Tag Archives: letter-mems-business

Worldwide PC shipments totaled 61.1 million units in the second quarter of 2017, a 4.3 percent decline from the second quarter of 2016, according to preliminary results by Gartner, Inc. The PC industry is in the midst of a 5 year slump, and this is the 11th straight quarter of declining shipments. Shipments in the second quarter of this year were the lowest quarter volume since 2007.

“Higher PC prices due to the impact of component shortages for DRAM, solid state drives (SSDs) and LCD panels had a pronounced negative impact on PC demand in the second quarter of 2017,” said Mikako Kitagawa, principal analyst at Gartner “The approach to higher component costs varied by vendor. Some decided to absorb the component price hike without raising the final price of their devices, while other vendors transferred the costs to the end-user price.”

However, in the business segment, vendors could not increase the price too quickly, especially in large enterprises where the price is typically locked in based on the contract, which often run through the quarter or even the year,” Ms. Kitagawa said. “In the consumer market, the price hike has a greater impact as buying habits are more sensitive to price increases. Many consumers are willing to postpone their purchases until the price pressure eases.”

HP Inc. reclaimed the top position from Lenovo in the worldwide PC market in the second quarter of 2017 (see Table 1). HP Inc. has achieved five consecutive quarters of year-over-year growth. Shipments grew in most regions, and it did especially well in the U.S. market where its shipments growth far exceeded the regional average.

Table 1
Preliminary Worldwide PC Vendor Unit Shipment Estimates for 2Q17 (Thousands of Units)

Company

2Q17 Shipments

2Q17 Market Share (%)

2Q16 Shipments

2Q16 Market Share (%)

2Q17-2Q16 Growth (%)

HP Inc.

12,690

20.8

12,285

19.2

3.3

Lenovo

12,188

19.9

13,305

20.8

-8.4

Dell

9,557

15.6

9,421

14.7

1.4

Apple

4,236

6.9

4,252

6.7

-0.4

Asus

4,036

6.6

4,501

7.0

-10.3

Acer Group

3,850

6.3

4,402

6.9

-12.5

Others

14,546

23.8

15,710

24.6

-7.4

Total

61,105

100.0

63,876

100.0

-4.3

Notes: Data includes desk-based PCs, notebook PCs and ultramobile premiums (such as Microsoft Surface), but not Chromebooks or iPads. All data is estimated based on a preliminary study. Final estimates will be subject to change. The statistics are based on shipments selling into channels. Numbers may not add up to totals shown due to rounding.
Source: Gartner (July 2017)

Lenovo’s global shipments declined 8.4 percent in the second quarter of 2017, after two quarters of growth. Lenovo recorded year-over-year shipment declines in all key regions. Ms. Kitagawa said the 2Q17 results could reflect Lenovo’s strategic shift from unit share gains to margin protection. The strategic balance between share gain and profitability is a challenge for all PC vendors.

Dell achieved five consecutive quarters of year-on-year global shipment growth, as shipments increased 1.4 percent in 2Q17. Dell has put a high priority on PCs as a strategic business. Among the top three vendors, Dell is the only vendor which can supply the integrated IT needs to businesses under the Dell Technologies umbrella of companies.

In the U.S., PC shipments totaled 14 million units in the second quarter of 2017, a 5.7 percent decline from the second quarter of 2016 (see Table 2). The U.S. market declined due to weak consumer PC demand. The business market has shown some consistent growth, while early indicators suggest that spending in the public sector was on track with normal seasonality as the second quarter is typically the peak PC procurement season. However, the education market was under pressure from strong Chromebook demand.

The Chromebook market has been growing much faster than the overall PC market. Gartner does not include Chromebook shipments within the overall PC market, but it is moderately impacting the PC market. Worldwide Chromebook shipments grew 38 percent in 2016, while the overall PC market declined 6 percent.

“The Chromebook is not a PC replacement as of now, but it could be potentially transformed as a PC replacement if a few conditions are met going forward,” Ms. Kitagawa said. “For example, infrastructure of general connectivity needs to improve; mobile data connectivity needs to become more affordable; and it needs to have more offline capability.”

