Tag Archives: letter-leds-business

Despite slower growth for the automotive industry and exchange rate fluctuations, the automotive semiconductor market grew at a modest 0.2 percent year over year, reaching $29 billion in 2015, according to IHS (NYSE: IHS), a global source of critical information and insight.

A flurry of mergers and acquisitions last year caused the competitive landscape to shift, including the merger of NXP and Freescale, which created the largest automotive semiconductor supplier in 2015 with a market share of 14.3 percent, IHS said. The acquisition of International Rectifier (IR) helped Infineon overtake Renesas to secure the second-ranked position, with a market share of 9.8 percent. Renesas slipped to third-ranked position in 2015, with a market share of 9.1 percent, followed by STMicroelectronics and Texas Instruments.

“The acquisition of Freescale by NXP created a powerhouse for the automotive market. NXP increased its strength in automotive infotainment systems, thanks to the robust double-digit growth of its i.MX processors,” said Ahad Buksh, automotive semiconductor analyst for IHS Technology. “NXP’s analog integrated circuits also grew by double digits, thanks to the increased penetration rate of keyless-entry systems and in-vehicle networking technologies.”

NXP will now target the machine vision and sensor fusion markets with the S32V family of processors for autonomous functions, according to the IHS Automotive Semiconductor Intelligence Service Even on the radar front, NXP now has a broad portfolio of long- and mid-range silicon-germanium (SiGe) radar chips, as well as short-range complementary metal-oxide semiconductor (CMOS) radar chips under development. “The fusion of magnetic sensors from NXP, with pressure and inertial sensors from Freescale, has created a significant sensor supplier,” Buksh said.

The inclusion of IR, and a strong presence in advanced driver assistance systems (ADAS), hybrid electric vehicles and other growing applications helped Infineon grow 5.5 percent in 2015. Infineon’s 77 gigahertz (GHz) radar system integrated circuit (RASIC) chip family strengthened its position in ADAS. Its 32-bit microcontroller (MCU) solutions, based on TriCore architectures, reinforced the company’s position in the powertrain and chassis and safety domains.

The dollar-to-yen exchange rate worked against the revenue ranking for Renesas for the third consecutive year. A major share of Renesas business is with Japanese customers, which is primarily conducted in yen. Even though Renesas’ automotive semiconductor revenue fell 12 percent, when measured in dollars, the revenue actually grew by about 1 percent in yen. Renesas’ strength continues to be its MCU solutions, where the company is still the leading supplier globally.

STMicroelectronics’ automotive revenue declined 2 percent year over year; however, a larger part of the decline can be attributed to the lower exchange rate of the Euro against the U.S. dollar in 2015, which dropped 20 percent last year. STMicroelectronics’ broad- based portfolio and its presence in every growing automotive domain of the market helped the company maintain its revenue as well as it did. Apart from securing multiple design wins with American and European automotive manufacturers, the company is also strengthening its relationships with Chinese auto manufacturers. Radio and navigation solutions from STMicroelectronics were installed in numerous new vehicle models in 2015.

Texas Instruments has thrived in the automotive semiconductor market for the fourth consecutive year. Year-over-year revenue increased by 16.6 percent in 2015. The company’s success story is not based on any one particular vehicle domain. In fact, while all domains have enjoyed double-digit increases, infotainment, ADAS and hybrid-electric vehicles were the primary drivers of growth.

IHS_Auto_Semis_Ranking_2015

Other suppliers making inroads in automotive

After the acquisition of CSR, Qualcomm rose from its 42nd ranking in year 2014, to become the 20th largest supplier of automotive semiconductors in 2015. Qualcomm has a strong presence in cellular baseband solutions, with its Snapdragon and Gobi processors; while CSR’s strength lies in wireless application ICs — especially for Bluetooth and Wi-Fi. Qualcomm is now the sixth largest supplier of semiconductors in the infotainment domain.

Moving from 83rd position in 2011 to 37th in 2015, nVidia has used its experience, and its valuable partnership with Audi, to gain momentum in the automotive market. The non-safety critical status of the infotainment domain was a logical stepping stone to carve out a position in the automotive market, but now the company is also moving toward ADAS and other safety applications. The company has had particular success with its Tegra processors.

Due to the consolidation of Freescale, Osram entered the top-10 ranking of automotive suppliers for the first time in 2015. Osram is the global leader in automotive lighting and has enjoyed double-digit growth over the past three years, thanks to the increasing penetration of light-emitting diodes (LEDs) in new vehicles.

WPG Americas Inc. (WPGa) a subsidiary of WPG Holdings, announced today it has signed a new agreement with Seoul Semiconductor the world’s fifth largest LED supplier to distribute their full complete line of products. The company’s product portfolio includes a wide array of package and device choices such as AC driven LEDs, high-brightness LEDs, mid-power LEDs, side-view LEDs, through-hole type LED lamps, custom displays, UV LEDs and sensors.

“We are excited to add Seoul Semiconductor to our LED Lighting portfolio.  Seoul strengthens our total LED Lighting solutions for our customers with the addition of their highly competitive Mid-power offering and ACRICH products for direct AC applications,” said Rich Davis, President of WPG Americas Inc.

