications.

Sapphire is hard, strong, optically transparent and chemically inert.

BY WINTHROP E. BAYLIES and CHRISTOPHER JL MOORE, BayTech-Resor LLC, Maynard, MA

Have you ever wondered what blue gemstone earrings, an LED lightbulb and an Apple Watch have in common? The answer (at least for this article) is that all depend on sapphire as part of their manufacturing process. In part 1 of the following two part article, we will discuss how sapphire is becoming an important part of the mobile device food chain. Part 2 will concentrate on how sapphire is used in LED production.

Sapphire (chemical composition Al2O3) has a high melting point of 2040°C (3704°F) and is chemically resistant even at high temperatures. It is an anisotropic material meaning that its mechanical/thermal properties depend on the direction of the crystal plane that is cut and polished. An insulator with a 9.2 eV energy gap it is optically transparent. With a hardness of 9 on the Mhos scale, it is almost as hard and strong as diamond (10 Mhos).

To summarize, sapphire has some good points: hard, strong, optically transparent and chemically inert (there is a reason high end watches use sapphire crystals) and some bad points: hard, strong, and chemically inert (which is why sapphire crystals are more expensive than glass). That is, the very properties that make it ideal for applications needing mechanical strength and hardness mean that it is a difficult material to grow, machine and polish.

There are several places where sapphire can be (or is now) used in the manufacture of mobile devices. The most publicity in this area was generated in 2014 with significant speculation in both the trade magazines and newspapers (such as the Wall Street Journal) that the iPhone 6 would be released with a sapphire touch screen or at the very least a sapphire cover glass over the existing touchscreen. Part of this speculation was fueled by the large number (1700 to 2500 depending on source) of sapphire producing furnaces being installed at an Apple facility in Mesa Arizona. However, the sapphire iPhone 6 was not released due in part to the difficulties in growing and processing enough sapphire screens at a reasonable cost to supply the significant number of phones produced. There are now sapphire touch screen phones available from other suppliers and recently, the Apple Watch was released with a sapphire screen. In addition, many fingerprint sensors and camera cover glasses are now produced using sapphire as the cover material.

Requirements for sapphire material is clear (forgive the pun). For screens and cameras, it must be of good optical quality i.e. transmit light well and have low surface roughness. For fingerprint sensors, it needs consistent surface quality and electrical properties.

Production process

FIGURE 1 shows a schematic of the production process for sapphire used in a mobile device screen. The following paragraphs provide more detail on this process [1] as well as a few of problems encountered along the way.

Sapphire Fig 1

The sapphire production process starts when a seed crystal and a mixture of aluminum oxide and crackle (un-crystallized sapphire material) is heated using a specific temperature/time profile, then cooled (this process can take two weeks depending on the amount of sapphire being produced) using a carefully controlled set of time/temperature profiles. When done correctly, the cookie sized seed grows and produces a single-crystal sapphire boule. That at least is the theory. In reality, two weeks is a long time and any number of problems can go wrong during this process including gas bubbles, mechanical faults such as cracks and contamination. Each of these problems can affect the sapphire and its optical/electrical properties. There is a clear correlation between the time taken to grow a boule and the potential quality of the boule produced. Many of the problems encountered in the upscaling of the sapphire production process sprang from trying to grow large boules at high speeds.

It is at the next step in the process where boule size does matter. Typically, the boule will be drilled or cut to produce material near the size needed for the particular application. It makes a significant difference if the material is for a watch crystal (say 1.5 inch diameter ~ 1.7 square inches). Here you can “core-drill” a boule to produce a number of smaller cylinders. For a phone screen/cover plate (at 4 by 6 inch i.e. 24 square inches) a larger portion of the boule is needed for a box shape. The ability to grow large sized boules on a regular basis is not in question; most important is how much of that boule is bubble-, crack- and impurity-free. In some cases the boules are inspected with various metrology techniques to determine which sections of the boule can be used and which cannot. The section of the boules not used is recycled into the original growth process (unless contaminated).

Given the hardness of the sapphire, diamond wire saws or diamond core drills are used for cutting or coring the boules. The yield from any boule is a function of the original boule size, the size of the cores or slabs being produced and the volume of the boule free from imperfections. As was discussed earlier, and is typical of many processes, the larger the size of the piece the lower the yield.

