Tag Archives: letter-materials-business

Fujifilm Corporation recently announced that its semiconductor business subsidiary, FUJIFILM Electronic Materials Co.,Ltd. will build a new plant for manufacturing advanced semiconductor materials in the city of Tainan, to expand its production in Taiwan.

The new plant is expected to be operational in August 2016, and will begin with production of developing solutions. With the full-scale arrival of the age of the Internet of Things (IoT), the semiconductor market is projected to expand strongly in future. Taiwan has a high concentration of semiconductor factories with a large production share globally, making the region well-positioned to grow further as the hub of semiconductor production.

FFEM established FUJIFILM Electronic Materials Taiwan Co., Ltd. in Taiwan’s Hsinchu Country in 1996. The company began with the production of developing solutions, and has since expanded its array of production items to include photo resists.

The local production structure has constantly been enhanced, as seen in the launch of the second plant (Hsinchu) for producing cutting-edge NTI demand for advanced semiconductor materials.
FFEM will build its third plant in Taiwan for producing advanced semiconductor materials in Science Park in Tainan City, where the manufacturing facilities of many of its customers are based. Taking advantage of its close proximity to customers’ sites, the company strives to boost its customer-support capability and shorten its supply chain.

Moving beyond just catering to the expanding demand for advanced semiconductor materials in Taiwan, Fujifilm will have multiple production sites to distribute risk and ensure a stable supply of advanced semiconductor materials to customers – even in natural disasters. The new plant will begin producing developing solutions, and gradually expand its range of production items.
With this Tainan plant in Taiwan, joining the network of existing production sites in Asia, at Shizuoka (Japan), Hsinchu (Taiwan), Suzhou (China) and Cheonan (Korea), FFEM will continue to strengthen its stable supply of advanced semiconductor materials and improve quality control further in order to attain a higher level of customer satisfaction.

FFEM is a subsidiary at the core of Fujifilm’s semiconductor materials business, which forms part of the highly functional materials category on which Fujifilm has focused its commitment. The company produces and provides a worldwide supply of photoresists and image sensor materials process of semiconductors, as well as developers, cleaners, CMP slurries and other advanced semiconductor, CMP slurries and image sensor materials developers in 2014, in a bid to address the ever-expanding used in the manufacturing materials.

It will continue to supply products useful for semiconductor manufacturing, and expand the Customer support structure in its contributions to the advancement of the semiconductor industry.

SEMI today announced the recipients of the 2015 SEMI Awards for the Americas. The awards honor Chenming Hu for the BSIM families of compact transistor models, Alex Lidow for commercialization of GaN power devices, and an Intel team for implementation of bulk CMOS FinFET production. The awards were presented at the 2016 SEMI Industry Strategy Symposium (ISS) yesterday in Half Moon Bay, Calif.

Some innovations become such an integral part of the semiconductor manufacturing industry’s infrastructure that the technology itself becomes fundamental.  2015 award recipients all share the distinction of having pioneered processes and integration breakthroughs that became ubiquitous.

For developing the Berkeley Short-channel Insulated-gate FET Model (BSIM) families of compact transistor models, enabling worldwide adoption of advanced device technologies, Professor Chenming Hu was presented with the 2015 Americas SEMI award. Analog circuit simulators, such as Simulation Program with Integrated Circuit Emphasis (SPICE), form the foundation for circuit simulators used in integrated circuit design, and compact transistor models are the heart of simulators. BSIM3 and its successors, developed in the BSIM group at University of California Berkeley under the leadership of Professor Hu, are the industry standard for transistor modeling. For the past 20+ years, all commercial circuit simulators have included BSIM models.

The Americas SEMI award was presented to Dr. Alex Lidow, Ph.D., for innovation in power device technology enabling commercialization of GaN devices with performance and cost advantages over silicon.  Silicon-based devices were reaching their limits in speed and efficiency, prompting Lidow to develop Gallium Nitride (GaN) technologies, but high cost limited its commercial success. Lidow led the GaN development activity at International Rectifier and continued that work at Efficient Power Conversion Corporation (EPC), a company he co-founded in 2007.  EPC introduced the first commercial enhancement mode GaN power transistors in 2009. Challenges from resolving packaging limitations to establishing a low-cost supply chain were overcome through persistence, paving the way for the successful commercialization of GaN power devices.