“As the LED market continues to grow, we are glad to expand our distribution channel through WPGA to reach into the vast client base in the Americas. WPGA’s strength in demand creation, solution selling and operational excellence is a huge asset that Seoulcan lean on for profitable growth,” said Kyu Uhm, Executive Vice President of World Wide Marketing at Seoul Semiconductor, Inc.

By Paula Doe, SEMI

The changing market for ICs means the end of business as usual for the greater semiconductor supply chain. Smarter use of data analytics looks like a key strategy to get new products more quickly into high yield production at improved margins.

Emerging IoT market drives change in manufacturing

The emerging IoT market for pervasive intelligence everywhere may be a volume driver for the industry, but it will also put tremendous pressure on prices that drive change in manufacturing. Pressure to keep ASPs of multichip connected devices below $1 to $5 for many IoT low-to-mid end applications, will drive more integration of the value chain, and more varied elements on the die. “The value chain must evolve to be more effective and efficient to meet the price and cost pressures for such IoT products and applications,” suggests Rajeev Rajan, VP of IoT, GLOBALFOUNDRIES, who will speak on the issue in a day-long forum on the future of smart manufacturing in the semiconductor supply chain at SEMICON West 2016 on July 14.

“It also means tighter and more complete integration of features on the die that enable differentiating capabilities at the semiconductor level, and also fewer, smaller devices that reduce the overall Bill of Materials (BOM), and result in more die per wafer.” He notes that at 22nm GLOBALFOUNDRIES is looking to enable an integrated connectivity solution instead of a separate die or external chip. Additional requirements for IoT are considerations for integrating security at the lower semiconductor/hardware layers, along with the typical higher layer middleware and software layers.

This drive for integration will also mean demand for new advanced packaging solutions that deliver smaller, thinner, and simpler form factors. The cost pressure also means than the next nodes will have to offer tangible power/performance/area/cost (PPAC) value, without being too disruptive a transition from the current reference flow. “Getting to volume yields faster will involve getting yield numbers earlier in the process, with increasing proof-points and planning iterations up front with customers, at times tied to specific use-cases and IoT market sub-segments,” he notes.

Rapid development of affordable data tools from other industries may help

Luckily, the wide deployment of affordable sensors and data analysis tools in other industries in other industries is developing solutions that may help the IC sector as well.  “A key trend is the “democratization” – enabling users to do very meaningful learning on data, using statistical techniques, without requiring a Ph.D. in statistics or mathematics,” notes Bill Jacobs, director, Advanced Analytics Product Management, Microsoft Corporation, another speaker in the program. “Rapid growth of statistics-oriented languages like R across industries is making it easier for manufacturers and equipment suppliers to capture, visualize and learn from data, and then build those learnings into dashboards for rapid deployment, or build them directly into automated applications and in some cases, machines themselves.”

Intel has reported using commercially available systems such as Cloudera, Aquafold, and Revolution Analytics (now part of Microsoft) to combine, store, analyze and display results from a wide variety of structured and unstructured manufacturing data. The system has been put to work to determine ball grid placement accuracy from machine learning from automatic comparison of thousands of images to select the any that deviate from the known-good pattern,  far more efficiently than human inspectors, and also to analyze tester parametrics to predict 90% of potential failures of the test interface unit before they happen.

“The IC industry may be ahead in the masses of data it gathers, but other industries are driving the methodology for easy management of the data,” he contends. “There’s a lot that can be leveraged from other industries to improve product quality, supply chain operations, and line up-time in the semiconductor industry.”

Demands for faster development of more complex devices require new approaches

As the cost of developing faster, smaller, lower power components gets ever higher, the dual sourcing strategies of automotive and other big IC users puts even more pressure on device makers to get the product right the first time. “There’s no longer time to learn with iterations to gradually improve the yield over time, now we need to figure out how to do this faster, as well as how to counter higher R&D costs on lower margins,” notes Sia Langrudi, Siemens VP Worldwide Strategy and Business Development,   who will also speak in the program.

The first steps are to recognize the poor visibility and traceability from design to manufacturing, and to put organizational discipline into place to remove barriers between silos. Then a company needs good baseline data, to be able to see improvement when it happens. “It’s rather like being an alcoholic, the first step is to recognize you have a problem,” says Langrudi. “People tell me they already have a quality management system, but they don’t. They have lots of different information systems, and unless they are capturing the information all in one place, the opportunity to use it is not there.”

Other speakers discussing these issues in the Smart Manufacturing Forum at SEMICON West July 14 include Amkor SVP Package Products Robert Lanzone, Applied Materials VP New Markets & Services Chris Moran, Intel VP IoT/GM Industrial Anthony Neal Graves, NextNine US Sales Manager Don Harroll, Optimal+ VP WW Marketing David Park, Qualcomm SVP Engineering Michael Campbell, Rudolph Technologies VP/GM Software Thomas Sonderman, and Samsung Sr Director, Engineering Development, Austin, Ben Eynon.

Learn more about the speakers at the SEMICON West 2016 session “Smart Manufacturing: The Key Opportunities and Challenges of the Next Generation of Manufacturing for the Electronics Value Chain.” To see all sessions in the Extended Supply Chain Forum, click here.

The SEMI High Tech U learning program commenced April 20-22 in Hsinchu, Taiwan. Co-hosted by SEMI, KLA-Tencor Taiwan, and National Tsing Hua University, the three-day event offered 40 high school students an in-depth interactive learning experience in Science, Technology, Engineering, and Mathematics (STEM). Since SEMI High Tech U began in 2001, it has hosted 190 career exploration programs in eight different countries with over 6,000 high school students attending. The High Tech U programs have received a tremendous response globally.