The next step is to take the cylindrical cores (or rectangular slabs) and cut them into appropriate sized pieces. The thickness of the desired part and the amount the producer is willing to invest in high technology solutions determines what is done next. On one end of the technology scale, the parts are cut using a wire saw or an abrasive cutoff saw. On the other end of the scale, you can ion implant the surface to produce a damaged layer at a depth below the surface determined by the original ion energy. If the slab is heated after sufficient implantation is done, a thin sheet will separate from the surface. Both processes result in parts of the approximate size needed for the application; a discussion of the pros and cons of each approach is beyond the scope of this article.

The process after this point depends on the parts’ final application and their manufacturer. Given the difficulty of polishing a material this hard many of the bigger companies have developed proprietary process for grinding or mechanically polishing the sapphire parts to the desired shape and surface roughness/finish. From a mechanical strength standpoint, it is important that there be no significant scratching of the surface or chipping of the edges which could severely limit the mechanical strength of the final piece. From an optical standpoint, it is important to produce a uniform finish so as not to effect the overall appearance of the part. At this stage, the parts are then ground to their final size and any additional shaping of the part including holes/ profiles is done. FIGURE 2 shows a variety of sapphire parts at this stage of the process.

Sapphire Fig 2

In most sapphire part production these parts are next coated with a variety of optical and/or electrical and/ or chemical films again depending on their application. Because of its high index of refraction (1.76) a sapphire screen or watch crystal is highly reflective. For this application, the parts are typically coated with a series of films to produce an anti-reflection coating enhancing final screen readability. For parts that will be touched on a regular basis such as touchscreens or fingerprint sensors coatings, it is important that they be “self-cleaning.” In these cases, hydrophobic and oleophobic coatings are used to make sure your fingerprints are less likely to stay behind after the material has been touched. FIGURE 3 shows a series of parts after the coating and silk screening process. They are now ready for assembly into the mobile device.

Sapphire Fig 3

The use of sapphire in mobile devices is driven by two main concerns. One is that the final screen/sensor be mechanically stronger and harder than most glasses. There are a number of videos [2] available showing cement blocks being dragged over cell phones to show the sapphire screens’ scratchproof capabilities. The second (and not as well known) factor is the significant data showing that touch sensors made using sapphire have better performance characteristics due to its superior electrical properties and electrical uniformity. This allows the development of sensors which have improved performance in the field.

The downside of using sapphire remains its cost. Estimates [3] have reported sapphire costs 2 to 10 times the price of an equivalent glass part. Although these costs are coming down, in price sensitive applications glass continues to dominate at this time and it is expected that only higher end phones will use sapphire screens.

In the second part of this article, we will discuss the importance of sapphire in the LED industry and the difference in process needed for this material.

Additional reading/viewing material

1. http://www.businessinsider.com/how-sapphire- glass-screens-are-made-2014-9
2. Video Aero Gear’s Flight Glass SX Sapphire Crystal vs a Concrete
3. http://seekingalpha.com/article/2230553-ignore- the-sapphire-threat-corning-is-on-a-roll

The Centre of Process Innovation (CPI) has announced that it is part of a UK based collaboration to develop the next generation of ultra-barrier materials using graphene for the production of flexible transparent plastic electronic based displays such as those required for the next generation of smartphones, tablets and wearable electronics.

The UK is a world leader in the field of graphene innovation and the market is predicted to be worth more than £800m by 2023. The graphene market could transform the manufacturing landscape in the UK if new materials, processes, equipment and metrology can be developed effectively in concert. The project combines the skills from each of the partners (University of Cambridge, FlexEnable Ltd, the National Physical Laboratory, and the Centre for Process Innovation) and expects to deliver a feasible material and process system. It builds upon significant existing investments by InnovateUK and the EPSRC in this area. The resulting ultra-barrier material can be potentially used in a wide range of novel applications by the lead business partner, FlexEnable.

The twelve month project titled “Gravia” funded under the Innovate UK “realising the graphene revolution” call will investigate the feasibility of producing graphene-based barrier films for next generation flexible OLED lighting and display products. However current commercially available barrier layers used to protect the electronics in display screens have limitations with regards to flexibility. In order to realize the commercialization of such applications, display manufacturers have to be able to source flexible barrier platforms such as graphene on which they can fabricate their displays.

The incorporation of graphene interlayers offers great potential for flexible displays. Its gas blocking properties will enable barrier materials that are not only flexible, but also transparent, robust, and very impervious to many molecules. Gravia will seek to accelerate product development, improving upon current ultra barrier performance and lifetimes by producing consistent barrier materials and processes on large area substrates by utilizing specialist growth techniques. The key challenge will be to develop large-area poly-crystalline graphene films which maximize performance whilst mitigating process imperfections. In this way, solutions can be produced at scale and economically viable in the future.

