Tag Archives: letter-leds-business

Global semiconductor capital equipment manufacturer OEM Group announced today it has received first-in-fab and repeat tool orders for its Cintillio wet chemical processing system from several leading Ultra Bright LED manufacturers working in the automotive lighting market.  With these orders, OEM Group has now successfully expanded its production proven and patented ECO-Process wafer surface preparation solutions from the established markets of Power Device, CMOS IC, and MEMS manufacturing into UBLED fabrication, a new market for Cintillio.  The tools will be used for ozone processing of some of the most sensitive layers exposed during LED manufacturing, including exposed silver, which to date has presented LED makers with difficult challenges where surface preparation is involved.

Along with novel ozone processes optimized for exposed Ag, OEM Group’s ECO-Processes provide LED customers with significant reductions in chemical waste disposal and DI water consumption.

LEDs are eco-friendly light sources that provide high power efficiency in automotive applications, contributing to improved fuel efficiency by reducing electrical power consumption. As a result, the EU has officially recognized LED headlamps as being an energy-efficient technology, resulting in the notable adoption of UBLED headlamps by European automobile manufacturers.

The market research firm LEDInside expects continued significant growth in the automotive LED segment, particularly in Daytime Running Lights, High/Low headlamp beams, and fog light applications, with a compound annual growth rate of 48% forecast from 2014 to 2018.

And McKinsey & Company notes in a recent report that LED adoption can be accelerated by applying best practices in manufacturing, including increased automation levels and “lean” manufacturing methods, as OEM Group now offers for the LED market with Cintillio.  The repeat and first-in-fab orders from major UBLED manufacturers in Asia and Europe reflect the confidence OEM Group’s customers have in these surface preparation processes and reinforces the value proposition benefits they bring.

“It is a testament to the development work on ozone processing over sensitive layers, such as Ag, carried out by our process development group based in Coopersburg, PA, that we are seeing traction and growth in the UBLED market. This work has enabled us to provide process solutions not only for UBLED FEOL applications, but also throughout the entire UBLED process flow,” said Paul Inman, Business Development, Chemical Process Technology, OEM Group.

“The ability to reduce DI water consumption by up to 85%, and the virtual elimination of chemistry and related disposal costs, are factors leading to a marked increase in interest in the ECO-Processes, especially in areas suffering severe water shortages” added Graham Pye, CPT Product Manager at OEM Group.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing and design, today announced worldwide sales of semiconductors reached $28.2 billion for the month of May 2015, an increase of 5.1 percent from May 2014, when sales were $26.8 billion. Global sales from May 2015 were 2.1 percent higher than the April 2015 total of $27.6 billion. Regionally, sales in the Americas increased 11.4 percent compared to last May to lead all regional markets. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“The global semiconductor industry overcame lingering macroeconomic uncertainty to post solid year-to-year growth in May,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Year-to-year sales have now increased for 25 straight months, month-to-month sales increased for the first time in six months, and we expect modest growth to continue for the remainder of 2015 and beyond.”

In addition to the Americas market, year-to-year sales also increased in China (9.5 percent) and Asia Pacific/All Other (8.0 percent), but decreased in Europe (-7.8 percent) and Japan (-11.8 percent). Compared to last month, sales were up in China (4.0 percent), Asia Pacific/All Other (3.3 percent), and the Americas (0.2 percent), but decreased slightly in Europe (-0.6 percent) and held flat in Japan.

“Congress and the President recently gave the U.S. semiconductor industry and other trade-dependent sectors a major boost by enacting Trade Promotion Authority (TPA), which makes it easier for the United States to strike deals on free trade agreements,” said Neuffer. “With TPA, the United States is more likely to get the Trans-Pacific Partnership (TPP) and other critical trade agreements across the finish line, leading to continued growth and innovation in our industry and across the U.S. economy.”