This year, Taiwan was a host country for the first time. Terry Tsao, president of SEMI Taiwan, said, “The goal of High Tech U is to help young people gain knowledge and develop interests in STEM before choosing their future academic pursuit. Not only did Taiwanese high school students have the opportunity to attend this international STEM immersion program, but they also interacted with industry volunteers who serve in the high-tech industry.” Through group activities and firsthand experience, students thoroughly explored technology, adding to their ability to understand their future career directions.

“In the U.S., KLA-Tencor has collaborated with SEMI to hold seven SEMI HTU (High Tech U) programs. The first-ever Taiwan course design, instructor training, and the local operations planning, were tailored to inspire Taiwanese students to have better understanding of their direction and passion towards the semiconductor industry and their future goals,” said Tom Wang, CEO of KLA-Tencor Corporation Taiwan. Many employees at KLA-Tencor Taiwan volunteered to be course instructors and advisors to share their professional experience at SEMI High Tech U. In addition to providing guided tours at KLA-Tencor’s learning and training center cleanroom, the volunteers also held mock interviews with the students.

Nyan-Hwa Tai, dean of Academic Affairs at National Tsing Hua University, said “Courses at SEMI High Tech U are designed to gain practical experience through a non-conventional approach, which coincides with the values of innovative exploration at National Tsing Hua University.”

In three days, the students did practical exercises, learning individually and in groups. Tsao pointed out that “During the three-day program, students demonstrated a high level of enthusiasm, confidence, creativity, and team spirit, which is commendable. This event is just the beginning; SEMI will strive to expand the High Tech U program in Taiwan and allow more students to have the opportunity to participate.”

Learn more about the SEMI Foundation and High Tech U here: www.semi.org/en/semi-foundation. For more information about SEMI, visit www.semi.org and follow SEMI on LinkedIn and Twitter.

As the opening day of SEMICON West (July 12-14) approaches, the electronics manufacturing industry is experiencing disruptive changes, making “business as usual” a thing of the past. To help technical and business professionals navigate this fast-changing landscape, SEMICON West programming has been upgraded extensively ─ increased from 170 hours to 250 hours this year. New brand and deep programming provide insights into the latest megatrends and helps attendees identify new opportunities and refine sound strategic plans.

At this year’s expo, several new forums designed to enhance collaboration within shared communities of interest will debut. Lead by technical experts, top analysts, and leaders from some of the biggest names in electronics, the new forums are generating significant advance interest and buzz, key among them:

  • Advanced Manufacturing Forum: Twelve cutting-edge sessions — from What’s Next in MEMS and Sensors to Power Electronics and 3D Printing — will be presented by Samsung, Applied Materials, Texas Instruments, and more. Attendees will learn about new technologies on the horizon and how they impact semiconductor manufacturing.
  • Flexible Hybrid Electronics Forum: Flexible Hybrid Electronics is driving new processes and packages, providing innovative approaches for health-monitoring, wearables, soft robotics, and other next-generation products. Attendees will get details on thinned device processing, system design, reliability testing and modeling from experts at Qualcomm, PARC, and GE Global Research.
  • World of IoT Forum: Forecasters predict that IoT will soon become a $6 trillion market. The World of IoT Forum brings together leading suppliers, integrators, and solution providers at the forefront of innovations in mobility, network-connected devices, and automotive and healthcare applications, among others. Attendees will learn about the trends impacting the market, including big data and analytics, smart things, and MEMS and sensor manufacturing.

With so many disruptive trends driving the market, it is critical for industry professionals to have a clear view of the road ahead. With its vastly expanded technical and business programming, this year’s expo will deliver the strategic insights needed to survive and thrive. To learn more and to register, visit SEMICON West Forums.

With discussion increasingly focused on autonomous vehicles and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, demand is rising for electronic systems to support new, intelligent cars. Meanwhile, older, existing technology on high-end vehicles continues to migrate down to mid-range and low-end cars and technology-based aftermarket products are gaining momentum.

Given all the new electronic systems that have been added to automobiles in recent years, one might reason that this segment accounts for a large share of the total global electronic system sales. That’s simply not the case. On a worldwide basis, automotive electronics represented only 8.9% of the $1.42 trillion total 2015 worldwide electronic systems market, a slight increase from 8.6% in 2014. Automotive’s share of global electronic system production has increased only incrementally and is forecast to show only slight gains through 2019, when automotive electronics are forecast to account for 9.4% of global electronic systems sales. Despite the many new electronics systems that are being added in new vehicles, IC Insights believes pricing pressures on automotive ICs and electronic systems will prevent the automotive end-use application from accounting for much more than its current share of total electronic systems sales through 2019.

Figure 1 shows the quarterly market trends for the three largest automotive IC markets—Analog, MCU, and special-purpose logic. As shown, falling average selling prices in these three segments have largely offset unit growth over the past few years. In 2015, falling ASPs led to a 3% decline in the automotive IC market to $20.5 billion. Based on IC Insights’ forecast, the automotive IC market will return to growth in 2016, increasing 4.9% to $21.5 billion, as currency exchange rates stabilize and additional electronic systems (such as backup cameras) become mandatory equipment on new cars sold in the U.S. The automotive IC market is now forecast to reach $28.0 billion in 2019, which represents average annual growth of 5.8% from $21.1 billion in 2014. Based on IC Insights’ forecast, the 2019 automotive IC market will be 2.6x the size it was in 2009 when the market was only $10.6 billion—its low-point during the great recession.

