Tag Archives: letter-leds-tech

Intersil Corporation, a provider of power management and precision analog solutions, today announced the ISL98611 display power and LED driver for smartphones. The ISL98611 is the first power management IC that integrates the display power and backlight LED driver functions in a single chip. It significantly improves efficiency of both functions to increase smartphone battery life by an hour or more.

In addition to extending battery life, the ISL98611 also improves display brightness uniformity and color consistency. The highly integrated ISL98611 has a boost regulator, LDO and inverting charge pump for generating two output rails at +5V and -5V in a single device. It also includes a boost regulator with 3-channel current sinks for the LED backlight driver. This single-chip solution offers designers four key benefits:

  • Extended battery life: When used for web browsing and emails, a smartphone’s backlight LEDs and display power consume the majority of its battery power. The ISL98611 backlight LED driver delivers seven percent higher efficiency (up to 93 percent) than competitive multi-chip solutions and generates +/-5V display power supplies with greater than 88 percent efficiency at 15mA load using a 2.5x2mm2 size inductor, compared to 85 percent efficiency of the nearest competitor.
  • Improved display uniformity: The ISL98611 provides excellent LED current matching at very low LED current: it achieves +/- 2.2 percent matching down to 1mA and +/- 2.8 percent at 50μA.
  • Improved display color consistency: The ISL98611 includes hybrid dimming to eliminate white LED color shift issues at low LED current, which occur with DC dimming.
  • Smallest footprint: The ISL98611’s total display power plus backlight solution uses 24 percent less PCB area compared to the competition, while requiring only eight external components. This provides additional space to house the phone’s battery.

“With each new product generation, smartphone designers are challenged to add more features, reduce size and extend battery life,” said Andrew Cowell, senior vice president of Intersil’s Mobile Power Products. “The ISL98611 delivers the integration, extended battery life and display image quality improvement our customers want in their next-generation smartphone designs.”

A “valley of death” is well-known to entrepreneurs–the lull between government funding for research and industry support for prototypes and products. To confront this problem, in 2013 the National Science Foundation (NSF) created a new program called InTrans to extend the life of the most high-impact NSF-funded research and help great ideas transition from lab to practice.

Today, in partnership with Intel Corporation, NSF announced the first InTrans award of $3 million to a team of researchers who are designing customizable, domain-specific computing technologies for use in healthcare.

The work could lead to less exposure to dangerous radiation during x-rays by speeding up the computing side of medicine. It also could result in patient-specific cancer treatments.

Led by the University of California, Los Angeles, the research team includes experts in computer science and engineering, electrical engineering and medicine from Rice University and Oregon Health and Science University. The team comes mainly from the Center of Domain-Specific Computing (CDSC), which was supported by an NSF Expeditions in Computing Award in 2009.

Expeditions, consisting of five-year, $10 million awards, represent some of the largest investments currently made by NSF’s Computer, Information Science and Engineering (CISE) directorate.

Today’s InTrans grant extends research efforts funded by the Expedition program with the aim of bringing the new technology to the point where it can be produced at a microchip fabrication plant (or fab) for a mass market.

“We see the InTrans program as an innovative approach to public-private partnership and a way of enhancing research sustainability,” said Farnam Jahanian, head of NSF’s CISE Directorate. “We’re thrilled that Intel and NSF can partner to continue to support the development of domain-specific hardware and to transition this excellent fundamental research into real applications.”

In the project, the researchers looked beyond parallelization (the process of working on a problem with more than one processor at the same time) and instead focused on domain-specific customization, a disruptive technology with the potential to bring orders-of-magnitude improvements to important applications. Domain-specific computing systems work efficiently on specific problems–in this case, medical imaging and DNA sequencing of tumors–or a set of problems with similar features, reducing the time to solution and bringing down costs.

“We tried to create energy-efficient computers that are more like brains,” explained Jason Cong, the director of CDSC, a Chancellor’s Professor of computer science and electrical engineering at UCLA, and the lead on the project.

“We don’t really have a centralized central processing unit in there. If you look at the brain you have one region responsible for speech, another region for motor control, another region for vision. Those are specialized ‘accelerators.’ We want to develop a system architecture of that kind, where each accelerator can deliver a hundred to a thousand times better efficiency than the standard processors.”