May 2015

Billions

Month-to-Month Sales                               

Market

Last Month

Current Month

% Change

Americas

5.61

5.62

0.2%

Europe

2.89

2.87

-0.6%

Japan

2.54

2.54

0.0%

China

7.78

8.09

4.0%

Asia Pacific/All Other

8.78

9.07

3.3%

Total

27.61

28.20

2.1%

Year-to-Year Sales                          

Market

Last Year

Current Month

% Change

Americas

5.05

5.62

11.4%

Europe

3.12

2.87

-7.8%

Japan

2.88

2.54

-11.8%

China

7.39

8.09

9.5%

Asia Pacific/All Other

8.40

9.07

8.0%

Total

26.83

28.20

5.1%

Three-Month-Moving Average Sales

Market

Nov/Dec/Jan

Feb/Mar/apr

% Change

Americas

6.23

5.62

-9.7%

Europe

2.88

2.87

-0.2%

Japan

2.55

2.54

-0.6%

China

7.76

8.09

4.4%

Asia Pacific/All Other

8.32

9.07

9.0%

Total

27.74

28.20

1.7%

 

“Growing photolithography equipment markets in advanced packaging, MEMS and LEDs are attracting new players; but they have to navigate complex roadmaps,” announced Yole Développement (Yole). Under its new report, Yole’s analysts announce a projection system market for advanced packaging, MEMS and LEDs reaching more than US$150M in 2014. To perform this report, they interviewed leaders and outsiders of this market such as SUSS MicroTec, ASML, EV Group, Rudolph Technologies, USHIO. They analyzed their market positioning and their technical solutions.

Within a highly competitive and innovative environment, Yole’s analysis shows, at first glance, some similarities between “More Moore” and “More than Moore”. However the analysis is more complex.

“Photolithography Equipment & Materials for Advanced Packaging, MEMS and LED Applications” analysis provides a comprehensive overview of all the key lithography technologies used in advanced packaging, MEMS and LED applications and benchmarks them in terms of feature requirements. Yole’s analysts provide examples of lithography process steps for these applications. In parallel, Yole’s report describes associated technological breakthroughs and manufacturing process. More insights are included on specific lithography equipment tools for advanced packaging, MEMS and LED devices.

illus_lithography_market_yole_june2015

The semiconductor industry is very often identified by its “More Moore” players, driven by technology downscaling and cost reduction. There is one clear leader supplying photolithography tools to the “More Moore” industry: ASML, based in The Netherlands. The company proposes lithography equipment with $10M unit price and incredible optics, mechanics and precision stage in order to reach sub 20nm precision (Latest announcement from ASML, April 2015). ASML is followed by two Japanese outsiders, Nikon and Canon.

“Providing this market with photolithography equipment is highly complex and there are gigantic barriers to market entry,” asserted Claire Troadec, Technology & Market Analyst, Semiconductor Manufacturing at Yole. Enormous R&D investments are required as the key features to print shrink ever further. Also, the tolerances specified are very aggressive and thus equipment complexity keeps on increasing.

In the “More than Moore” industry the Holy Grail isn’t downscaling any more – it is adding functionality: according to Yole’s analysis, there are two clear leaders today: SUSS MicroTec (Latest order: lithography tools from TDK, Feb. 2015) in the MEMS and sensors industry, and Ultratech in the advanced packaging industry. Both players are closely followed by the following outsiders, EV Group, Rudolph Technologies and USHIO.

“But the similarities between both worlds, are only superficial,” commented Amandine Pizzagalli, Technology & Market Analyst, Advanced Packaging & Semiconductor Manufacturing at Yole. “Indeed market entry barrier is much lower in the “More than Moore” market. Equipment in the Advanced Packaging, MEMS and LEDs industries is less complex but customer adoption needs are higher, which leads to a much broader photolithography landscape,” she added.