Figure 1

Figure 1

Analog ICs and MCUs together accounted for 74% of the estimated $20.5 billion automotive IC market in 2015. Demand for automotive MCUs continues to expand as more vehicles are designed with embedded computer systems to address safety and efficiency issues demanded from legislators and consumers. As cars get smarter and more connected, demand is growing for memory and storage to support a wide array of applications, particularly those that require quick boot up times as soon as the driver turns the ignition key. DRAM and flash memory, which receive considerable attention in computing, consumer, and communication applications, are currently much less visible in the automotive IC market but memory ICs are expected to account for 12.0% of the 2019 automotive IC market, an increase from 7.8% in 2015.

The Semiconductor Industry Association (SIA) this week announced worldwide sales of semiconductors reached $26.1 billion for the month of March 2016, a slight increase of 0.3 percent compared to the previous month’s total of $26.0 billion. Sales from the first quarter of 2016 were $78.3 billion, down 5.5 percent compared to the previous quarter and 5.8 lower than the first quarter of 2015. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Global semiconductor sales increased in March for the first time in five months, but soft demand, market cyclicality, and macroeconomic conditions continue to impede more robust growth,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Q1 sales lagged behind last quarter across nearly all regional markets, with the Americas showing the sharpest decline.”

Regionally, month-to-month sales increased in Japan (4.8 percent), Asia Pacific/All Other (2.3 percent), and Europe (0.1 percent), but fell in China (-1.1 percent) and the Americas (-2.8 percent). Compared to the same month last year, sales in March increased in Japan (1.8 percent) and China (1.3 percent), but decreased in Asia Pacific/All Other (-6.4 percent), Europe (-9.8 percent), and the Americas (-15.8 percent).

“Eighty-three percent of U.S. semiconductor industry sales are into markets outside the U.S., so access to overseas markets is imperative to the long-term strength of our industry,” Neuffer said. “The Trans-Pacific Partnership (TPP) is a landmark trade agreement that would tear down myriad barriers to trade with countries in the Asia-Pacific. The TPP is good for the semiconductor industry, the tech sector, the American economy, and the global economy. Congress should approve it.”

March 2016

Billions

Month-to-Month Sales                               

Market

Last Month

Current Month

% Change

Americas

5.03

4.89

-2.8%

Europe

2.66

2.67

0.1%

Japan

2.47

2.59

4.8%

China

8.02

7.93

-1.1%

Asia Pacific/All Other

7.83

8.01

2.3%

Total

26.02

26.09

0.3%

Year-to-Year Sales                          

Market

Last Year

Current Month

% Change

Americas

5.81

4.89

-15.8%

Europe

2.96

2.67

-9.8%

Japan

2.55

2.59

1.8%

China

7.83

7.93

1.3%

Asia Pacific/All Other

8.57

8.01

-6.4%

Total

27.70

26.09

-5.8%

Three-Month-Moving Average Sales

Market

Oct/Nov/Dec

Jan/Feb/Mar

% Change

Americas

5.75

4.89

-15.0%

Europe

2.77

2.67

-3.6%

Japan

2.57

2.59

0.8%

China

8.45

7.93

-6.1%

Asia Pacific/All Other

8.08

8.01

-0.8%

Total

27.62

26.09

-5.5%

Year-to-year percent change in world semiconductor revenues over the past 20 years.

Year-to-year percent change in world semiconductor revenues over the past 20 years.

By Dieter Ernst, East-West Center, Honolulu, HI
How will China’s new role transform the global semiconductor industry?

China has become the largest and fastest growing semiconductor market in the world, absorbing 40% of the worldwide semiconductor shipments. For US semiconductor firms, nothing compares to the China market.

China however faces a fundamental dilemma. As the world’s leading exporter of electronic products, it remains heavily dependent on imports of semiconductors and technology, primarily from the US, but also from Japan, Korea, Taiwan and Europe. At least 80 percent of the semiconductors used in China’s electronics manufacturing are imported and virtually all leading-edge devices like multi-component semiconductors (MCOs). For instance, 43% of the inputs for handsets and networking equipment of China’s second largest telecom company, ZTE, are supplied by US companies (Avnet, Qualcomm, Broadcom, Jabil, Intel, Microsoft, Micron, Xilinx, Nvidia and Finisar) [1].

As a result, China’s trade deficit in semiconductors has more than doubled since 2005 and now exceeds the huge amount it spends on crude oil imports. To correct this unsustainable imbalance, China’s new strategy to upgrade its semiconductor industry seeks to move from catching up to forging ahead in semiconductors through progressive import substitution. The “National Semiconductor Industry Development Guidelines (Guidelines)” and the “Made in China 2025” (MIC 2025, 中国制造2025) plan were published by China’s State Council in June 2014 and May 2015, respectively [2]. Both policies seek to strengthen simultaneously advanced manufacturing and innovation capabilities in China’s integrated circuit (IC) design industry and its domestic IC fabrication, primarily through foundry services.