The team plans to identify classes of applications that share similar computation kernels, thereby creating hardware that solves a range of common related problems with high efficiency and flexibility. This differs from specialized circuits that are designed to solve a single problem (such as those used in cell phones) or general-purpose processors designed to solve all problems.

“The group laid out a different way of presenting the problem of domain-specific computing, which is: How to determine the common features and support them efficiently?” said Sankar Basu, program officer at NSF. “They developed a framework for domain-specific hardware design that they believe can be applied in many other domains as well.”

The group selected medical imaging and patient specific cancer treatments–two important problems in healthcare–as the test applications upon which to create their design because of healthcare’s significant impact on the national economy and quality of life.

Medical imaging is now used diagnose a multitude of medical problems. However, diagnostic methods like x-ray CT (computed tomography) scanners can expose the body to cumulative radiation, which increases risk to the patient in the long term.

Scientists have developed new medical imaging algorithms that lead to less radiation exposure, but these have been constrained due to a lack of computing power.

Using their customizable heterogeneous platform, Cong and his team were able to make one of the leading CT image reconstruction algorithms a hundred times faster, thereby reducing a subject’s exposure to radiation significantly. They presented their results in May 2014 at the IEEE International Symposium on Field-Programmable Custom Computing Machines.

“The low-dose CT scan allows you to get a similar resolution to the standard CT, but the patient can get several times lower radiation,” said Alex Bui, a professor in the UCLA Radiological Sciences department and a co-lead of the project. “Anything we can do to lower that exposure will have a significant health impact.”

In theory, the technology also exists to determine the specific strain of cancer a patient has through DNA sequencing and to use that information to design a patient-specific treatment. However, it currently takes so long to sequence the DNA that once one determines a tumor’s strain, the cancer has already mutated. With domain-specific hardware, Cong believes rapid diagnoses and targeted treatments will be possible.

“Power- and cost-efficient high-performance computation in these domains will have a significant impact on healthcare in terms of preventive medicine, diagnostic procedures and therapeutic procedures,” said Cong.

“Cancer genomics, in particular, has been hobbled by the lack of open, scalable and efficient approaches to rapidly and accurately align and interpret genome sequence data,” said Paul Spellman, a professor at OHSU, who works on personalized cancer treatment and served as another co-lead on the project.

“The ability to use hardware approaches to dramatically improve these speeds will facilitate the rapid turnarounds in enormous datasets that will be necessary to deliver on precision medicine.”

Down the road, the team will work with Spellman and other physicians at OHSU to test the application of the hardware in a real-world environment.

“Intel excels in creating customizable computing platforms optimized for data-intensive computation,” said Michael C. Mayberry, corporate vice president of Intel’s Technology and Manufacturing Group and chair of Corporate Research Council. “These researchers are some of the leading lights in the field of domain-specific computing.

“This new effort enables us to maximize the benefits of Intel architecture. For example, we can ensure that Intel Xeon processor features are optimized, in connection with various accelerators, for a specific application domain and across all architectural layers,” Mayberry said. “Life science and healthcare research will undoubtedly benefit from the performance, flexibility, energy efficiency and affordability of this application.”

The InTrans program not only advances important fundamental research and integrates it into industry, it also benefits society by improving medical imaging technologies and cancer treatments, helping to extend lives.

“Not every research project will get to the stage where they’re ready to make a direct impact on industry and on society, but in our case, we’re quite close,” Cong said. “We’re thankful for NSF’s support and are excited about continuing our research under this unique private-public funding model.”

By Shannon Davis, Web Editor

Overheard @The ConFab: “I feel the best I’ve felt about semi since 2009.” –Mike Noonen, Silicon Catalyst

Monday’s research and development panel discussion at The ConFab 2014 started on that optimistic note as Moderator Scott Jones of AlixPartners led a discussion on Optimizing R&D Collaboration. Panelists Chris Danely of JP Morgan, Lode Lauwers of imec, Rory McInerney of Intel and Mike Noonen of Silicon Catalyst discussed where the next big growth drivers will come from and the ability of the industry to continue scaling and remain on Moore’s Law through the introduction of new technologies such as EUV, Advanced Packaging and 450mm. The panel also touched on the role startups will play and how increased collaboration can benefit the industry.

Here are highlights from Monday’s discussion.

How do you feel about the semiconductor cycle – is that at a positive point for innovation and small, start-up companies?