An Intel development team ─ Christopher P. Auth, Robert S. Chau, Brian S. Doyle, Tahir Ghani and Kaizad R. Mistry ─ were honored with SEMI Awards for the first development, integration and introduction of a successful bulk FinFET technology for CMOS IC production, first implemented at the 22nm node in 2011. The successful introduction of a bulk FinFET process in commercial IC logic and I/O devices, aided by support from SEMI member companies with development of advanced materials, processes and production tools, was a critically important milestone, which led to the widespread adoption of bulk FinFETs as the technology of choice of leading-edge, fully-depleted CMOS logic devices.

“It is a great privilege to present the 2015 SEMI Awards to these fine technologists, and it is an honor to recognize their contributions to the advancement of technology. It’s innovators like these that propel the industry forward and I thank them for their leadership,” said Karen Savala, president, SEMI Americas.

“The 2015 SEMI Awards recognize contributions in modeling and simulation as well as successful commercialization of new types of logic transistors and power devices,” said Bill Bottoms, chairman of the SEMI Award Advisory Committee. “These important milestones played an enabling role in maintaining the rate of progress in size, cost, performance and efficiency of semiconductor devices and accelerated the commercialization of new device types for logic and power.”

The SEMI Award was established in 1979 to recognize outstanding technical achievement and meritorious contribution in the areas of Semiconductor Materials, Wafer Fabrication, Assembly and Packaging, Process Control, Test and Inspection, Robotics and Automation, Quality Enhancement, and Process Integration.

The award is the highest honor conferred by SEMI. It is open to individuals or teams from industry or academia whose specific accomplishments have broad commercial impact and widespread technical significance for the entire semiconductor industry. Nominations are accepted from individuals of Americas-based member companies of SEMI. For a list of past award recipients, visit www.semi.org/semiaward.

Technavio’s market research analysts estimate the semiconductor capital spending market in the US, to grow at a CAGR of around 9% between 2015 and 2019. The most prominent segment in global semiconductor industry has been memory, logic, MPU and analog, which made up almost 75% of the total semiconductor demand. Semiconductor technology is continuously growing with emergence of advanced technology, leading to increased investments in this segment.

The new market research report from Technavio provides a breakdown and analysis of the semiconductor capital spending market segments by technology.

“One of the interesting trends gaining traction in the market is the rise in China’s semiconductor industry. China’s semiconductor industry has a significant influence on the capital spending in the US semiconductor industry. Even though, there are a large number of local semiconductor components manufacturers in China, more than 80% of the semiconductor requirements in China is fulfilled by US semiconductor companies, such as Intel and Global Foundries,” said Asif Ghani, Lead Analyst, Hardware & Semiconductor, Technavio Research.

The semiconductor capital spending market in the US is driven by numerous drivers, of which, the most prominent among of all is the accelerated capex in memory and foundry segments. Collectively, memory and foundry represent close to two-third of the total semiconductor capital spending market. With such accelerated capital investments on a global scale, the outcome will have a considerable impact on the semiconductor industry worldwide.

The key vendors in the semiconductor capital spending market in the US include Global Foundries, Intel, Micron, Samsung Electronics, and SK Hynix. The competition in the semiconductor capital spending market in the US is rigid. And the main reason for such intense completion is the evolution of technology. With the pace of technological advancements in the US market, vendors are involved in substantial capital spending, hence, the market comprises of players with strong technological proficiency.

AKHAN Semiconductor, Inc. (AKHAN SEMI), a developer of diamond semiconductor technology, this week announced that it is deploying 200mm manufacturing equipment and process in its new production facility in Gurnee, Illinois, continuing its preparation for delivering AKHAN diamond semiconductor based-technology products to the company’s first commercial customer this quarter.

“The proven, high-yielding 200mm semiconductor manufacturing process is proving ideal for the production of a wide range of semiconductors – sensors, MEMS, analog, power management – that are embedded in the rapidly growing number of connected devices, from smartphones and tablets to cars, home appliances, wearables, and commercial and industrial applications,” said AKHAN COO Carl Shurboff.

According to market research firm Gartner, Inc., the number of Internet-connected devices, now referred to as the Internet of Things, will grow from 6.3 billion in 2016 to more than 20 billion in 2020.

This explosion in connected products is driving high global demand for all types of new semiconductors to power this new era of connected computing. SEMI noted in its Global 200mm Fab Outlook to 2018 that 200mm fab capacity is expected to grow from 5.2 million wafer starts per month in 2015 to more than 5.4 million in 2018.

“The timing for our diamond-based semiconductor technology’s market debut could not be better,” said AKHAN CEO Adam Khan. “By using man-made diamonds at the core of our new chip technology, we are ushering in a new generation of semiconductor solutions that operate at higher temperatures, are thinner and require less power. These are exactly the attributes required for all the products that make up the Internet of Things.”

