Tag Archives: letter-leds-top

Seoul Semiconductor Co., Ltd. (KOSDAQ 046890), a developer of LED (light emitting diode) design and manufacturing, today announced 2017 fiscal year consolidated revenues of US$ 1.04 billion. The 16% rise in consolidated revenues far exceeds the industry average, which grew 2% during the same period. The growth of revenue is contributed to improvements in both general lighting sales and IT product related sales growing in the mid-teens as well as the automotive lighting business which grew more than 20%.

The rise in revenue for the general lighting segment was largely due to an increase in sales of 220V and 370V Acrich MJT products for household and industrial applications. Other notable revenue increases were reported for WICOP, an innovative product line of package-less LEDs, as well as for the Acrich NanoDriver, which incorporates step drive methods that achieve results greater than those of conventional SMPS technology. In addition to offering these differentiated technologies, Seoul expects its SunLike natural spectrum LED technology, which may offer health benefits for human eyes, to lead the future of LED lighting and become a large contributor to the future sales and profit for the company.

Researchers who won the Nobel Prize in 2017 were recognized for their new findings of the impact of light on circadian rhythm in humans. This has proven to be an important topic in our society and generated great attention for Dr. Charles Czeisler, the Harvard professor that has dedicated his research to this particular area. He is now conducting research study with NASA on how light affects the circadian rhythms of astronauts.

According to new research, myopia (near-sightedness) increased from 20% in the 1950s to 80% in 2010 among populations in Asia. Fluorescent lights and conventional LED light sources emit a strong blue light that is known to cause eye fatigue, which may later result in retinal damage. Seoul Semiconductor, together with Toshiba Materials of Japan, has jointly developed SunLike natural spectrum LED technology, which provides lighting conditions most similar to actual sun light and can be seen as a solution that helps to protect human eyes from this potential damage.

The company provided a revenue guidance of KrW 270 to 290 billion for the first quarter of 2018. This figure is in range of 5% to 13% on a year-over-year basis. Although first quarter is normally considered to be an off-season, the company is showing a positive outlook for growth from last year for this 2018 fiscal year.

Sangbum Kim, the company’s Chief Financial Officer, has stated that fiscal year 2017 sales were a result of the company’s relentless efforts to stay ahead of competition by continuously investing in R&D and strengthening global sales organizations. In order to further accelerate revenue growth into the double digit range for 2018, the company plans to further drive sales of differentiated products such as SunLike while also shifting more focus to its rapidly growing automotive lighting business.

The use of LEDs to illuminate buildings and outdoor spaces reduced the total carbon dioxide (CO2) emissions of lighting by an estimated 570 million tons in 2017. This reduction is roughly equivalent to shutting down 162 coal-fired power plants, according to IHS Markit (Nasdaq: INFO), a world leader in critical information, analytics and solutions. LED lighting uses an average of 40 percent less power than fluorescents, and 80 percent less than incandescents, to produce the same amount of light.

“The efficiency of LEDs is essentially what makes them environmentally friendly,” said Jamie Fox, principal analyst, lighting and LEDs group, IHS Markit. “Therefore, LED conversion is unlike other measures, which require people to reduce consumption or make lifestyle changes.”

LED component and lighting companies were responsible for reducing the global carbon (CO2e) footprint by an estimated 1.5 percent in 2017, and that number is likely to continue to grow as more LEDs are installed around the world.

LEDs have other positive environmental benefits, too. For example, LEDs have a longer life span than traditional bulbs and fewer are produced, so the emissions and pollution associated with the production, shipping, sale and disposal of the products is lowered. Secondly, unlike fluorescents, LEDs do not contain mercury. LEDs also decrease air pollution, since most electrical energy is still generated by burning fossil fuels. “While other activities affect climate change more than lighting does, it is still a very strong contribution from a single industry sector,” Fox said.

IHS Markit has tracked the market share for top LED component suppliers for many years. Based on an analysis of this data, Nichia can claim credit for having saved the most carbon overall — accounting for 10 percent of all LED lighting reduction achieved in 2017, which translates into 57 million tons of CO2 — about the same as 16 coal plants. Cree followed Nichia with 8 percent, while Lumileds, Seoul Semiconductor, MLS, Samsung and LG Innotek each have a share in the range of 4 percent to 7 percent.

Savings achieved by each company relate to the energy saved by the use of that company’s components while installed in lighting applications. It does not include a whole lifecycle analysis, which would likely lead to a small additional positive benefit, due to the longer life of LEDs.