As part of the Guidelines, a CNY120 billion (US$19 billion) national industry investment fund has been set up to help local foundries finance the build-up of advanced manufacturing processes, and also to assist local IC firms to form mergers and/or make acquisitions internationally. With the MIC 2025 plan, China is aiming to improve the self-sufficiency rate for ICs in the nation to 40% in 2020, and boost the rate further to 70% in 2025. MIC 2025 specifically defines the following priorities: i) Catch up with world best practice in IC design cores and design tools; ii) move to the frontier of multicomponent semiconductors (MCOs); iii) win design-in contracts from China-based electronic equipment manufacturers (both large global MNCs and Chinese firms like Lenovo or Huawei); and iv) strengthen China’s capacity to design and produce high- density chip packages and 3D micro-package technology.

Both policies have already led to a major push in the development of the local IC industry, with investments in semiconductor memories, designs, foundries, OSATS, and equipment and materials. In addition, strategic partnerships, joint ventures and mergers and acquisitions have proliferated across China’s semiconductor industry, both among domestic firms (to increase economies of scale and scope), and with leading global semiconductor firms (to access cutting-edge technology and best-practice management techniques).

Based on a review of policy documents and interviews with China-based industry experts, this paper explores how realistic these objectives are, and how this might affect international firms and the global semiconductor industry.

How realistic are the objectives of China’s new policies?

Over the last 60 or so years, China’s semiconductor industry has come a long way from being a completely government-owned part of the defense technology production system, with state-owned enterprises (SOEs) as the only players, toward a gradually more market-led development model. The role of SOEs has dramatically declined, and a deep integration into international trade and global networks of production and innovation has transformed decisions on pricing and investment allocation, with private firms as the main drivers. Major achievements include the rapid growth of China’s IC design industry from practically zero at the turn of the century to $17.05 billion in 2014, with an almost 37% compound annual growth rate since 2003. Other achievements include the successful diversification into optical devices (especially LED-related), sensors and discrete devices; first steps to move from silicon to wide band-gap semiconductor materials; and the surge of China’s semiconductor assembly, packaging, and testing (APT) industry, which has become the global market leader.

However, China’s achievements are overshadowed by persistent weaknesses, despite massive government support. Buying decisions for advanced ICs consumed in China are mostly made in Taiwan, Korea, US (for mobile devices), Japan, and Singapore. Of particular concern is the large and growing gap between semiconductor consumption and production, which has ballooned to a record $ 120 billion in 2013, and is forecast to reach $ 151.5 billion in 2017.[3] Equally important, China continues to play second fiddle in wafer fabrication – China’s 2015 share of total worldwide semiconductor wafer fab capacity is 11.7%,but advanced technology nodes (28nm and below) account for only 5% of worldwide wafer fab capacity. Foreign IDMs dominate (Intel, Samsung, Hynix), and Chinese foundries have a long way to go to catch up in process technology and wafer size. Most importantly, China lags behind in innovation, especially for advanced semiconductors, despite all the government’s previous plans and efforts.

Will China’s policy on semiconductors this time around work better than before? Our research finds that China’s new semiconductor policy does not represent a radical break with its deeply embedded statist tradition [4]. However, there are some important changes toward a more bottom-up, market- led approach to industrial policy. If sustained, these changes may considerably improve China’s chances to succeed in its new push in semiconductors.

China’s new semiconductor policy (as defined in the Guide- lines) relies on private equity investment rather than subsidy as the tool of industrial policy. The government participates in equity investment but claims it will do so without intervening in management decisions. This is expected to reduce the cost of investment for a selected group of firms comprising a “national team” in the semiconductor industry. The underlying financial networks are complex and difficult to disentangle. Take Hua Capital Management Co., Ltd (HCM), a Chinese investment management company, which was chosen to manage the chip design and testing fund under the Beijing government’s 30-billion-yuan (HK$37.8 billion) Semiconductor Industry Development Fund.

According to industry observers, the real driving force behind HCM is Chen Datong, who is HCM’s chairman as well as co-founder and managing partner of WestSummit Capital, a leading China-based global equity firm focused on helping high-growth technology companies access the China market. Dr. Chen has more than 20 years of investment and operations experience in the technology and semiconductor industries, and he owns 34 US and European patents. [5] Another major player is Liu Yue, the deputy chairwoman of HCM, who also has a wealth of experience in China’s IC industry. Of particular interest is her role as an early investor in China’s leading foundry SMIC through Walden Capital, and her continuous involvement with SMIC. HCM’s president, Xisheng (Steven) Zhang, started out in 1994 as a post-doctorate researcher at University of California, Berkeley, worked his way into senior management positions at Agilent Technologies and Silicon Valley start-up IC design companies, and joined Beijing- based private equity investment company WestSummit Capital in 2013. Zhang has over 20 years industry experience in semiconductors, and in managing start-up companies in Silicon Valley and in Beijing.

Based on this information, one might conclude that HCM qualifies as a professional fund manager with considerable knowledge of key aspects of the semiconductor industry value chain, especially related to IC design. In the view of the United States Information Technology Office (USITO), the use of professional investment fund managers, as opposed to government subsidies or investment, “suggest a new approach to industrial policy that focuses on building a strong and sustainable investment environment in China.”[6] It remains unclear, however, how private equity fund managers, who are supposed to maximize the return to capital, can nevertheless serve as proxies for the government and support its policy to strengthen indigenous innovation. A final assessment thus has to wait until more information is available on how funds will ultimately be deployed.