The AKHAN diamond semiconductor based technology will enable a new generation of commercial, industrial and consumer products such as flexible and transparent displays that can be used in wearables and thinner consumer devices that last longer. On the commercial side, AKHAN is already developing new diamond windows for industrial, defense and aerospace applications.

AKHAN’s technology is based on a new process that uses man-made diamond rather than silicon to produce new chip materials. It is a result of the marriage of two scientific breakthroughs: the ability to use nanocrystalline diamond (NCD) films and a new doping process the makes it possible to use NCD as a semiconductor material.

The new AKHAN production facility was opened in mid-November. The company is actively hiring to staff the new facility which is expected to employee 100 people in the next two years.

The Critical Materials Council for Semiconductor Fabricators, originally established by ISMI/SEMATECH in the early 1990’s, will be managed by TECHCET CA LLC starting January 01, 2016. Under its new name CMC Fabs, the membership-based organization of semiconductor fab & fabless manufacturers will continue working to identify and remediate issues impacting the supply, availability, and accessibility of both current and emerging semiconductor process materials. In keeping with SEMATECH tradition, the work of the international council takes place in a non-competitive environment for the benefit of the semi device fabrication community. Topics addressed are identified and prioritized by the member companies.

The organization has a new website at cmcfabs.org, which includes an overview of the Council’s mission, news of upcoming events and a Members Only portal for access to minutes of monthly phone/WebEx meetings and workshop details. The site also features access for Members to the TECHCET Critical Materials Reports and the related quarterly updates.

The next face-to-face meeting of CMC Fabs will take place May 3-6, 2016 in Hillsboro, Oregon. The meeting will include the annual CMC Materials Seminar held on May 5-6 that is open to the public. Sessions include a market briefing, supply chain issues and methods, the evolution of emerging materials in ALD / ALE, and the materials revolution around carbon. Speakers will be drawn from fabs, suppliers and analysts to address topics of concern and interest to the Council, and the semiconductor materials supply chain.

CMC Fabs is a unit of TECHCET CA LLC, a firm focused on Process Materials Supply Chains, Electronic Materials Technology, Materials Market Research and Consulting for the Semiconductor, Display, Solar/PV, and LED Industries. The company has been responsible for producing the SEMATECH Critical Material Reports since 2000.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $28.9 billion for the month of November 2015, 0.3 percent lower than the previous month’s total of $29.0 billion and 3.0 percent down from the November 2014 total of $29.8 billion. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Softening demand and lingering macroeconomic challenges continued to limit global semiconductor sales in November,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Despite these headwinds, the industry may narrowly surpass total annual sales from 2014 and is projected to post modest sales increases in 2016 and beyond.”

Regionally, month-to-month sales increased in China (1.0 percent), Europe (1.0 percent), and the Americas (0.3 percent), but decreased in Japan (-0.6 percent), and Asia Pacific/All Other (-2.4 percent). Compared to November 2014, sales were up in China (5.3 percent), but down in Asia Pacific/All Other (-4.1 percent), the Americas (-7.1 percent), Europe (-8.0 percent), and Japan (-8.6 percent).

November 2015

Billions

Month-to-Month Sales                               

Market

Last Month

Current Month

% Change

Americas

6.05

6.07

0.3%

Europe

2.91

2.93

1.0%

Japan

2.70

2.68

-0.6%

China

8.59

8.68

1.0%

Asia Pacific/All Other

8.73

8.52

-2.4%

Total

28.97

28.88

-0.3%

Year-to-Year Sales                          

Market

Last Year

Current Month

% Change

Americas

6.53

6.07

-7.1%

Europe

3.19

2.93

-8.0%

Japan

2.93

2.68

-8.6%

China

8.24

8.68

5.3%

Asia Pacific/All Other

8.88

8.52

-4.1%

Total

29.77

28.88

-3.0%

Three-Month-Moving Average Sales

Market

Jun/Jul/Aug

Sept/Oct/Nov

% Change

Americas

5.60

6.07

8.3%

Europe

2.81

2.93

4.5%

Japan

2.67

2.68

0.3%

China

8.23

8.68

5.4%

Asia Pacific/All Other

8.57

8.52

-0.6%

Total

27.88

28.88

3.6%

According to the newly released “Global Semiconductor Packaging Materials Outlook — 2015/2016 Edition,” the $18 billion semiconductor packaging materials will undergo steady single-digit unit volume growth for many material segments through 2019, including laminate substrates, IC leadframes, underfill, and copper wire. Segments such as wafer-level packaging (WLP) dielectrics will experience stronger unit volume growth over the same timeframe. The new report by SEMI and TechSearch International covers laminate substrates, leadframes, bonding wire, mold compounds, underfill materials, liquid encapsulants, die attach materials, solder balls, wafer level package dielectrics, and thermal interface materials.