Mike Noonen: I feel the best about I’ve felt about semi since 2009. Without a doubt. When you combine that situation that we’re in with a couple driving forces, all of that has fundamental benefits to the semiconductor business at large. You take those mega trends that are not leading edge applications with the challenge of Moore’s Law – those are developing a whole host of innovation. We think this is a great time to think about how to reinvigorate startups – this is the best time to think about innovation.

From left to right: Panelists Chris Danely of JP Morgan, Mike Noonen of Silicon Catalyst, Lode Lauwers of imec, and Rory McInerney of Intel

From left to right: Panelists Chris Danely of JP Morgan, Mike Noonen of Silicon Catalyst, Lode Lauwers of imec, and Rory McInerney of Intel

Consolidation is a big theme right now. Is this something that’s holding us back the industry?

Rory McInerney: I don’t think the industry is consolidating for us as much as we think. The big players are still HP, Lenovo, etc. The new players are Google, Facebook, Amazon, etc. – many didn’t exist 10 years ago. Within our world, there’s the traditional space, but there’s a ton of new stuff in the cloud and server segment.

Tell us some of the most exciting areas Intel is participating in.

Rory McInerney: On the data center side, we do want our 10 and 7nm, but one of the drivers of our business is the massive amount of data being generated around the world. There are tens of billions of devices that will be connected to the Internet in the few years. The only commonality in the [IoT] numbers is that they go up. All of them will have some element of connectivity and with that comes data. And that drives a virtual cycle. In our business, we love this – my point is, there’s a huge room for innovation. The innovation isn’t just the device but the software and application side.

How do investors view the emerging markets and trends? Do they see the opportunities or are they still focusing on traditional markets?

Chris Danely: From a broad perspective, the thing that an analyst looks at – are they playing to their strengths? You might have a company that starts out very successful, but they don’t play to their strengths and start to waste money. For example, Texas Instruments has taken their R&D down, but still outgrow the industry, because they play to their strengths. Another example is Intel – in the last 3 years, they were in the foundry business – we see a lot of potential to upset the apple cart in the foundry business. Nobody else could do this, but this is an area where we see them exploiting their strengths. Is the company playing to its strengths? We also look at ARM on servers – we don’t know if this is going to work or not, but I don’t think this changing the landscape of the industry. There’s still a bright future with semiconductor stocks.

How can executives communicate their R&D strategy better?

Chris Danely: I’ll use my personal experience – you want to keep that message very simple. Identify the growth trends. Make sure the message goes out continuously. Don’t be afraid to use a few buzz words/charts.

Lode Lauwers: If I may, Wall Street is looking in the short term. Time scale [for R&D] is close to 15 years. I don’t know if Wall Street has that visibility. I think a company should consider R&D as a long term investment. We go for long term engagements.

Rory McInerney: It’s a portfolio question in terms of R&D – you’re going to have your short term and your long term investments. I don’t think Wall Street is looking at all the details of investments. I think that our investments on the product side go out 10 years, but they’re small compared to our other investments.

Chris Danely: Wall Street has to consider about things on a six month basis.

Mike Noonen: Biotech, which has a very long time to market, is the second largest venture capital in the US. Biotech has remained lucrative and interesting in the US. In this area, companies go after a single application or problem, and it’s a vibrant and healthy investment. The take away is – it’s all about the economics. It might enable small start ups to innovate and then be acquired.

How should the industry leverage a company like imec?

Lode Lauwers: More than ever, you need to build partnerships. In this industry, we used to say, “Our company can work on its own.” Now, your ecosystem needs to become wider. Ten years ago, people were still sponsoring R&D. Now we are assessed in every individual area, deliverable by deliverable, on does it benefit, is there ROI. You need to be able to deliver relevant work. A company on its own doesn’t always have these abilities in house. Using imec, it’s like building on competences.

Do you see differences in how you approach partnerships?

Chris Danely: The CEOs and CFOs of semi companies are under pressure to not increase expenses, and that’s stifled risk-taking. Some are now approaching R&D through acquisition of startups with personnel – rather than partnerships.

Do you think these companies are larger – semi is a part of a much larger landscape – do you think this might drive the industry/change the landscape?

Rory McInerney: About 70-80 percent of cloud computing today is driven by the social media. That didn’t exist 5 years ago. There is a direct link between that and the changing semi landscape.

What is the biggest risk in the industry right now?