The photolithography market structure for these three industries is very different compared to the “More Moore”, or mainstream semiconductor, industry. New entrants can penetrate these markets with a good knowledge of the technological building blocks. But the key to success is to adapt the equipment to the specific customer’s needs. That means that these markets are complex to develop and that they take a long time to penetrate.

To develop their knowledge and expand their range of products, some players entered through acquisition. Rudolph Technologies acquired Azores Corp. in 2012 to enter the advanced packaging photolithography equipment arena. Also in 2012, SUSS MicroTec acquired Tamarack Scientific Co. Inc. to enlarge its semiconductor back end photolithography equipment market.

Others like Orbotech, which acquired a leading MEMS and advanced packaging company, SPTS, is today only present in substrate and PCB direct imaging.

in this report, competition trends are carefully analyzed and presented as a competitive landscape and competitive analysis of the major equipment and materials suppliers involved in Advanced Packaging, MEMS and LED applications. Finally, a section is also dedicated to disruptive technologies such as LDI, laser ablation and nanoimprint lithography, which could reshape the lithography landscape in the future. Yole describes possible reshaping scenarios are described, including acquisitions, mergers, and joint ventures, along with their anticipated impact on the global photolithography market.

Ultratech, Inc., a supplier of lithography, laser­-processing and inspection systems used to manufacture semiconductor devices and high-­brightness LEDs (HB­-LEDs), as well as atomic layer deposition (ALD) systems, announced that its Cambridge NanoTech business unit, Ultratech-CNT, has shipped its 400th ALD system. The system was purchased by the University of Michigan.

Dr. Neil Dasgupta, Assistant Professor of Mechanical Engineering at University of Michigan, whose group received the ALD equipment, said, “Ultratech-CNT’s ALD system has provided a significant boost to our research productivity, enabling us to make rapid advances in the field of surface and interfacial modification of energy conversion devices, including batteries, solar cells, and catalysts. The versatility of the ALD system to address the varied needs of our research program, coupled with the depth of knowledge of their science and engineering team, has enabled us to move very quickly towards producing high-impact research. We are happy to be part of this significant milestone in receiving the 400th system, and we look forward to developing a strong relationship with Ultratech-CNT.”

Ultratech-CNT Vice-President of Research and Engineering, Ganesh Sundaram, Ph.D., said, “It has always been about the scientist and researcher, and about making them successful in achieving their research goals.  We are extremely gratified by Professor Dasgupta’s decision to purchase our ALD system.  We have known his work since his days as a graduate student at Stanford University, and he has consistently produced noteworthy results using ALD. Looking forward, we are excited by the prospects of the breakthroughs in science that he, along with all other researchers, will be making using our instruments.  For our part, we celebrate the shipment of our 400th system and will continue our tradition of providing deep expertise combined with exciting technology.”

Ultratech-CNT’s ALD Systems: 

Savannah G2 ALD System
The Savannah G2 platform incorporates a wide range of advanced field-upgradable options intended to aid serious researchers in expanding their portfolio of available ALD films, as well as allow them to characterize the films in real time.

Phoenix G2 Batch ALD System
Engineered for high throughput, the Phoenix provides maximum uptime in any fabrication environment from pilot production to industrial-grade manufacturing. Technologists and researchers rely on the Phoenix for repeatable, highly-accurate film deposition on flat and 3-D substrates alike for batch production ALD requirements.

Fiji High-Vacuum ALD System
A modular, high-vacuum ALD system, the Fiji series accommodates a wide range of deposition modes using a flexible architecture and multiple configurations of precursors and plasma gases. The result is a next-generation ALD system capable of performing thermal and plasma-enhanced deposition.

North America-based manufacturers of semiconductor equipment posted $1.56 billion in orders worldwide in May 2015 (three-month average basis) and a book-to-bill ratio of 0.99, according to the May EMDS Book-to-Bill Report published today by SEMI.   A book-to-bill of 0.99 means that $99 worth of orders were received for every $100 of product billed for the month.