Table 2
Preliminary U.S. PC Vendor Unit Shipment Estimates for 2Q17 (Thousands of Units)

Company

2Q17 Shipments

2Q17 Market Share (%)

2Q16 Shipments

2Q16 Market Share (%)

2Q17-2Q16 Growth (%)

HP Inc.

4,270

30.5

4,008

27.0

6.5

Dell

3,874

27.7

3,801

25.6

1.9

Lenovo

1,848

13.2

2,207

14.9

-16.3

Apple

1,649

11.8

1,825

12.3

-9.6

Asus

447

3.2

754

5.1

-40.7

Others

1,921

13.7

2,257

15.2

-14.9

Total

14,009

100.0

14,852

100.0

-5.7

Notes: Data includes desk-based PCs, notebook PCs and ultramobile premiums (such as Microsoft Surface), but not Chromebooks or iPads. All data is estimated based on a preliminary study. Final estimates will be subject to change. The statistics are based on shipments selling into channels. Numbers may not add up to totals shown due to rounding.
Source: Gartner (July 2017)

PC shipments in EMEA totaled 17 million units in the second quarter of 2017, a 3.5 percent decline year over year. There were mixed results across various countries. Uncertainty around the U.K. elections meant some U.K. businesses delayed buying, especially in the public sector. In France, consumer confidence rose more than expected after Emmanuel Macron was elected president, however spending on PCs remains sluggish. PC shipments increased in Germany as businesses invest in Windows 10 based new hardware, and the Russian market continued to show improvement driven by economic stabilization.

In Asia/Pacific, PC shipments surpassed 21.5 million units in the second quarter of 2017, down 5.1 percent from the same period last year. The PC market in this region was primarily affected by market dynamics in India and China. In India, the pent up demand after the demonetization cooled down after the first quarter, coupled with the absence of a large tender deal compared to a year ago and higher PC prices, brought about weak market growth. The China market was hugely impacted by the rise in PC prices due to the component shortage

These results are preliminary. Final statistics will be available soon to clients of Gartner’s PC Quarterly Statistics Worldwide by Region program. This program offers a comprehensive and timely picture of the worldwide PC market, allowing product planning, distribution, marketing and sales organizations to keep abreast of key issues and their future implications around the globe.

 

The SEMI Foundation today announced that its flagship High Tech U (HTU) program received the Innovative Program Award at the High Impact Technology Exchange Conference (HI-TEC).  The Innovative Program Award recognizes advanced technology education professionals that have designed and implemented a significant innovation, which has led to a positive impact on student enrollment, retention, or advanced technological education. The HI-TEC event and award are sponsored by a consortium of National Science Foundation-funded centers and projects.

“We are honored that SEMI High Tech U has been recognized by stakeholders in the National Science Foundation’s Advanced Technological Education (ATE) workforce programs,” said Leslie Tugman, executive director of the SEMI Foundation.  “It has been very rewarding to work with our industry partners to emphasize the importance of STEM skills and inspire young people to pursue careers in high technology fields. Seventy percent of HTU alumni graduate college with STEM degrees and work in STEM careers.”

“The SEMI Foundation is a leader in the delivery of hands-on, STEM-based, career exploration programs,” said Michael Lesiecki, Ph.D., executive director and principal investigator for the Maricopa Advanced Technology Education Center (MATEC) and ATE member. “Leslie’s work at the SEMI Foundation in 2001 to bring this model to industry partners has developed over time to become a standard of excellence in early workforce development.”

The nonprofit SEMI Foundation has delivered SEMI High Tech U to more than 6,000 students at SEMI member industry facilities in eleven U.S. states and nine countries internationally since 2001. The three-day interactive program brings students onto industry sites where industry instructors teach the HTU modules. This unique delivery system enables students to meet engineers and industry personnel in a face-to-face setting. HTU motivates students by showing them the relevance of their classwork through connections to real-world problems and technology. For their latest Impact Report, visit: www.semifoundation.org/impact-report

Sponsored by a consortium of National Science Foundation Advanced Technological Education centers and projects, HI-TEC is a national conference that presents postsecondary and secondary educators and stakeholders with professional development, educational materials, collaborative ventures, and insights essential to developing and advancing the technical workforce of the 21st century.