Chris Danely: Saturation. Semi companies are profitable, but we’re starting to see a lot of them, especially as fablite and fabless models are catching on.

Moderator Scott Jones of AlixPartners

Moderator Scott Jones of AlixPartners

Storing gas on a sorbent provides an innovative, yet simple and lasting solution.

BY KARL OLANDER, Ph.D. and ANTHONY AVILA, ATMI, Inc., an Entegris company, Billerica, MA

The period following the introduction of subatmospheric pressure gas storage and delivery was punctuated by continuous technical innovation.

Even as the methodology became the standard for supplying ion implant dopants, it continued to rapidly evolve and improve. This article reflects on the milestones of the last 20 years and considers where this technology goes from here.

From the beginning, the semiconductor industry’s concern over using highly toxic process gases was evident by the large investment being made in dedicated gas rooms, robust ventilation systems, scrubbers, gas containment protocols and toxic gas monitoring. While major advances have been made in the form of automated gas cabinets and valve manifold boxes, gas line components, improved cylinder valves and safety training, the underlying threat of a catastrophic gas release remained.

Risk factors targeted

The underlying risk with compressed gases is twofold: high pressure, which provides the motive force to discharge the contents of a cylinder, and secondly, a relatively large hazardous production material inventory, which can be released during a containment breach. Pressure also is a factor in component failure and gas reactivity, e.g., corrosion. Mitigating these issues would considerably increase safety.

FIGURE 1. The stages of developing a new chemical precursor for use in commercial IC production.

FIGURE 1. The stages of developing a new chemical precursor for use in commercial IC production.

Analysis of the risks suggested an on-demand, point-of-use gas generator would improve safety by both reducing operating pressure and gas inventory[1]. The challenges associated with this approach include complexity of operation and gas purity, especially in a fab or process tool setting. Chemical generation of arsine, while possible, per equation [A], also substituted a highly reactive toxic solid for arsine[2]. Considerable safety and environmental issues accompanied the operation of such a generator. An on-demand, point-of-use electrochemical approach for supplying arsine, per equation [B], would also eliminate the need for high pressure storage if the associated operational issues could be overcome. Numerous attempts at developing a commercial electrochemical generator just never proved successful[3].

[A] KAsH2 + H2O —> AsH3/H2O + KOH
[B] As(s) + 3H2O + 3e(-) —> AsH3(g) + 3OH(-)

Innovation from a simple(r) solution

Pressure swing adsorption processes utilize the selective affinity between gases and solid adsorbents, and are widely used to recover and purify a range of gases. Under optimal conditions, the gas adsorption process releases energy and produces a material that behaves mores like a solid than a gas.

Early work at reversibly adsorbing toxic materials on a highly porous substrate showed promise. In 1988, the Olin Corporation described an arsine storage and delivery system where the gas was [reversibly] adsorbed onto a zeolite, or microporous alumino- silicate, material[4]. A portion of the stored gas could be recovered by heating the storage vessel to develop sufficient arsine pressure to supply a process tool. In 1992, ATMI supplied a prototype system based on the Olin technology to the Naval Research Lab in Washington, D.C.

The breakthrough that lead to the first commercial subatmospheric pressure gas storage and delivery system occurred when ATMI reported the majority of the adsorbed gas could be supplied to the process by subjecting the storage vessel to a strong vacuum. Using vacuum rather than thermal energy simplified the process, providing the means for an on-demand system[5]. Using a sorbent had the effect of turning the gas into something more akin to a “solid.” That characteristic, coupled with the absence of a pressure driver, delivered an inherently safe condition. The vacuum delivery condition also helped define where the technology would find its first application: ion implantation[6].

Safe and efficient gas storage and delivery

In 1993, prototype arsine storage and delivery cylinders based on vacuum delivery were beta tested at AT&T in Allentown, PA[g] [f]. The system was trademarked Safe Delivery Source®, or SDS®. Papers were presented on safe storage and delivery of ion implant dopant gases the following year in Catania, Sicily at the International Ion Implant Technology Conference[7].

The goal to find a safer method to offset the use of compressed gases was realized: (1) gas is stored at low pressure (ca. 650 Torr at 21°C) and (2) the potential for large and rapid gas loss is averted. Leaks, if they occur, whether by accidental valve opening or a containment breach, would be first inward into the cylinder. Once the pressure equalizes, gas loss to the environment would be governed mainly by diffusion as the gas molecules remain associated with the sorbent. The SDS package, while not a gas generator per se, effectively functions like one.