MIC 2025, on the other hand, seeks to provide a new framework for coordinating industrial support policies, in order to overcome a persistent gap in technological, management and innovation capabilities. Improved policy coordination is considered to be essential for overcoming deeply entrenched disconnects between industry, academia and government. Over two and a half years, 50 experts from the China Academy of Engineering and the Chinese Academy of Sciences worked together with around 100 experts from industry and research institutes to design the MIC 2025 plan. An equally important objective is to reduce the fragmentation of decision-making across government agencies and between the Central government and local governments. As an important step in this direction, 14 state-run associations from different sectors worked together and created a voluntary quality management standard for automated and intelligent manufacturing.

In short, China’s government seems more open to experimentation with new approaches to policy formulation, investment finance and flexible, bottom-up policy implementation. Among Chinese technology planners, there seems to be a growing consensus that the closer China moves to the technology frontier, the less scope there is for imitation and low-level incremental innovation. Chinese firms now are encouraged to develop and protect their own intellectual property rights and accelerate the commercialization of new ideas, discoveries and inventions.

China’s leadership is very conscious that the United States is far ahead in advanced semiconductors and that China has a long way to go to close the gap. But at the same time, Beijing’s new semiconductor policies also convey a new sense of optimism. Global transformations in semiconductor markets and technology, including a new interest in strategic partnerships and mergers, are no longer perceived exclusively as threats. In fact, China’s technology planners now seek to identify pathways to innovation- led development that could benefit from new technologies, such as the technology convergence in mobile devices, the Internet of Things in industrial manufacturing, and “green development”, focusing on a reduction of energy consumption, water usage and pollution. Forging ahead in semiconductors is considered essential for realizing this potential.

Above all, the role of the government appears to be gradually shifting away from the selection of priority sectors and technologies toward the facilitation of an interactive learning process led by the private sector. In this new model of industrial policy, which is slowly taking hold in China’s semiconductor industry, the government role is to provide incentives and remove regulatory constraints to empower the private companies that are most capable of realizing China’s domestic innovation potential.

It is however an open question whether China’s transition to innovation-led growth in semiconductors could be derailed, for instance, by the threat of overcapacity or by the Leader- ship’s (cyber-) security objectives. As is typical for China, the implementation of the semiconductor policy is left to the local governments who have become masters in producing overcapacity due to misaligned incentives that are focused exclusively on the region’s GDP growth.

China’s policy on cyber security seeks to protect China-based information systems against perceived threats to national and public security. [7] In response to Edward Snowden’s disclosure of US National Security Agency (NSA) global surveillance practices in China and elsewhere, China’s concern with cyber- security receives prominent attention in the Guidelines. It is unclear at this stage whether the drumbeat on security is used primarily as a tactic to mobilize support for aggressive investment funding? [8] Or is this focus on security an overriding concern for China’s leadership that will cast aside many of the aforementioned economic considerations?

In the end, there is reason for cautious optimism that pragmatism will continue to shape China’s policy for semiconductors [9]. Learning from global industry leaders will play a critical role, based on a quite realistic set of expectations: “In the next ten years, there will be a large amount of M&A cases in China, but many of them will fail…But it is better than nothing. China’s enterprises will gain experience.”[10] More than before, such pragmatism will be shaped by economic constraints, such as the country’s rising debt and dwindling foreign exchange reserves due to the collapse in Chinese exports [11].

Implications for international firms and the global semiconductor industry

As U.S. and other foreign semiconductor companies heavily depend on the China market, they seem to have little choice but to adjust their strategies to China’s new semiconductor policy. Intel, for instance, now depends on China for one-fifth of its revenues, while Qualcomm relies on the China market for nearly half of its income. In fact, U.S. and other foreign firms are quite explicit that they would be willing to accede to Chinese demands to transfer technology and form joint ventures with its firms, if only they could expand or at least sustain their share of the China market.

Examples include Intel’s substantial investment in Spreadtrum, one of China’s leading IC design firms, and Qualcomm’s investment in China’s leading IC fabrication company, SMIC. As foreign firms seek to cooperate more closely with Chinese firms in exchange for continued market access, this raises the question to what degree this might amplify China’s policies. Might foreign firms in some cases actually provide more effective support than the Beijing government in expanding China’s semiconductor industry?

To conclude, both Chinese and U.S. semiconductor companies have much to gain by learning from each other as they each face their own upgrading imperatives. While they compete in global markets, they would both benefit from cooperation in advanced semiconductor manufacturing and technology to solve the challenges of economic growth, better and lower- cost health systems, and a greener environment. Given the importance of both countries in the global semiconductor industry, it is striking to see that such cooperation remains as yet quite limited.

There is however ample scope to extend such cooperation. While China is catching-up in semiconductors, the US is still way ahead in overall innovation capacity. China’s persistent innovation gap implies that Chinese firms continue to need access to American technology, whether in terms of equipment, core components, software or system integration. For America, this implies that China’s new policies for semiconductors creates new markets for American firms, provided they stay ahead on the innovation curve.