 

A major bottleneck in the commercialization of Micro LED displays is the mass transfer of micron-size LEDs to a display backplane. Research by LEDinside, a division of TrendForce, reveals that many companies across industries worldwide have entered the Micro LED market and are in a race to develop methods for the mass transfer process. However, their solutions have yet to meet the standard for commercialization in terms of production output (in unit per hour, UPH), transfer yield and size of LED chips (i.e. Micro LED is technically defined as LEDs that are smaller than 100 microns). These research findings can be found in LEDinside’s 3Q17 Micro LED Next Generation Display Industry Member Report: Analyses on Mass Transfer and Inspection/Repair Technologies.

Currently, entrants in the Micro LED market are working towards the mass transfer of LEDs sized around 150 microns. LEDinside anticipates that displays and projection modules featuring 150-micron LEDs will be available on the market as early as 2018. When the mass transfer for LEDs of this size matures, market entrants will then invest in processes for making smaller products.

Development of mass transfer solutions faces seven major challenges

“Mass transfer is one of the four main stages in the manufacturing of Micro LED displays and has many highly difficult technological challenges,” said Simon Yang, assistant research manager of LEDinside. Yang pointed out that developing a cost-effective mass transfer solution depends on advances in seven key areas: precision of the equipment, transfer yield, manufacturing time, manufacturing technology, inspection method, rework and processing cost.

LED suppliers, semiconductor makers and companies across the display supply chain will have to work together to develop specification standards for materials, chips and fabrication equipment used in Micro LED production. Cross-industry collaboration is necessary since each industry has its own specification standards. Also, an extended period of R&D is needed to overcome the technological hurdles and integrate various fields of manufacturing.

Mass transfer has to achieve five-sigma level before mass production of Micro LED displays is feasible

Using Six Sigma as the model for determining the feasibility of mass production of Micro LED displays, LEDinside’s analysis indicates that the yield of the mass transfer process must reach the four-sigma level to make commercialization possible. However, the processing cost and the costs related to inspection and defect repair are still quite high even at the four-sigma level. To have commercially mature products with competitive processing cost available for market release, the mass transfer process has to reach the five-sigma level or above in transfer yield.

As progress on mass transfer solutions continues, true Micro LED products are expected to first enter applications such as indoor displays and wearables

Even though no major breakthroughs have been announced, many technology companies and research agencies worldwide continue to invest in the R&D of mass transfer process. Some of the well-known international enterprises and institutions working in this area are LuxVue, eLux, VueReal, X-Celeprint, CEA-Leti, SONY and OKI. Comparable Taiwan-based companies and organizations include PlayNitride, Industrial Technology Research Institute, Mikro Mesa and TSMC.

There are several types of mass transfer solutions under development. Choosing one of them will depend on various factors such as application markets, equipment capital, UPH and processing cost. Additionally, the expansion of manufacturing capacity and the raising of the yield rate are important to product development.

According to the latest developments, LEDinside believes that the markets for wearables (e.g. smartwatches and smart bracelets) and large indoor displays will first see Micro LED products (LEDs sized under 100 microns). Because mass transfer is technologically challenging, market entrants will initially use the existing wafer bonding equipment to build their solutions. Furthermore, each display application has its own pixel volume specifications, so market entrants will likely focus on products with low pixel volume requirements as to shorten the product development cycle.

Thin film transfer is another away of moving and arranging micron-size LEDs, and some market entrants are making a direct jump to developing solutions under this approach. However, perfecting thin film transfer will take longer time and more resources because equipment for this method will have to be designed, built and calibrated. Such an undertaking will also involve difficult manufacturing related issues.

MagnaChip Semiconductor Corporation (NYSE: MX), a Korea-based designer and manufacturer of analog and mixed-signal semiconductor platform solutions for communications, IoT, consumer, industrial and automotive applications, announced today it was selected as a foundry partner by ELAN Microelectronics to manufacture the world’s first fingerprint sensor IC-based smartcard. The smartcard uses biometrics technology that provides secure identification to prevent credit card fraud, a severe and growing problem globally. The sensor-IC based smartcard will be manufactured utilizing MagnaChip’s 0.35 micron Mixed Signal Thick IMD manufacturing process technology.