FIGURE 2. Cutaway view of SDS3 carbon pucks within a finished cylinder.

FIGURE 2. Cutaway view of SDS3 carbon pucks within a finished cylinder.

While subatmospheric pressure operation is an artifact of having to “pull the gas” away from the sorbent, it has become synonymous with safe gas delivery. The optimization work which followed focused on reducing pressure drop in the gas delivery system by improving conductance in valves, mass flow controllers and delivery lines. A restrictive flow orifice was no longer required. The new gas sources proved to work best when in close proximity to the tool.

The years after this technology introduction also saw considerable efforts to improve the sorbent; ultra-pure carbon replaced the zeolite-based material used in the first generation SDS (SDS1), roughly doubling the deliverable quantities of gas per cylinder. These granular carbon sorbents in the SDS2 were later replaced by solid, round monolithic carbon “pucks” in SDS3 (FIGURE 2), which necessitated the cylinder be built around the sorbent[8]. This improvement again roughly doubled gas cylinder capacity.

Recognized in international standards

In 2012, the United Nations (U.N.) recognized the uniqueness of adsorbed gases and amended the Model Regulation for the Transport of Dangerous Goods by creating a new “condition of transport” for gases adsorbed on a solid and assigning a total of 17 new identification numbers and shipping names to the Dangerous Good List. Adoption is expected to occur by 2015. A few of the additions are noted here.

Arsine   – UN 2188 – compressed
Arsine, adsorbed – UN 3522 – SDS
Phosphine – UN 2199 – compressed
Phosphine, adsorbed – UN 3525 – SDS

FIGURE 3. The evolution of a SAGS Type 1 gas package.

FIGURE 3. The evolution of a SAGS Type 1 gas package.

In recent years, fire codes have been updated through the definition and classification of subatmospheric Gas Systems, or SAGS, based on the internal [storage] pressure of the gas.9 Systems based on both sub-atmospheric pressure storage and delivery are designated as Type 1 SAGS. It is important to note that the UN definition for adsorbed gases, and the resulting new classifications mentioned above, only applies to Type 1 SAGS, defined as follows:

3.3.28.5.1 Subatmospheric Gas Storage and Delivery System (Type 1 SAGS). A gas source package that stores and delivers gas at sub-atmospheric pressure and includes a container (e.g., gas cylinder and outlet valve) that stores and delivers gas at a pressure of less than 14.7 psia at NTP.

It is also worth mentioning that sub-atmospheric pressure gas delivery can also be achieved using high pressure cylinders by embedding a pressure reduction and control system. The Type 2 SAGS typically employs a normally closed, internal regulator[s] that a vacuum condition to open. This is not a definition of sub-atmospheric storage and delivery, but of sub-atmospheric delivery only.

3.3.28.5.2 Subatmospheric Gas Delivery System (Type 2 SAGS). A gas source package that stores compressed gas and delivers gas subatmospherically and includes a container (e.g., gas cylinder and outlet valve) that stores gas at a pressure greater than 14.7 psia at NTP and delivers gas at a pressure of less than 14.7 psia at NTP.

In general, Environmental Safety and Health managers, risk underwriters and authorities having jurisdiction recognize the importance of SAGS and requires recommend their use whenever process conditions allow[10].

Expanding SAGS into new applications

Taking the lessons learned from SDS2/SDS3 in ion implant operations, along with key findings from
other applications like HDP-CVD (the SAGE package) and combined with sorbent purification and carbon nanopore size tuning, SAGS Type 1 packages are poised to offer their safety advantages in new and emerging areas, as well as add even more safety and efficiency benefits. Currently, a new package called Plasma Delivery SourceTM (PDSTM) is available for high flow rate applications, while maintaining all the safety attributes of the SAGS Type 1 package.

Also, in addition to the inherent safety, PDS employs a pneumatic operator (valve) to the cylinder which further minimizes the opportunity for human error. In an emergency, such as a toxic gas alarm, pressure excursion, loss of exhaust, etc., gas flow at the source can be quickly stopped and the cylinder isolated. Cycle/purge operations are made safer as human involvement is minimized. Human-initiated events, like over-torqueing the valve, failing to close the valve or even back-filling a cylinder with purge gas, are prevented.