SEMI reports that the three-month average of worldwide bookings in May 2015 was $1.56 billion. The bookings figure is 0.8 percent lower than the final April 2015 level of $1.57 billion, and is 11.0 percent higher than the May 2014 order level of $1.41 billion.

The three-month average of worldwide billings in May 2015 was $1.57 billion. The billings figure is 3.7 percent higher than the final April 2015 level of $1.51 billion, and is 11.6 percent higher than the May 2014 billings level of $1.41 billion.

“The May book-to-bill ratio slipped below parity as billings improved and bookings dipped slightly from April’s values,” said Denny McGuirk, president and CEO of SEMI.  “Compared to one year ago, both bookings and billings continue to trend at higher levels.”

The SEMI book-to-bill is a ratio of three-month moving averages of worldwide bookings and billings for North American-based semiconductor equipment manufacturers. Billings and bookings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)

Bookings
(3-mo. avg)

Book-to-Bill

December 2014 

$1,395.9

$1,381.5

0.99

January 2015 

$1,279.1

$1,325.6

1.04

February 2015 

$1,280.1

$1,313.7

1.03

March 2015 

$1,265.6

$1,392.7

1.10

April 2015 (final)

$1,515.3

$1,573.7

1.04

May 2015 (prelim)

$1,571.2

$1,561.4

0.99

Source: SEMI (www.semi.org)June 2015

Aledia, a developer and manufacturer of next-generation 3D LEDs based on its Gallium-Nitride-on-Silicon platform, announced today the closing of its Series B financing round and the execution of development and supply contracts with major LED buyers.

The round, totalling up to €28.4 million (approximately $31 million), includes new investments from Valeo, one of the world’s largest automobile-equipment manufacturers and the world’s second-largest supplier of car lighting systems; IKEA GreenTech AB, the venture capital arm of IKEA; and the Ecotechnologies fund of Bpifrance, the French national industrial bank. Aledia’s existing international investors – Sofinnova Partners, Braemar Energy Ventures, Demeter Partners and CEAi/ATi – also participated in the round.

“This financing round, abundantly oversubscribed, and particularly the presence of two very large potential corporate customers, testifies to the interest that our cost-disruptive nanowire LED technology is generating in the customer base, as well as in the financial community,” said Giorgio Anania, CEO, chairman and co-founder of Aledia.

Aledia is developing a new generation of LEDs that are manufactured on large-diameter silicon wafers (200mm or 8-inch), promise to be significantly less expensive than traditional “2D” LEDs, and that allow for integration of electronics into the LED. The company is also working on next-generation displays.

Anania said: “We are progressing with the development of the technology and this financing round will allow us to accelerate significantly the speed of development and the customer traction. In Valeo we have a major potential customer in the automotive LED market, generally viewed as the most profitable market segment. Simultaneously with the investment, we have signed a supply agreement with Valeo.”

Maurizio Martinelli, Valeo Visibility Business Group President, said: “We are convinced that Aledia’s 3D LED technology, together with Valeo’s expertise in automobile lighting systems, has the potential to put on the market a technological breakthrough in innovative lighting systems, perfectly in line with Valeo Lighting System’s mission to provide performance and style, and contribute to the safety of road users.”

Christian Ehrenborg, Managing Director of IKEA GreenTech AB, said: “This technology will be one important part in the IKEA Group strategy to supply high-quality, energy-saving lighting products to consumers worldwide. The low-price opportunity for residential use has the potential of faster implementation of the LED technology, leading to savings for customers. The connectivity functions of Aledia’s technology also open up new interesting possibilities to make life at home more convenient and smarter.”

Anne-Sophie Carrese, Investments Director at Bpifrance Investissement, said: “Bpifrance congratulates Aledia for its success in this operation. It proposes a breakthrough technology in a growing market and positions itself as a major actor in the smart-lighting industry. Aledia also benefits from its head start to create a French and European sector in LED, among which partnerships with prestigious industrialists such as IKEA and Valeo constitute the first stage.”