The demonstration of feasible working prototypes will represent a significant achievement in the race to bring wearable electronics and plastic displays to the mass market. The project is exploring the necessary industrial process parameters to ensure that the barriers produced are not only of high performance but also at a price point that allows market adoption. Measuring barriers at very low levels of permeability requires sensitive and accurate tests. Collaborating with the National Physical Laboratory (NPL) will ensure that the data claims are correct and meaningful comparisons can be made in the future with the very latest and most sensitive equipment. Future development work will focus on transferring the technology from proof of concept to pilot production scale.

James Johnstone, Business Development Manager at CPI, said: “The collaboration brings together world class supply chain expertise across the UK to bridge the gap from Graphene research to the manufacturing of commercial flexible display screens. The Hofmann group at the Department of Engineering in Cambridge is a key innovator in the growth and processing of graphene films. NPL are experts in the traceable measurement of water transfer characteristics and FlexEnable brings an industrial focus to the project with their extensive expertise in the manufacture of flexible electronics and flexible display screens in particular. CPI’s role in the project is to use roll-to-roll atomic layer deposition technologies to scale up, test and fabricate the ultra barrier materials.”

Chuck Milligan, CEO FlexEnable adds: “Graphene and other 2D materials are extremely relevant for the flexible electronics industry, with the potential for broad usage from conductors to semiconductors, insulators and even barriers. Building on FlexEnable’s previous leading-edge work with graphene, our involvement will enable the accelerated integration of these game-changing materials in a new generation of ultra-flexible end-user applications with innovative form factors.”

Samsung Electronics, a global producer of semiconductor and display solutions, formally opened the doors to its new Device Solutions America headquarters in San Jose, Calif., setting the stage for a new wave of innovation across the digital landscape.

Located on the same corner in San Jose’s tech corridor where Samsung’s original campus was first built more than 30 years ago, the new headquarters symbolizes both Samsung’s long heritage in Silicon Valley and the company’s focus on innovation and growth.

Samsung Electronics’ semiconductor operations’ has long been innovating and with the new America headquarters for its components business, Samsung’s R&D efforts will be bolstered substantially. Innovation and advanced technologies for next-generation devices generated at the new facility will help make a contribution to providing the critical competitive advantage that the company’s U.S. and global customers seek.

Speaking before an audience of more than 800 at the site’s grand opening ceremony, Oh-Hyun Kwon, Vice Chairman and CEO of Samsung Electronics, said “We are transforming Samsung into a world-class example of a truly market-focused technology company.” He further said that the company is “laying the groundwork for a more aggressive pace of growth over the next several decades.”

While Samsung Electronics’ Device Solutions Division has experienced growth since its arrival in Silicon Valley in 1983, it has created multiple organizations dispersed throughout the region. The move brings more than 700 employees together in one location, enhancing efficiency that is crucial in creating technologies and products at the cutting edge of technology. The 1.1-million-square-foot building will house various research labs dedicated to semiconductors, LEDs and displays, as well as staff in sales, marketing and other support areas.

Complete with gardens and open air space within the building, its new design increases collaboration by encouraging more spontaneous encounters between staff, while also bringing nature closer to the workplace to increase employees’ contentment and creativity.

Samsung’s President of its Device Solutions America operations, Jaesoo Han, said, “Today represents a major milestone as we open our most strategically important Samsung facility in the U.S. and also our biggest investment in Silicon Valley.” He went on to say that “Samsung’s goal is nothing less than to develop the best next-generation technologies for device solutions.”

Dignitaries in attendance at the grand opening for Samsung’s new headquarters included the current mayor of San Jose, the Honorable Sam Liccardo; former San Jose mayor, the Honorable Chuck Reed; State Senator Bob Wieckowski; San Jose State University President Susan Martin; and San Francisco Korean Consul General Dongman Han.

In keeping with the company’s corporate social responsibility (CSR) initiatives, Samsung announced a number of contributions to the Silicon Valley community. The company donated $100,000 to the Family Giving Tree and another $100,000 to the Second Harvest Food Bank.

Samsung Electronics has also established a $1 million STEM College Education Scholarship Fund to celebrate its latest expansion. Deserving university students who are currently enrolled in STEM-focused programs at a California State or University of California school will benefit from this program, beginning with a $50,000 gift to San Jose State University this year. Each scholarship will cover tuition and living expenses for one year.