The requirement for more precise, efficient and low-power ICs has increased dramatically, coinciding with the rise in importance of biometrics technology for a range of applications.  Industry analyst Frost & Sullivan forecasts that the biometrics industry will grow at a CAGR of 17.4% from 2014 to 2019 and that fingerprint-based sensor ICs will comprise 66% of the market.

MagnaChip was selected as ELAN’s foundry partner primarily because of the company’s recognized specialized foundry capability, proven and reliable manufacturing processes with robust analog  performance. MagnaChip’s current technologies for fingerprint sensor ICs include 0.35 micron, 0.18 micron 1.8V/3.3V and single 3.3V Mixed Signal technology processes. MagnaChip plans to expand its portfolio of manufacturing processes to include more advanced technologies such as its highly competitive 0.18 micron Slim Mixed Signal manufacturing process, which requires fewer mask layers than usual. MagnaChip’s manufacturing processes are well-suited for applications in fast-growing markets that require fingerprint identification, such as in the payment, medical, transportation and automobile industries.

“We hope that the collaboration between MagnaChip and ELAN will continue to produce innovative and high quality products for our customers,” said I. H. Yeh, ELAN’s Chief Executive Officer. “ELAN sees its continued strategic partnership with MagnaChip as a long-term benefit to ELAN and MagnaChip.”

YJ Kim, Chief Executive Officer of MagnaChip, commented, “We are very pleased to announce MagnaChip’s continued partnership with ELAN and the volume ramp of fingerprint sensor IC-based products utilizing our 0.35 micron Mixed Signal Thick IMD based process technology. This process is well-suited for smartcards, which require low power consumption. We will continue to develop high-performance and cost-effective fingerprint sensor IC technology solutions that meet the growing needs of our foundry customers.”

Boston Semi Equipment (BSE), a global semiconductor test handler company, announced today it has received a follow on order for multiple Zeus gravity test handling systems for pressure MEMS. The order comes from a major manufacturer of tire pressure monitoring system sensors, which selected Zeus’ pressure MEMS solution for its high accuracy and throughput.

“The Zeus handler applies the pressure stimulus directly to the device while it is at the handler’s test site,” said Kevin Brennan, vice president of marketing for BSE. “This eliminates the need to hand off the package to a separate pressure unit for testing. The tool also reaches desired pressure set points faster, cycles through pressure levels in shorter times and offers a faster index time than other solutions. Combined, these advantages result in higher throughput for pressure MEMS devices, making Zeus an ideal solution.”

The Zeus is a tri-temperature handler that can be configured with up to eight test sites. Cold temperature testing is achieved using LN2 or a BSE-designed, two-stage chiller, the MR2. The Zeus offers the features and performance needed by today’s test cells at a more affordable price point.

BY PETE SINGER, Editor-in-Chief

What if the automotive industry had achieved the incredible pace of innovation as the semiconductor industry during the last 52 years? A Rolls Royce would cost only $40, go around the world eight times on a gallon of gas, and have a top speed of 2.4 million miles per hour.

That point was made by Subi Kengeri speaking at The ConFab in May. Kengeri is vice president, CMOS Business Unit, at GlobalFoundries. He also noted that if one of today’s high performance graphics chips were produced using 1960 vs state-of-the-art “it would be the size of a football field.”

Clearly, no other industry can match the pace of innovation of the semiconductor industry. “The transistor count per square inch in 1965 was roughly 100. In 52 years, if you follow Moore’s Law of 2 years per innovation cycle, that gives 26 innovation cycles. That’s 100 millionX improvement (2X26),” Kengeri noted.

Of course, there has been plenty of innovation in the automotive industry. Interestingly, most of the exciting new innovations such as backup cameras, collision avoidance, navigation/ infotainment, self-parking, and anti-lock brakes are only possible because of semiconductor technology.

Kengeri said that Moore’s Law scaling will continue – “there’s no question about it,” he said – but there’s a growing need for new innovation to address the increasingly diverse array of semicon- ductor applications. These are driven by growth in mobile computing, development in IoT computing, the emergence of intelligent computing and augmented/virtual reality.