Trans-Lux today announced the opening of a new design and production facility in Shenzhen, China to complement its existing manufacturing operations in Des Moines, IA. Additionally, the company announced the formation of new technology partnerships with LED suppliers Prismaflex International (EURONEXT PARIS: ALPRI) in Haute-Rivoire, France, and Squadrat in Schwanstetten, Germany.

“Our new design and production resources in China, and the addition of two highly renowned technology partners, further support the continued growth of Trans-Lux on a global scale,” said J.M. Allain, President and Chief Executive Officer, Trans-Lux. “Our new manufacturing facility in China complements our manufacturing capabilities here in the USA and allows us to accelerate delivery times with better quality controls. Combined with our new technology partners and expanded product LED display solutions for the Out of Home (OOH) market, Trans-Lux delivers the best value proposition for LED displays in the industry.”

The new factory in China, which has already started production of TL Vision and Prismatronic branded LED display systems, further expands and enhances the company’s portfolio of LED solutions. The new China facility also provides TransLux with complete control over mission critical processes to ensure the quality and reliability of products while reducing overall costs. By combining the resources of these two facilities, Trans-Lux will achieve greater manufacturing efficiencies which are being passed to customers in the form of more aggressive pricing. In addition to an expanded role in the manufacture of LED displays, the company’s US manufacturing facility will continue to develop new solutions for the sports scoreboard marketed under the highly popular Fair-Play by Trans-Lux brand.

Trans-Lux and Prismaflex International have joined forces to service the Americas with Prismatronic branded LED displays and BBM (Billboard Manager) software solutions for the OOH market. Trans-Lux has also entered into an alliance with Squadrat to market their powerful SX LED display content management software in the Americas. Trans-Lux will commence marketing the new software offering as epic v2.0.

Today, SEMI announced that SEMICON Europa 2015, the region’s largest microelectronics manufacturing event, will offer new themes to support the semiconductor industry’’s development in Europe. The exposition and conferences will take place in Dresden on October 6-8. SEMICON Europa will feature over 100 hours of technical sessions and presentations addressing the critical issues and challenges facing the microelectronics industries. Registration for visitors and conference participants opens today.

For the first time, SEMICON Europa will offer specific sessions on microelectronics in the automotive and medical technology segments as well as events focusing on microelectronics for the smart factory of the future. “SEMICON Europa will be the forum bringing semiconductor technology in direct contact with the industries that are driving chip usage the most right now,” explains Stephan Raithel, managing director in Berlin at SEMI. “The largest growth rates over the next few years will be in the automotive industry, medical technology, and communication technology – exactly the application areas that we are focusing on at SEMICON Europa this year.”

Materials and equipment for the semiconductor industry will remain the core of SEMICON Europa 2015. However, programs will also include new areas including imaging, low power, and power electronics. In addition, Plastic Electronics 2015, the world’s largest conference with exhibitions in the field of flexible, large-scale and organic electronics, will complement SEMICON Europa. In all, the SEMICON Europa 2015 conference program includes over 40 trade conferences and high-quality discussion forums.

At the Fab Managers Forum, Reinhard Ploss, CEO of Infineon Technologies AG, and Hans Vloeberghs, European Business director of Fujifilm, will be the keynote speakers, focusing on how the European semiconductor industry can improve its competitiveness. The Semiconductor Technology Conference, focusing on productivity enhancements for future advanced technology nodes in semiconductor technology, features keynote speakers Peter Jenkins, VP of Marketing at ASML; Niall MacGearailt, Advanced Manufacturing Research program manager at Intel; and Paul Farrar, GM for the consortium G450C at SUNY Polytechnic Institute’s Colleges of Nanoscale Science and Engineering, which works on creating the conditions necessary for producing chips on 450mm wafers.