Packaging materials are a key enabler to increasing the functionality of thinner, smaller packages consumed in smart phones and other mobile products. Many options are currently available to meet form factor requirements for mobile products such as stacked-die chip scale package (CSP), land grid array (LGA) and fine pitch ball grid array (FBGA) packages, package-on-package (PoP), wafer-level package (WLP), Quad Flat No-lead (QFN) and other packages, using both wirebond and flip chip interconnects.

Key observations include:

  • FO-WLP is emerging as a disruptive technology, changing the demand for the types of packaging materials used in the industry
  • Need for WLP dielectric materials for multi-layer redistribution layers
  • New materials for laminate substrates and underfill to pitch decreasing pitch and bump height trends in flip chip packaging
  • Improved mold compounds for warpage control and package reliability
  • For QFN packaging, cost optimization through enhanced designs and reduced plating area; higher lead counts (routable); improved power dissipation
  • Continued growth in copper and silver wire
  • Materials and processes compatible with tighter tolerances for higher density leadframes and substrate packaging, and for compact multi-die system-in-package (SiP) configurations

Constrained industry growth and the trend towards lower-cost electronics have reshaped the packaging material supplier landscape. Changes in material sets, the emergence of new package types, and cost reduction pressures have resulted in recent consolidation in various material segments. In addition, materials consumption in some segments is declining given the changes in package form factors and the trend towards smaller, thinner packaging (see Figure).

metal compound consump

Source: SEMI and TechSearch International, Global Semiconductor Packaging Materials Outlook 2015/2016 Edition

The findings in the report are based on over 150 in-depth interviews conducted with semiconductor manufacturers, fabless semiconductor companies, packaging subcontractors, and packaging materials suppliers throughout the world. The report covers details about the industry growth and trends for the various material segments. Information includes market size, regional data, unit trends, and market share. It includes previously unpublished data on revenue, unit shipments and market shares for each packaging material segment; a five-year forecast of revenue and units from 2015 to 2019; supplier rankings (for key segments) and listing (including new players); and an analysis of regional market trends and size. All of the information was derived from the SEMI Global Packaging Materials Outlook from 2015 to 2019 produced by SEMI and TechSearch International.

Worldwide silicon wafer area shipments decreased during the third quarter 2015 when compared to second quarter area shipments according to the SEMI Silicon Manufacturers Group (SMG) in its quarterly analysis of the silicon wafer industry.

Total silicon wafer area shipments were 2,591 million square inches during the most recent quarter, a 4.1 percent decrease from the record amount of 2,702 million square inches shipped during the previous quarter. New quarterly total area shipments were flat when compared to third quarter 2014 shipments.

“After two consecutive record breaking quarters, quarterly silicon shipment growth slightly declined,” said Ginji Yada, chairman of SEMI SMG and general manager, International Sales & Marketing Department of SUMCO Corporation. “Quarterly shipments for the most recent quarter are on par with the same quarter as last year, with total silicon shipment volumes for 2015 through the end of the third quarter higher relative to the same period last year.”

Quarterly Silicon* Area Shipment Trends

Million Square Inches

Q3-2014

Q2-2015

Q3-2015

9M-2014

9M-2015

Total

2,597

2,702

2,591

7,548

7,930

* Shipments are for semiconductor applications only and do not include solar applications

Silicon wafers are the fundamental building material for semiconductors, which in turn, are vital components of virtually all electronics goods, including computers, telecommunications products, and consumer electronics. The highly engineered thin round disks are produced in various diameters (from one inch to 12 inches) and serve as the substrate material on which most semiconductor devices or “chips” are fabricated.

All data cited in this release is inclusive of polished silicon wafers, including virgin test wafers and epitaxial silicon wafers, as well as non-polished silicon wafers shipped by the wafer manufacturers to the end-users.

The Silicon Manufacturers Group acts as an independent special interest group within the SEMI structure and is open to SEMI members involved in manufacturing polycrystalline silicon, monocrystalline silicon or silicon wafers (e.g., as cut, polished, epi, etc.). The purpose of the group is to facilitate collective efforts on issues related to the silicon industry including the development of market information and statistics about the silicon industry and the semiconductor market.