“LED component companies and lighting companies have transformed their industry,” Fox said. “They are fighting climate change much more effectively than other industries, and they should be given credit for it. Unlike in other industry sectors, workers at LED companies can honestly say that by selling more of their products, they are helping to reduce global warming.”

IHS Markit figures are only based on the lighting market. They do not include energy saved by LEDs that replaced other technologies in other sectors, such as automotive and consumer technology.

Today, SEMI, the global industry association representing the electronics manufacturing supply chain, released its Year-end Forecast at the annual SEMICON Japan exposition. SEMI projects that worldwide sales of new semiconductor manufacturing equipment will increase 35.6 percent to US$55.9 billion in 2017, marking the first time that the semiconductor equipment market has exceeded the previous market high of US$47.7 billion set in 2000. In 2018, 7.5 percent growth is expected to result in sales of US$60.1 billion for the global semiconductor equipment market – another record-breaking year.

The SEMI Year-end Forecast predicts a 37.5 percent increase in 2017, to $45.0 billion, for wafer processing equipment. The other front-end segment, which consists of fab facilities equipment, wafer manufacturing, and mask/reticle equipment, is expected to increase 45.8 percent to $2.6 billion. The assembly and packaging equipment segment is projected to grow by 25.8 percent to $3.8 billion in 2017, while semiconductor test equipment is forecast to increase by 22.0 percent to $4.5 billion this year.

In 2017, South Korea will be the largest equipment market for the first time. After maintaining the top spot for five years, Taiwan will place second, while China will come in third. All regions tracked will experience growth, with the exception of Rest of World (primarily Southeast Asia). South Korea will lead in growth with 132.6 percent, followed by Europe at 57.2 percent, and Japan at 29.9 percent.

SEMI forecasts that in 2018, equipment sales in China will climb the most, 49.3 percent, to $11.3 billion, following 17.5 percent growth in 2017. In 2018, South Korea, China, and Taiwan are forecast to remain the top three markets, with South Korea maintaining the top spot at $16.9 billion. China is forecast to become the second largest market at $11.3 billion, while equipment sales to Taiwan are expected to approach $11.3 billion.

The following results are in terms of market size in billions of U.S. dollars:

equipment forecast

Cree, Inc. (Nasdaq: CREE) announces the commercial availability of the XLamp®XD16 LED, the industry’s first Extreme Density LED, which delivers up to 5 ½ times higher lumen density than Cree’s previous generation of high power LEDs. Built on Cree’s groundbreaking NX Technology Platform, the XD16 LED combines breakthrough lumen density, low optical cross-talk, unsurpassed thermal contact and ease of system manufacturing to enable innovative new designs for a broad spectrum of lighting applications, such as color-tuning, street, portable and industrial.

“Cree’s new XD16 LED delivers an incredible amount of light output for such a tiny package,” said Joe Skrivan, senior technical director at Black Diamond Equipment. “The XD16 LED’s breakthrough lumen output and peak intensity is a game-changer for our climbing headlamp products because we can design better beam control and decrease the overall size and weight compared to existing designs.”

The XLamp XD16 LED delivers a lumen density of more than 284 lumens per square-millimeter, which is the highest level achieved by a commercially available lighting-class LED. The ceramic-based XD16 LED utilizes the proven XQ footprint and successfully addresses challenges with luminaire manufacturing, thermal design, optical design and reliability faced by competing LEDs. For example, the XD16 LED reduces system-level optical loss by up to three times versus competing technologies when LEDs are placed close together on a board. This improvement translates into fewer wasted lumens and higher efficacy for lighting products.

“Cree’s new Extreme Density LED demonstrates that true LED innovation improves our customers’ system performance without forcing compromise,” said Dave Emerson, Cree LEDs executive vice president and general manager. “The XD16 LED delivers unmatched lumen density without the design and manufacturing challenges associated with inferior LED technology approaches. Now, lighting manufacturers can easily achieve previously unattainable levels of light output and efficacy in their existing form factors.”

The new LEDs are characterized and binned at 85°C, available in ANSI White, EasyWhite® 3- and 5-step color temperatures (2700K – 6500K), and CRI options of 70, 80 and 90. Product samples are available now and production quantities are available with standard lead times.