New at SEMICON Europa 2015: SEMI and its German partner HighTech Startbahn are expanding the Innovation Village. Innovation Village is the ideal forum for European startups and high-growth businesses in search of investors. Sixty start-up/young businesses will have the opportunity to present their ideas and their business model to potential investors and industry partners. The application deadline is June 15.

Over 400 exhibitors at SEMICON Europa represent the suppliers of Europe’s leading microelectronics companies. From wafers to the finished product and every element in between, SEMICON Europa displays the best of the microelectronics manufacturing. The exhibitor markets include semiconductors, MEMS, consumables, device fabrication, wafer processing, materials, assembly and packaging, process, test, and components.

To learn more (exhibition or registration), please visit: www.semiconeuropa.org/en.

Different forecasting algorithms are highlighted and a framework is provided on how best to estimate product demand using a combination of qualitative and quantitative approaches.

BY JITESH SHAH, Integrated Device Technology, San Jose, CA

Nothing in the world of forecasting is more complex than predicting demand for semiconductors, but this is one business where accurate forecasting could be a matter of long-term survival. Not only will the process of forecasting help reduce costs for the company by holding the right amount of inventory in the channels and knowing what parts to build when but implementing a robust and self-adaptive system will also keep customers happy by providing them with products they need when they need. Other benefits include improved vendor engagements and optimal resource (labor and capital) allocation.

Talking about approaches…

There are two general approaches to forecasting a time-based event; qualitative approach and quantitative or a more numbers-based approach. If historical time-series data on the variable of interest is sketchy or if the event being forecasted is related to a new product launch, a more subjective or expert-based predictive approach is necessary, but we all intui- tively know that. New product introductions usually involve active customer and vendor engagements, and that allows us to have better control on what to build, when, and in what quantity. Even with that, the Bass Diffusion Model, a technique geared towards helping to predict sales for a new product category could be employed, but that will not be discussed in this context.

Now if data on past information on the forecasted variable is handy and quantifiable and it’s fair to assume that the pattern of the past will likely continue in the future, then a more quant-based, algorithmic and somewhat automated approach is almost a necessity.

But how would one go about deciding whether to use an automated approach to forecasting or a more expert-based approach? A typical semiconductor company’s products could be segmented into four quadrants (FIGURE 1), and deciding whether to automate the process of forecasting will depend on which quadrant the product fits best.

Figure 1

Figure 1

Time series modeling

Past shipment data over time for a product, or a group of products you are trying to forecast demand for is usually readily available, and that is generally the only data you need to design a system to automate the forecasting process. The goal is to discover a pattern in the historical, time-series data and extrapolate that pattern into the future. An ideal system should be built in such a way that it evolves, or self-adapts, and selects the “right” algorithm from the pre-built toolset if shipment pattern changes. A typical time-series forecasting model would have just two variables; an independent time variable and a dependent variable representing an event we are trying to forecast.

That event Qt (order, shipment, etc.) we are trying to forecast is more or less a function of the product’s life-cycle or trend, seasonality or business cycle and randomness, shown in the “white board” style illustration of FIGURE 2.

Figure 2

Figure 2

Trend and seasonality or business cycle are typically associated with longer-range patterns and hence are best suited to be used to make long-term forecasts. A shorter-term or horizontal pattern of past shipment data is usually random and is used to make shorter-term forecasts.

Forecasting near-term events

Past data exhibiting randomness with horizontal patterns can be reasonably forecasted using either a Naïve method or a simple averaging method. The choice between the two will depend on which one gives lower Mean Absolute Error (MAE) and Mean Absolute % Error (MAPE).

Naïve Method The sample table in FIGURE 3 shows 10 weeks’ worth of sales data. Using the Naïve approach, the forecasted value for the 2nd week is just what was shipped in the 1st week. The forecasted value for the 3rd week is the actual sales value in the 2nd week and so on. The difference between the actual value and the forecasted value represents the forecast error and the absolute value of that is used to calculate the total error. MAE is just the mean of total error. A similar approach is used to calculate MAPE, but now each individual error is divided by the actual sales volume to calculate % error, which are then summed and divided by the number of forecasted values to calculate MAPE.