But implementing such cooperation faces many hurdles. While incumbent industry leaders seek to retain the status quo, newcomers like China seek to adjust the old rules to reflect their interests as latecomers. But progress towards greater cooperation should be possible, once China acknowledges that US semiconductor firms need safeguards against forced technology transfer through policies like compulsory licensing, information security standards and certification, and restrictive government procurement policies. The US, in turn, needs to acknowledge that Chinese firms feel disadvantaged by restrictions on Chinese foreign direct investment (through CFIUS), and by restrictions on the export of technology to China, like the recent decision of the Commerce Department to slap technology export restrictions on US suppliers of semiconductor to China’s ZTE. In the end, such policies may encourage China to shift to alternative suppliers in Korea, Taiwan, and to promote more aggressively domestic suppliers.

References

  1. China-based firms supply less than 17% of ZTE’ s most recent quarterly procurement value, see Bloomberg Supply Chain data, as reported in http://www.bloomberg.com/ gadfly/articles/2016-03-07/a-u-s-ban-on-sales-to-china-s-zte-could-backfire.
  2. See USITO, 2014, Guidelines to Promote National Integrated Circuit Industry Development (unauthorized translation of document published by the Ministry of Industry and Infor- mation Technology, the National Development and Reform Commission, the Ministry of Finance, and the Department of Science and Technology), United States Information Technology Office, Beijing, June 24. On MIC2025, see the official website http://english.cntv.cn/special/madeinchina/ index.shtml. For an unofficial translation of the MIC2025 plan, see http://www.usito.org/content/usito-made- china-2025- unofficial-translation-2015-5-29.
  3. PWC, 2016, China’s impact on the semiconductor industry: 2015 update March,http://www.pwc.com/gx/en/technology/ pdf/china-semicon-2015-report-1-5.pdf
  4. Ernst, D., 2015, From Catching Up to Forging Ahead: China’s Policies for Semiconductors, East-West Center Special Study, September, http://www.eastwestcenter. org/node/35320, http://papers.ssrn.com/sol3/papers. cfm?abstract_id=2744974
  5. Chen Datong got his BS, MS, and PhD from Tsinghua University and worked as a post-doctoral research fellow at Stanford University. He was a partner in the Northern Light Venture Capital fund where he led investments in the semiconductor industry. Dr. Chen was the co-founder and CTO of Spreadtrum Communications, and hence has deep insider knowledge of that company. Prior to Spreadtrum, Dr. Chen was the co-founder and senior VP for OmniVision, again providing him with insider knowledge about the acquisition of that company in 2015.
  6. USITO, China IC Industry Support Guidelines—Summary and Analysis, September 1, 2014: 6.
  7. The following draws on chapter 2 in D. Ernst, Indigenous Innovation and Globalization: The Challenge for China’s Standardization Strategy, 2011. See also D. Ernst and S. Martin, The Common Criteria for Information Technology Security Evaluation: Implications for China’s Policy on Information Security Standards, East-West Center Working Paper, Economics Series no. 108, January 2010.
  8. After all, security concerns as a tactic to mobilize support for public and private investment in R&D have been used in other countries before, the United States included.
  9. According to a leading China expert, “Pragmatism has been a hallmark of China’s reforms over the past 30 years, as Chinese leaders have not flinched from a realistic view of their challenges. They typically experiment with various approaches before deciding on the best ways to address major concerns.” K. Lieberthal, Managing the China Challenge: How to Achieve Corporate Success in the People’s Republic (Washington, DC: Brookings Institution Press, 2011): p.7.
  10. Chen Datong, chairman, Hua Capital Management Co., Ltd, one of China’s IC Industry Equity Development Funds, presentation at Global Leadership Summit, Global Semicon- ductor Alliance (GSA), Shanghai, http://www.gsaglobal.org/ events/2014/0320/speakers.aspx#Chen.
  11. According to Reuters, “China’s February 2016 trade perfor- mance was far worse than economists had expected, with exports tumbling the most in over six years, days after top leaders sought to reassure investors that the outlook for the world’s second-largest economy remains solid. Exports fell 25.4 percent from a year earlier, twice as much as markets had feared as demand skidded in all of China’s major markets, while imports slumped 13.8 percent, the 16th straight month of decline.” (China February exports post worst fall since May 2009, March 8, 2016, http:// www.reuters.com/article/us- china-economy-trade- idUSKCN0WA09C

By Rania Georgoutsakou, director of Public Policy for Europe, SEMI

In a global industry, monitoring regulatory developments across different regions can be a challenge. Add to that the additional complexity of communicating with a (global) supply chain, then consider that each company has to individually reach out to its suppliers and customers. This results in numerous communications on the same issue up and down the supply chain, and the benefits of industry collaboration within associations such as SEMI become clear.

To help companies keep up with the latest developments in the EU, here’s a list of recent and upcoming regulatory initiatives and how SEMI member companies are collectively addressing these:

  • SEMI FAQ – EU F-Gas regulation and semiconductor manufacturing equipment
  • Review of EU Machinery Directive now underway
  • EU PFOA restriction under discussion
  • 2016 EU Blue Guide is available

A SEMI webcast on EU regulatory developments (March 2016) provided a more detailed overview of these and other developments and how companies should prepare – the webcast is available to view for SEMI member companies only, please click here and select the “EU Regulation Webcast”.

Manufacturing equipment containing pre-charged chillers – new SEMI FAQ provides guidance on how to comply with EU F-Gas law

The EU F-Gas regulation that entered into force in January 2014 creates new restrictions on placing on the EU market pre-charged chillers containing certain fluorinated gases (F-gases).