Veeco Instruments Inc. (Nasdaq: VECO) announced today the completion of a strategic initiative with ALLOS Semiconductors (ALLOS) to demonstrate 200mm GaN-on-Si wafers for Blue/Green micro-LED production. Veeco teamed up with ALLOS to transfer their proprietary epitaxy technology onto the Propel Single-Wafer MOCVD System to enable micro-LED production on existing silicon production lines.

“With the Propel reactor, we have an MOCVD technology that is capable of high yielding GaN Epitaxy that meets all the requirements for processing micro-LED devices in 200 millimeter silicon production lines,” said Burkhard Slischka, CEO of ALLOS Semiconductors. “Within one month we established our technology on Propel and have achieved crack-free, meltback-free wafers with less than 30 micrometers bow, high crystal quality, superior thickness uniformity and wavelength uniformity of less than one nanometer.  Together with Veeco, ALLOS is looking forward to making this technology more widely available to the micro-LED ecosystem.”

Micro-LED display technology consists of <30×30 square micron red, green, blue (RGB) inorganic LEDs that are transferred to the display backplane to form sub-pixels. Direct emission from these high efficiency LEDs offers lower power consumption compared with OLED and LCD while providing superior brightness and contrast for mobile displays, TV and wearables. The manufacturing of micro-LEDs requires high quality, uniform epitaxial wafers to meet the display yield and cost targets.

“In contrast to competing MOCVD platforms, Propel offers leading-edge uniformity and simultaneously achieves excellent film quality as a result of the wide process window afforded by Veeco’s TurboDisc® technology,” said Peo Hansson, Ph.D., Senior Vice President and General Manager of Veeco MOCVD Operations. “Combining Veeco’s leading MOCVD expertise with ALLOS’ GaN-on-Silicon epi-wafer technology enables our customers to develop micro-LEDs cost effectively for new applications in new markets.”

More than a dozen product categories in optoelectronics, sensors and actuators, and discretes semiconductors (O-S-D) are on track to set record-high annual sales this year, according to a new update of IC Insights’ 2017 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discrete Semiconductors.  Driven by the expansion of the Internet of Things (IoT), increasing levels of intelligent embedded controls, and some inventory replenishment in commodity discretes, the diverse O-S-D marketplace is having a banner year with combined sales across all three semiconductor segments expected to grow 10.5% in 2017 to a record-high $75.0 billion, says the O-S-D Report update.

In 2017, above average sales growth rates are being achieved in all but one major O-S-D product category—lamp devices, which are now expected to be flat in 2017 because of continued price erosion in light-emitting diodes (LEDs) for solid-state lighting applications.  Figure 1 compares annual growth rates in five major O-S-D product categories, based on the updated 2017 sales projection.

Figure 1

Figure 1

For the first time since 2014, all three O-S-D market segments are on pace to see sales growth in 2017. Moreover, 2017 is expected to be the first year since 2011 when all three O-S-D market segments set record-high annual sales volumes, according to IC Insights’ update.

The 2017 double-digit percent increase will be the highest growth rate for combined O-S-D sales since the strong 2010 recovery from the 2009 semiconductor downturn that coincided with the 2008-2009 financial crisis and global economic recession.  Total O-S-D revenues are now forecast to reach a ninth consecutive annual record high level of $80.5 billion in 2018, which will be a 7.4% increase from 2017 sales, says the O-S-D Report update.

After a rare decline of 3.6% in 2016, optoelectronics is recovering this year with sales now projected to grow 8.1% in 2017 to an all-time high of $36.7 billion, thanks to strong double-digit sales increases in CMOS image sensors (+22%), light sensors (+19%), optical-network laser transmitters (+15%), and infrared devices (+14%).

Meanwhile, record-high revenues for sensors and actuators are being fueled by the expansion of IoT and new automated controls in a wide range of systems—including more self-driving features in cars. Sensors/actuator sales are now expected to climb 17.5% in 2017 to $13.9 billion, marking the strongest growth year for this market segment since 2010.  Sales of sensors and actuators made with microelectromechanical systems (MEMS) technology are forecast to rise by 18.5% in 2017 to a record-high $11.6 billion.  The O-S-D Report update shows all-time high sales being reached in 2017 with strong double-digit growth in actuators (+20%), pressure sensor, including MEMS microphone chips (+18%), and acceleration/yaw sensors (+17%).

Even the commodity-filled discretes market is thriving in 2017 with worldwide sales projected to rise 10.3% to $24.1 billion, which will finally surpass the current peak of $23.4 billion set in 2011.  Sales of power transistors, which account for more than half of the discretes market segment, are forecast to grow 9.0% in 2017 to a record-high $14.0 billion, according to the new O-S-D Report update.