“Leading edge innovation will continue and all the leading manufacturers continue to invest, whether it is litho scaling in terms of EUV, or device archicture,” Kengeri said. “What is really important is how do we continue to innovate, how do we continue to get the value at competitive costs? Trying to get the scaling at any cost is not what is needed in the majority of the markets. It’s still okay at the very high end, for CPUs and servers, but in all markets, managing cost is really critical.”

“On top of all of that, we have to continue to deliver on time. Because of the complexity, things aren’t getting slower. We’re doing everything we can do continue to keep the same pace as we used to,” he added.

Kengeri said continued advances mean changing the way we think about innovation. It will require continued technical Innovation (materials and processes, device architecture and design-technology co-optimization), but – perhaps more importantly – business model innovation. This includes new thinking about long-term R&D focus/ investment, shared investments/learning/reuse, and consolidation and collaboration.

ULVAC Technologies, Inc. (www.ulvac.com), a supplier of production systems, instrumentation and vacuum pumps for technology industries, has opened an office in Santa Clara, California. The Silicon Valley office location gives ULVAC West Coast customers easier access to the company’s sales and service operations. It also locates company operations closer to the Japanese headquarters and various Asian markets. The new location will include a vacuum pump and leak detector repair center to serve the regional customer base.

A new product line for ULVAC Technologies, Inc. is vacuum cooling systems for use in large-scale farms to extend the product shelf life of fresh agricultural products, flowers and meats. These systems are also used in the processed foods industry as well, to extend the life of products such as airplane meals. Local demonstration capability of the new Vacuum Cooling System is planned for the Santa Clara location. “Much of the vacuum cooling market is located in California, and the new Santa Clara office puts us in close proximity to major customers,” said Wayne Anderson, President/CEO of ULVAC Technologies, Inc.

In summary, “The Santa Clara office will serve as a business development hub within a technology-rich region, enabling us to expand our market share in semiconductor, MEMS and other high-technology industries”, he added.

MEMS & Sensors Industry Group (MSIG), the industry association advancing MEMS and sensors across global markets, today announced its line-up of speakers for its TechXPOT program, What’s Next for MEMS & Sensors: Big Growth of Disruptive Applications for Smart Sensing Changes the Business, on July 11 during SEMICON West 2017. Speakers from industry and academia will explore the disruptive influence of MEMS and sensors on applications that span human-machine interfaces, disposable wireless electronics, and wireless sensor nodes for smart cities. They will also discuss advancements in piezoelectric materials for emerging applications as well as MEMS foundry process technologies that speed time to market.

“From smart autos and smart manufacturing to smart cities and smart health monitoring, emerging markets for MEMS and sensors are creating greater demand for integrated intelligence,” said Karen Lightman, vice president, MEMS & Sensors Industry Group, SEMI. “MSIG speakers at SEMICON West will help MEMS and sensors suppliers to more ably respond to this demand, as they learn how to add value through technological innovation and integration.”

Topics and presenters at the MEMS program at the SEMICON West TechXPOT on July 11 include:

  • What’s Next for the MEMS Industry? ─ Jean-Christophe Eloy, CEO and founder, Yole Développement
  • New MEMS Opportunities from Piezoelectric Technology ─ David Horsley, professor, Mechanical & Aerospace Engineering, University of California Davis
  • Smart IT Systems and Development Protocols Enable Faster Time-to-Market in MEMS ─ Tomas Bauer, senior VP, sales/business development, Silex Microsystems
  • Waggle and the Future of Edge Computing and Smart Cities ─ Pete Beckman, co-director, Northwestern-Argonne Institute for Science and Engineering
  • Roll-up Implementation of Gesture Sensing and Voice Isolation Sensing Wall for Future Human-Machine Interface ─ James Sturm, professor, Electrical Engineering, Princeton University
  • Three Bit NFC Sensor Labels Based on a Flexible, Hybrid Printed CMOS TFT Process ─ Arvind Kamath, VP of Engineering, Thin Film Electronics

Register now for MSIG’s session at SEMICON West or contact MSIG at [email protected] for more information.