A new SEMI FAQ on the EU F-Gas regulation provides guidance on what this law is about, how it impacts semiconductor manufacturing equipment and what steps companies importing affected equipment should be taking to ensure compliance.

If your company is importing semiconductor manufacturing equipment containing pre-charged chillers into the EU, then you need to make sure you can account for the f-gases in the chiller under the new F-Gas quota system that the law has established, by obtaining an ‘authorisation’ from a ‘quota holder’ and registering in the ‘EU HFC Register’.

For more details and compliance timelines, check out the SEMI FAQ.

EU Machinery Directive – review now underway – have your say!

The EU Machinery Directive sets out the basic requirements machines must satisfy in order to be placed on the EU market and is a major piece of EU law for semiconductor manufacturing equipment.

The review is part of the regular EU regulatory review process to ensure legislation is ‘fit for purpose’ and does not automatically imply that the Machinery Directive will be revised. It is being run by an external consultant and a final report is expected in April 2017.

The focus of the review will be on 9 product categories, including machines for metal working, engines and turbines, robotics and automation and will also explore whether there are discrepancies in the interpretation of the directive between various member states and to what extent it is aligned to other pieces of legislation.

SEMI is putting together a working group to contribute to review of the EU Machinery Directive. If you are a member company and want to get involved, please contact [email protected]

PFOA restriction under discussion – SEMI requests derogations for the industry

The EU is currently drafting a law to restrict the manufacture, use and placing on the market of PFOA, its salts and PFOA-related substances under EU REACH. The restriction would apply both to substances and mixtures and to articles containing these substances.

SEMI has been calling for a derogation for substances and mixtures used in photolithography processes and for articles contained in semiconductor manufacturing equipment.

SEMI has collected and submitted evidence to substantiate members’ recommendations for:

  • a derogation period of at least 10 years for semiconductor manufacturing equipment, to allow equipment manufacturers to communicate with their the supply chain, identify components potentially containing restricted substances, source substitute parts that are tested and validated and requalify the equipment.
  • non-time-limited derogation for spare parts for legacy semiconductor manufacturing equipment, i.e. equipment that was already on the EU market before the restriction entered into force and before the derogation for semiconductor manufacturing equipment expires.
  • non-time-limited derogation for second-hand semiconductor manufacturing equipment, to ensure that companies can still import used equipment from outside the EU or from another EU member state.

SEMI has also voiced its concerns around the proposed concentration limits and the non-availability today of standardized practicable analytical methods that can be applied to a variety of materials to test whether an article would comply with the restriction.

The EU proposed restriction will be published in the next month and the final decision on the restriction is expected by the end of 2016.

Product regulatory compliance in the EU – 2016 Blue Guide now published

The Blue Guide provides guidance on how to implement EU product rules, including for example the EU Machinery and EMC Directives. A 2016 revised version is now available to download – click here.

The Blue Guide addresses:

  • what constitutes placing a product on the EU market
  • obligations of the various actors in the supply chain (manufacturer, importer, authorized representative etc.)
  • product requirements
  • conformity assessment
  • accreditation
  • market surveillance carried out in the EU

For an overview of SEMI’s advocacy work in Europe, please click here.

To find out more and get involved, please contact [email protected]

Join us for the 10th SEMI Brussels Forum – the industry’s major annual event bringing together company executives and decision-makers to discuss opportunities for the micro/nano-electronics industry in Europe: www.semi.org/BrusselsForum

ClassOne Technology, manufacturer of cost-efficient Solstice electroplating systems, has announced the completion of a major new round of funding from Salem Investment Partners of Winston-Salem, North Carolina. The announcement was made jointly by Byron Exarcos, CEO of ClassOne and Meredith Jolly, Vice President at Salem Investment Partners.

“It’s evident that 2016 will be another significant growth year for ClassOne Technology,” said Mr. Exarcos. “With this new funding we will fill order backlogs and address a forecast that is strong and rapidly increasing. This surge in business is coming from the many emerging markets that build products on 200mm and smaller substrates. These users are looking for advanced plating performance at an affordable price — and that’s precisely what Solstice systems are designed for. As a result, more and more of these companies are ordering our tools. And that now includes many of the top-tier manufacturers from around the world.”

“We’re delighted to see the exceptional and sustained growth that ClassOne Technology is achieving across the U.S., Europe and Asia,” said Ms. Jolly. “It’s even more remarkable given that the company just introduced the Solstice system two years ago. It’s great to be on a winning team and to be able to contribute to their success.”

ClassOne’s Solstice electroplating line serves many cost-sensitive emerging markets such as MEMS, Sensors, LEDs, Opto-electronics, RF and more. Designed specifically for ≤200mm wafer processing, Solstice tools are available in three different models and can electroplate a range of metals and alloys, either on transparent or opaque substrates. The company also just announced their Plating-Plus capability which allows Solstice to perform additional processing — such as Metal Lift-Off, Resist Strip and UBM Etch — along with plating, all on a single tool.

In addition to plating equipment, ClassOne also provides spin rinse dryers, spray solvent tools, advanced software and more. ClassOne equipment is strategically priced at less than half of what similar tools from the larger manufacturers would cost — which is why it has been described as “Advanced Wet Processing Tools for the Rest of Us.”