“The GaN market promises an imminent growth”, announced Dr. Ana Villamor, Technology & Market Analyst from Yole Développement (Yole). “2015 and 2016 have been undoubtedly exciting years for the GaN power business. We project the explosion of the market with 84% CAGR between 2017 and 2022. The market value will so reach US$ 450 million at the end of the period.” What makes the power GaN technology so promising?

The “More than Moore” market research and strategy consulting company Yole pursued its investigations based on numerous exchanges with power GaN companies and thanks to its participation to leading conferences. Yole announces this month the Power GaN 2017: Epitaxy, Devices, Applications, and Technology Trends report. Things are going on the right way: the power GaN supply chain prepares for production and 2017 has been showing significant investments that confirm the added-value of power GaN technology and its strong potential in numerous applications. The new Power GaN analysis conveys Yole’s understanding of GaN implementation and details the different market segments, the related drivers, metrics and technical roadmaps.

In 2016 the power GaN market reached US$ 12 million: it is still a small market compared to the impressive US$ 30 billion silicon power semiconductor market. However its expected growth in the short term is showing the enormous potential of the power GaN technology based on its suitability for high performance and high frequency solutions.

“LiDAR, wireless power and envelope tracking are high-end low/medium voltage applications, and GaN is the only existing technology able to meet their requirements,” explained Ana Villamor from Yole. “Beginning of the year, Velodyne Lidar opened a ‘megafactory’ to ramp up the latest 3D sensor for LiDAR manufacturing and this October they already announced a fourfold production increase.”
Other major companies, like Apple and Starbucks, started offering wireless charging solutions. Moreover, since 2016, EPC has been working with Taiwan’s JJPlus Corporation to accelerate the wireless charging market’s growth. The power supply segment is still the biggest application for GaN. The data center market is adopting GaN solutions with a phenomenal speed, driving a 114% CAGR for power supplies through to 2022. Existing solutions from Texas Instruments and EPC for data centers, consisting of a DC/DC converter and point of load supply that steps down the voltage from 48 V to 1.2 V in a single chip, will propel the market. AC/DC power adapters for laptops or smartphones can be also implemented with GaN power IC solutions, which further reduces the size and cost of the system.

Therefore the consumer market is expected to grow during coming years and Yole’s analysts envisage two different scenarios, depending on the acceptance in key markets like AC/DC adapters for laptops and cellphones.

GaN needs to hurry to gain adoption in the EV/HEV market because SiC MOSFETs are already replacing silicon IGBTs in the main inverters. However, a future market for the 48 V battery’s DC/DC converter is still possible for GaN due to its high-speed switching capability. Some main players, as Transphorm, have already obtained qualification for automotive, and this would help to finally ramp-up GaN production for EV/HEV.

In parallel, the GaN power devices supply chain is acting to support market growth. Therefore it is close to being settle for the power GaN market and deals during 2017 show confidence that GaN will be a successful market. “First of all, there have been big investments from the main foundries to increase their capacity to handle mass production”, asserted Zhen Zong, Technology & Market Analyst at Yole Développement. And he added: “Navitas just announced the partnership with TSMC and Amkor to ramp production capacity. Moreover, BMW i Ventures has just invested in GaN Systems. The Taiwan’s Ministry of Economic Affairs is also interested in using GaN for clean and green technologies, also in collaboration with GaN Systems.”

GaN manufacturers clearly continue developing new products and provide samples to customers, as is the case with EPC and its wireless charging line. For example, during 2017, Panasonic announced the mass production of its 650 V products and Exagan successfully produced its first high voltage devices on 8-inch wafers. Other players are in the final phase of R&D or qualification for their GaN products to be launched in 2018. In both cases, manufacturers and clients are pushing to use GaN HEMTs in emerging technologies.

Seoul Semiconductor, a developer of LED products and technology recently introduced its Horticultural Series LEDs in COB, mid-power, and high-power packages, making Seoul the only LED manufacturer to provide lighting designers with the complete spectrum of light used for growing plants – spanning the spectrum from ultraviolet (UV-C) to far-red. The new product family also includes Seoul’s SunLike Series natural spectrum LEDs, which produce light that closely matches the spectrum of natural sunlight.