Standards and Task Force Meetings at SEMICON West

MSIG also invites members to attend the MEMS/NEMS Committee Meeting, including a Task Force on microfluidics, from 3:30-5:30 pm on July 13 at the San Francisco Marriott Marquis. Visit: www.semiconwest.org/standards

GLOBALFOUNDRIES and ON Semiconductor (Nasdaq: ON) today announced the availability of a System-on-Chip (SoC) family of devices, on GF’s 55nm Low Power Extended (55LPx), RF-enabled process technology platform. ON Semiconductor’s new RSL10 products are based on a multi-protocol Bluetooth 5 certified radio SoC capable of supporting the advanced wireless functionalities in IoT and “Connected” Health and Wellness markets.

“Bluetooth low energy technology continues to advance as the key enabler for connecting IoT devices, especially with low power consumption requirements,” said Robert Tong, vice president of ON Semiconductor’s Medical and Wireless Products Division. “GF’s 55LPx platform – with its low power logic and highly reliable embedded SuperFlash memory combined with proven RF IP – was an ideal match. The RSL10 family offers the industry’s lowest power consumption in Deep Sleep Mode and Peak Receiving Mode, enabling ultra-long battery life, and supporting functionalities like Firmware Over the Air updates. ON Semiconductor’s new RSL10 SoCs use these advanced features to address a wide range of applications including wearables and IoT edge-node devices such as smart locks and appliances.”

“GF’s 55LPx platform, combined with ON Semiconductor’s design, has delivered wearable SoC technology at 55nm, with industry leading energy efficiency,” said David Eggleston, vice president of embedded memory at GF. “This is another proof point that 55LPx is becoming the preferred choice for SoC designers that are seeking cost effective performance, low power consumption, and superior reliability in extreme environments.”

GF’s 55nm LPx RF-enabled platform provides a fast path-to-product solution that includes silicon qualified RF IP and Silicon Storage Technology’s (SST) highly reliable embedded SuperFlash memory featuring:

  • Very fast read speed (<10ns)
  • Small bitcell size
  • Superior data retention (> 20 years)
  • Superior endurance (> 200K cycles)
  • Fully qualified for Auto Grade 1 operation (AEC-Q100)

GF’s 55LPx eFlash platform has been in volume production at the foundry’s 300mm line in Singapore since 2015. The 55LPx eFlash platform is a cost effective solution for a broad range of products, ranging from wearable devices to automotive MCUs.

Customers can start optimizing their chip designs with GF’s process design kits, enabling designers to develop differentiated eFlash solutions that require cost effective performance, low power consumption, and superior reliability in extreme environments.

North America-based manufacturers of semiconductor equipment posted $2.17 billion in billings worldwide in April 2017 (three-month average basis), according to the April Equipment Market Data Subscription (EMDS) Billings Report published today by SEMI.

SEMI reports that the three-month average of worldwide billings of North American equipment manufacturers in April 2017 was $2.17 billion. The billings figure is 4.6 percent higher than the final March 2017 level of $2.08 billion, and is 48.9 percent higher than the April 2016 billings level of $1.46 billion.

“Semiconductor equipment billings levels exceed two billion dollars for the second month in a row,” said Ajit Manocha, president and CEO of SEMI.  “Solid market fundamentals, coupled with strong demand for memory for data storage and processors for smartphones, are fueling significant investments.”

The SEMI Billings report uses three-month moving averages of worldwide billings for North American-based semiconductor equipment manufacturers. Billings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)
Year-Over-Year
November 2016
$1,613.3
25.2%
December 2016
$1,869.8
38.5%
January 2017
$1,859.4
52.3%
February 2017
$1,974.0
63.9%
March 2017 (final)
$2,079.7
73.7%
April 2017 (prelim)
$2,174.5
48.9%

Source: SEMI (www.semi.org), May 2017
SEMI ceased publishing the monthly North America Book-to-Bill report in January 2017. SEMI will continue publish a monthly North American Billings report and issue the Worldwide Semiconductor Equipment Market Statistics (WWSEMS) report in collaboration with the Semiconductor Equipment Association of Japan (SEAJ).