Figure 3

Figure 3

Averaging Instead of using the last observed event and using that to forecast the next event, a better approach would be to use the mean of all past observations and use that as the next period’s forecast. For example, the forecasted value for the 3rd week is the mean of the 1st and 2nd week’s actual sales value. The forecasted value for the 4th week is the mean of the previous three actual sales values, and so on (FIGURE 4).

Figure 4

Figure 4

MAE and MAPE for the Naïve method are 4.56 and 19% respectively, and the same for the averaging method are 3.01 and 13% respectively. Right there, one can conclude that averaging is better than the simple Naïve approach.

Horizontal Pattern with Level Shift But what happens when there is a sudden shift (anticipated or not) in the sales pattern like the one shown in FIGURE 5?

Figure 5

Figure 5

The simple averaging approach needs to be tweaked to account for that, and that is where a moving average approach is better suited. Instead of averaging across the entire time series, only 2 or 3 or 4 recent time events are used to calculate the forecast value. How many time periods to use will depend on which one gives the smallest MAE and MAPE values and that can and should be parameterized and coded. The tables in FIGURE 6 compare the two approaches, and clearly the moving average approach seems to be a better fit in predicting future events.

Figure 6

Figure 6

Exponential Smoothing But oftentimes, there is a better approach, especially when the past data exhibits severe and random level shifts.

This approach is well suited for such situations because over time, the exponentially weighted moving average of the entire time series tends to deemphasize data that is older but still includes them and, at the same time, weighs recent observations more heavily. That relationship between the actual and forecasted value is shown in FIGURE 7.

Figure 7

Figure 7

Again, the lowest MAE and MAPE will help decide the optimal value for the smoothing constant and, as always, this can easily be coded based on the data you already have, and can be automatically updated as new data trickles in.

But based on the smoothing equation above, one must wonder how the entire time series is factored in when only the most recent actual and forecasted values are used as part of the next period’s forecast. The math in FIGURE 8 explains how.

Figure 8

Figure 8

The forecast for the second period is assumed to be the first observed value. The third period is the true derived forecast and with subsequent substitu- tions, one quickly finds out that the forecast for nth period is a weighted average of all previous observed events. And the weight ascribed to later events compared to the earlier events is shown in the plot in FIGURE 9.

Figure 9

Figure 9

Making longer term forecasts

A semiconductor product’s lifecycle is usually measured in months but surprisingly, there are quite a few products with lifespans measured in years, especially when the end applications exhibit long and growing adoption cycles. These products not only exhibit shorter-term randomness in time-series but show a longer-term seasonal / cyclical nature with growing or declining trend over the years.

The first step in estimating the forecast over the longer term is to smooth out some of that short- term randomness using the approaches discussed before. The unsmoothed and smoothed curves might resemble the plot in FIGURE 10.

Figure 10

Figure 10

Clearly, the data exhibits a long-term trend along with a seasonal or cyclical pattern that repeats every year, and Ordinary Least Square or OLS regression is the ideal approach to forming a function that will help estimate that trend and the parameters involved. But before crunching the numbers, the dataset has to be prepped to include a set of dichotomous variables representing the different intervals in that seasonal behavior. Since in this situation, that seasonality is by quarters representing Q1, Q2, Q3 and Q4, only three of them are included in the model. The fourth one, which is Q=2 in this case, forms the basis upon which to measure the significance of the other three quarters (FIGURE 11).

Figure 11

Figure 11

The functional form of the forecasted value by quarter looks something like what’s shown in FIGURE 12.

Figure 12

Figure 12

The intercept b0 moves up or down based on whether the quarter in question is Q2 or not. If b2, b3 and b4 are positive, Q2 will exhibit the lowest expected sales volume. The other three quarters will show increasing expected sales in line with the increase in the respective estimated parameter values. And this equation can be readily used to reasonably forecast an event a few quarters or a few years down the road.