Seoul Semiconductor introduced the new Horticultural Series LEDs at the 2017 Horticultural Lighting Conference in Denver, CO, on October 17. One of the invited speakers for the conference will be Dr. Peter Barber, product marketing manager for Seoul VioSys, on “The Myriad Ways That UV LEDs Will Impact Society Through Horticultural Lighting.”

Delivering a full spectrum of possibilities for horticultural applications
While many conventional LED manufacturers have developed horticultural-optimized LEDs in the visible light spectrum from violet (~390nm) to red (~700nm) wavelengths, the new Horticultural Series LEDs from Seoul Semiconductor extend this spectrum to include multiple ultraviolet bands (UV-A, UV-B & UV-C), as well as into far-red bands (~700nm to 800nm). The extension of this new LED product series beyond the ends of the visible spectrum provides horticultural lighting designers with the capability to develop the widest range of light sources beneficial for growing and propagating different types of vegetables and plants in indoor settings.

Also playing a critical role in the new Horticultural Series LED family is Seoul Semiconductor’s recently-introduced SunLike LED technology, the first LED to closely match the spectrum of natural sunlight, providing a light source more like natural light than conventional “white light” LEDs, providing lighting designers with a wider range of options as they develop horticultural-specific lighting systems.

By extending the spectrum of LEDs to include both ultraviolet and far-red light sources, Seoul Semiconductor provides horticultural lighting designers an entirely new spectrum of possibilities in developing lighting systems for specific plant growth and propagation,” explained Mark McClear, Vice President, Americas, of Seoul Semiconductor. “Our Horticultural Series LEDs include high-power, mid-power and COB devices, enabling the design of a wide range of lighting fixtures – from high-bay and directional lights to rack-mounted fixtures for vertical farming systems – all from a single LED manufacturer.”

SunLike Series Chip-on-Board (COB) LEDs
For lighting fixtures designed to produce light that closely matches the spectrum of natural sunlight, Seoul offers a range of standard COB LED modules ranging from 6W to 25W.

High Power Horticultural Series LEDs include UV, white, and color devices
For high-bay and other lighting fixtures, Seoul’s Horticultural Series LEDs include the following options:
Ultraviolet
UV-C –
Producing dominant wavelength of 275nm, these un-lensed UV LEDs can be used for sterilization.
UV-B – Producing dominant wavelength between 280 – 310nm, these un-lensed UV LEDs are rated at 10mW with a photosynthetic photon flux (PPF) value of 0.25µmols/s.
UV-A – Producing dominant wavelength between 360 – 400nm, these lensed UV LEDs are rated at 636mW with a PPF value of 2.2µmols/s.
Deep Blue – Featuring a dominant wavelength of 449 – 461nm, these deep blue dome-lensed LEDs are rated at 650mW with a PPF of 2.6µmols/s.
Deep Red – With a dominant wavelength of 646 – 665nm, these visible red LEDs are rated at 345mW with a PPF of 2.32µmols/s.
Far-Red – Producing a dominant wavelength of ~730nm (peak), these near-infrared LEDs are rated at 260mW with a PPF of 1.64µmols/s.
White – These high-power white LEDs feature a light output of 168lm with a PPF of 2.4µmols/s.

Mid Power Horticultural Series LEDs include SunLike natural spectrum LEDs & color devices
For vertical rack systems and other close-up lighting fixtures, Seoul’s Horticultural Series LEDs include the following mid-power options in standard 3030 packages:
SunLike 5000K – With a color temperature ranging from 2700K – 5000K, these LEDs produce light that closely matches the spectrum of natural sunlight, and feature a light output of 22.3lm with a PPF of 0.38µmols/s.
Deep Blue – Featuring a dominant wavelength of 449 – 461nm, these blue mid-power LEDs are rated at 155mW with a PPF of 0.62µmols/s.
Deep-Red – With a dominant wavelength of 646 – 665nm, these visible red LEDs have a PPF of 0.43µmols/s, and a light output of 77lm/mW.
Far-Red – Producing a dominant wavelength of ~730nm (peak), these near-infrared mid-power LEDs are rated at 50mW with a PPF of 0.38µmols/s.

With the prospects of large 450mm wafers going nowhere, IC manufacturers are increasing efforts to maximize fabrication plants using 300mm and 200mm diameter silicon substrates. The number of 300mm wafer production-class fabs in operation worldwide is expected to increase each year between now and 2021 to reach 123 compared to 98 in 2016, according to the forecast in IC Insights’ Global Wafer Capacity 2017-2021 report.