SDS1 SDS2 SDS3
Arsine 200 559 835
Phosphine 85 198 385

Expanding the use of SAGS beyond the domain of ion implant involves successfully navigating key process factors such as operating pressure, flow rates, proximity to the tool and purity. One approach includes coupling the PDS cylinder and gas cabinet together to yield a plug and play “smart” delivery system. Unlike high pressure systems, which are more concerned with excess flow situations, knowing and controlling pressure allows a SAGS cabinet to operate at a reduced risk. This enables linking cabinet ventilation rates with the system operating pressure. During normal operating conditions, the exhaust rate could be reduced by up to 80 percent because the system is operating sub-atmospherically. Should the operating pressure exceed a preset threshold, the exhaust flow would automatically revert to a higher range or the cylinder valve would close.

The future, therefore, could see these PDS packages extended to another level by incorporating them into smart delivery systems, which will further reduce risk, maximize efficiency, improve cost of ownership and expand the footprint for SAGS into new applications like plasma doping, solar, epitaxy and etch.

Summary

During the last 20 years, the semiconductor industry undertook a large effort to develop safer gas delivery technologies to reduce risks associated with dopants used in ion implant. Many technologies were considered, including chemical and electrochemical gas generators, complexing gases with ionic liquids or mechanically controlling cylinder discharge pressure using embedded regulator devices.

In the end, storing gas on a sorbent provided an innovative, yet simple and lasting solution. Gas-sorbent interactions are well understood, reproducible and can be achieved with a minimum of moving parts. Gas release risks, driven by pressure, are all but removed from consideration. And any potential for human error continues to be a target for improvement wherever toxic gases are used.

References

1. Proc. Natl. Acad. Sci. USA 89 pp 821-826, 1992.
2. Appl. Phys. Lett., 60 1483
3. Electron Transfer Technology, US Patent 59225232
4. Olin Corporation, US Patent US4744221A
5. Advanced Technology Materials, US Patent US5518528 6. Many thanks to Dan McKee and Lee Van Horn for being the first of many early adopters.
7. Proceedings of the Tenth International Conference on Ion Implantation Technology, 1994, pp 523-526.
8. DOT-SP 13220.
9. NFPA 318, Standard for the Protection of Semiconductor Fabrication Facilities 2012 Edition. 10. SAGS in the FAB, SST reference

ATMI is a wholly owned subsidiary of Entegris, Inc. ATMI, Safe Delivery Source, SDS, Plasma Delivery Source and PDS are trademarks of Entegris, Inc. in the U.S., other countries, or both. All other names are trademarks of their respective companies.

Crystal IS, a developer of high-performance ultraviolet (UVC) LEDs, this week announced availability of Optan. The first commercial semiconductor based on native Aluminum Nitride (AIN) substrates, Optan provides a unique technology platform for increased detection sensitivity, essential for analytical and life sciences instrumentation—from monitoring of chemicals in pharma manufacturing to drinking water analysis.

The Optan product is a breakthrough for design engineers looking to overcome limitations associated with traditional UV lamps, including deuterium and xenon flash lamps. As an enabling technology, Optan allows developers to fully exploit the power of UV-based technology to improve productivity, increase accuracy and create greater flexibility in product designs.

“This is an exciting time for Crystal IS and an achievement for the semiconductor industry as a whole,” said Larry Felton, CEO of Crystal IS. “Optan will help instrument manufacturers build smaller, more powerful tools and products with a lower overall system cost. We look forward to the scientific and environmental contributions their new products will provide.”

The superior light output and spectral quality of the Optan UVC LED technology, made possible by the unique, low defect AIN substrate, delivers best-in-class reliability, and longer lifetimes, a game changer for life sciences and analytical instrumentation, including environmental monitoring.

Immediate use cases include:

  • HPLC (high-performance liquid chromatography), a powerful tool in analysis for detecting chemicals and compounds in life sciences.
  • Spectrometers, used in multiple applications in testing and analysis across biotech, life sciences and environmental monitoring.
  • Water quality monitoring sensors, becoming increasingly important for detecting chemicals in water from fracking, water security and the use of treated wastewater.

 

The Optan LEDs are currently available in peak wavelengths from 250nm to 280nm and power bins from 0.5mW to 2mW, ideal for spectroscopic applications because of their high spectral quality and reliability. Full availability for all bins under 3mW is anticipated for next quarter with higher power bins (3-4mW) available this Fall, 2014.