So there you have it. This shows how easy it is to automate some features of the forecasting process, and the importance of building an intelligent, self- aware and adaptive forecasting system. The results will not only reduce cost but help refocus your supply-chain planning efforts on bigger and better challenges.

JITESH SHAH is a principal engineer with Integrated Device Technology, San Jose, CA

Suppliers of MEMS-based devices rode a safety sensing wave in 2014 to reach record turnover in automotive applications, according to analysis from IHS, the global source of critical information and insight.

Mandated safety systems such as Electronic Stability Control (ESC) and Tire Pressure Monitoring Systems (TPMS) – which attained full implementation in new vehicles in major automotive markets last year – are currently driving revenues for MEMS sensors. Those players with strong positions in gyroscopes, accelerometers and pressure sensors needed in these systems grew as well, while companies in established areas like high-g accelerometers for frontal airbags and pressure sensors for side airbags also saw success.

Major suppliers of pressure sensors to engines similarly blossomed – for staple functions like manifold absolute air intake and altitude sensing – but also for fast-growing applications like vacuum brake boosting, gasoline direct injection and fuel system vapor pressure sensing.

Bosch was the overall number one MEMS supplier with US$790 million of devices sold last year, close to three times that of its nearest competitor, Sensata (US$268 million). Bosch has a portfolio of MEMS devices covering pressure, flow, accelerometers and gyroscopes, and also has a leading position in more than 10 key applications. The company grew strongly in ESC and roll-over detection applications, and key engine measurements like manifold absolute pressure (MAP) and mass air flow on the air intake, vacuum brake booster pressure sensing and common rail diesel pressure measurement.

Compared to 2013, Sensata jumped to second place in 2014 ahead of Denso and Freescale, largely on strength in both safety and powertrain pressure sensors, but also through its acquisition of Schrader Electronics, which provides Sensata with a leading position among tire pressure-monitoring sensor suppliers.

While Sensata is dominant in TPMS and ESC pressure sensors, it also leads in harsh applications like exhaust gas pressure measurement. Freescale, on the other hand, is second to Bosch in airbag sensors and has made great strides in its supply of pressure sensors for TPMS applications.

Despite good results in 2014, Denso dropped two places compared to its overall second place in 2013, largely as a result of the weakened Yen. Denso excelled in MAP and barometric pressure measurement in 2014, but also ESC pressure and accelerometers. Denso has leadership in MEMS-based air conditioning sensing and pressure sensors for continuous variable transmission systems, and is also a supplier of exhaust pressure sensors to a major European OEM.

Secure in its fifth place, Analog Devices was again well positioned with its high-g accelerometers and gyroscopes in safety sensing, e.g. for airbag and ESC vehicle dynamics systems, respectively.

The next three players in the top 10, in order, Infineon, Murata and Panasonic, likewise have key sensors to offer for safety. Infineon is among the leading suppliers of pressure sensors to TPMS systems, while Murata and Panasonic serve ESC with gyroscope and accelerometers to major Tier Ones.

The top 10 represents 78 percent of the automotive MEMS market volume, which reached $2.6 billion in 2014. By 2021, this market will grow to $3.4 billion, a CAGR of 3.4 percent, given expected growth for four main sensors — pressure, flow, gyroscopes and accelerometers.  In addition, night-vision microbolometers from FLIR and ULIS and humidity sensors from companies like Sensirion and E+E Elektronik for window defogging will also add to the diversity of the mix in 2021.

Auto_MEMS_H1_2015_Graphic

DLP chips from Texas Instruments for advanced infotainment displays will similarly bolster the market further in future. More details can be found in the IHS Technology H1 2015 report on Automotive MEMS.

Read more: 

What’s next for MEMS?

Growing in maturity, the MEMS industry is getting its second wind