As shown in Figure 1, 300mm wafers represented 63.6% of worldwide IC fab capacity at the end of 2016 and are projected to reach 71.2% by the end of 2021, which translates into a compound annual growth rate (CAGR) of 8.1% in terms of silicon area for processing by plant equipment in the five-year period.

capacity install

Figure 1

The report’s count of 98 production-class 300mm fabs in use worldwide at the end of 2016 excludes numerous R&D front-end lines and a few high-volume 300mm plants that make non-IC semiconductors (such as power transistors).  Currently, there are eight 300mm wafer fabs that have opened or are scheduled to open in 2017, which is the highest number in one year since 2014 when seven were added, says the Global Wafer Capacity report.  Another nine are scheduled to open in 2018.   Virtually all these new fabs will be for DRAM, flash memory, or foundry capacity, according to the report.

Even though 300mm wafers are now the majority wafer size in use, both in terms of total surface area and in actual quantity of wafers, there is still much life remaining in 200mm fabs, the capacity report concludes.  IC production capacity on 200mm wafers is expected to increase every year through 2021, growing at a CAGR of 1.1% in terms of total available silicon area. However, the share of the IC industry’s monthly wafer capacity represented by 200mm wafers is forecast to drop from 28.4% in 2016 to 22.8% in 2021.

IC Insights believes there is still much life left in 200mm fabs because not all semiconductor devices are able to take advantage of the cost savings 300mm wafers can provide.  Fabs running 200mm wafers will continue to be profitable for many more years for the fabrication of numerous types of ICs, such as specialty memories, display drivers, microcontrollers, and RF and analog products.  In addition, 200mm fabs are also used for manufacturing MEMS-based “non-IC” products such as accelerometers, pressure sensors, and actuators, including acoustic-wave RF filtering devices and micro-mirror chips for digital projectors and displays, as well as power discrete semiconductors and some high-brightness LEDs.

The automotive lighting market totaled US$25.7 billion in 2016 and is expected to reach US$35.9 billion in 2022, with a 5.7% CAGR between 2016 and 2022. In 2017, Yole Développement (Yole) estimates that the market should be close to US$27.7 billion.

automotive_lighting_marketsize_yole_oct2017_433x280

This growth is driven by natural LED cost erosion, increasing the LED penetration rate. Standardization of LED modules and their optimization are key factors behind decreasing costs. This has resulted in more vehicles equipped with LED technology.

The market research and strategy consulting company Yole proposes today a detailed analysis of the automotive lighting industry: Automotive Lighting: Technology, Industry and Market Trends 2017. This new report presents all automotive lighting applications and associated market revenue between 2013 and 2022. Yole’s analysts detail the integration status of different lighting technologies and systems, technical trends, market evolution and market size by application.

The automotive lighting is facing to an unexpected fast growth combined with technology revolution that will reshape the industry.

Since the first full LED headlamp was introduced in 2007, LED technology has gradually penetrated headlamp design. LED technology has allowed lighting to become a distinctive feature and enabled innovative functions like the glare free adaptive high beam introduced in 2013. LED technology use had been limited to high-end vehicles and has had to compete with traditional light sources, namely halogen and high-intensity discharge (HID/Xenon). Improved LED performance, lower power consumption and flexible design were the first enablers. Then, cost reductions helped LED technology spread to all vehicle categories.

Automotive lighting is driven by exterior lighting and especially headlamps, generating more than two-thirds of the total market revenue. Rear lighting is the second largest area, representing 17% of total market revenue. Interior lighting represents almost 10% of revenue but growth is expected to be linked to the development of autonomous vehicles and the creation of vehicles as «living homes». Other types of lighting, such as fog lamps, CHMSL or small lamps, comprised the remaining 7% of revenue in 2016.

“More than 100 million vehicles will be sold in 2022, but this has only a limited impact on the lighting market”,comments Pierrick Boulay, Technology & Market Analyst at Yole, in his article published on i-micronews: The automotive lighting industry will be worth $36B in 2022. He adds: “The main reason for lighting growth is that the penetration of LED technology is spreading from high-end cars to mid-range and low-end cars. LED technology propagation and more generally SSL technologies will enable the development of new functionalities.”

Yole’s analysts offer you today a comprehensive overview of this industry, its challenges, its supply chain and key figures. Automotive lighting industry is clearly showing remarkable technical advances including emerging technologies based on microLEDs, LCDs and lasers, explain the consulting company in this report. AFLS architecture and interaction with sensors are also part of this evolution and well described.