Tag Archives: letter-mems-business

Today, SEMI announced that SEMICON Europa 2015, the region’s largest microelectronics manufacturing event, will offer new themes to support the semiconductor industry’’s development in Europe. The exposition and conferences will take place in Dresden on October 6-8. SEMICON Europa will feature over 100 hours of technical sessions and presentations addressing the critical issues and challenges facing the microelectronics industries. Registration for visitors and conference participants opens today.

For the first time, SEMICON Europa will offer specific sessions on microelectronics in the automotive and medical technology segments as well as events focusing on microelectronics for the smart factory of the future. “SEMICON Europa will be the forum bringing semiconductor technology in direct contact with the industries that are driving chip usage the most right now,” explains Stephan Raithel, managing director in Berlin at SEMI. “The largest growth rates over the next few years will be in the automotive industry, medical technology, and communication technology – exactly the application areas that we are focusing on at SEMICON Europa this year.”

Materials and equipment for the semiconductor industry will remain the core of SEMICON Europa 2015. However, programs will also include new areas including imaging, low power, and power electronics. In addition, Plastic Electronics 2015, the world’s largest conference with exhibitions in the field of flexible, large-scale and organic electronics, will complement SEMICON Europa. In all, the SEMICON Europa 2015 conference program includes over 40 trade conferences and high-quality discussion forums.

At the Fab Managers Forum, Reinhard Ploss, CEO of Infineon Technologies AG, and Hans Vloeberghs, European Business director of Fujifilm, will be the keynote speakers, focusing on how the European semiconductor industry can improve its competitiveness. The Semiconductor Technology Conference, focusing on productivity enhancements for future advanced technology nodes in semiconductor technology, features keynote speakers Peter Jenkins, VP of Marketing at ASML; Niall MacGearailt, Advanced Manufacturing Research program manager at Intel; and Paul Farrar, GM for the consortium G450C at SUNY Polytechnic Institute’s Colleges of Nanoscale Science and Engineering, which works on creating the conditions necessary for producing chips on 450mm wafers.

New at SEMICON Europa 2015: SEMI and its German partner HighTech Startbahn are expanding the Innovation Village. Innovation Village is the ideal forum for European startups and high-growth businesses in search of investors. Sixty start-up/young businesses will have the opportunity to present their ideas and their business model to potential investors and industry partners. The application deadline is June 15.

Over 400 exhibitors at SEMICON Europa represent the suppliers of Europe’s leading microelectronics companies. From wafers to the finished product and every element in between, SEMICON Europa displays the best of the microelectronics manufacturing. The exhibitor markets include semiconductors, MEMS, consumables, device fabrication, wafer processing, materials, assembly and packaging, process, test, and components.

To learn more (exhibition or registration), please visit: www.semiconeuropa.org/en.

Europe’s leading nanoelectronics institutes, Tyndall National Institute in Ireland, CEA-Leti in France and imec in Belgium, have entered a €4.7 million collaborative open-access project called ASCENT (Access to European Nanoelectronics Network). The project will mobilize European research capabilities at an unprecedented level and create a unique research infrastructure that will elevate Europe’s nanoelectronics R&D and manufacturing community.

ASCENT opens the doors to the world’s most advanced nanoelectronics infrastructures in Europe. Tyndall National Institute in Ireland, CEA-Leti in France and imec in Belgium, leading European nanoelectronics institutes, have entered into a collaborative open-access project called ASCENT (Access to European Nanoelectronics Network), to mobilise European research capabilities like never before.

The €4.7 million project will make the unique research infrastructure of three of Europe’s premier research centres available to the nanoelectronics modelling-and-characterisation research community.

ASCENT will share best scientific and technological practices, form a knowledge-innovation hub, train new researchers in advanced methodologies and establish a first-class research network of advanced technology designers, modellers and manufacturers in Europe. All this will strengthen Europe’s knowledge in the integral area of nanoelectronics research.

The three partners will provide researchers access to advanced device data, test chips and characterisation equipment.  This access programme will enable the research community to explore exciting new developments in industry and meet the challenges created in an ever-evolving and demanding digital world.

The partners’ respective facilities are truly world-class, representing over €2 billion of combined research infrastructure with unique credentials in advanced semiconductor processing, nanofabrication, heterogeneous and 3D integration, electrical characterisation and atomistic and TCAD modelling. This is the first time that access to these devices and test structures will become available anywhere in the world.

The project will engage industry directly through an ‘Industry Innovation Committee’ and will feed back the results of the open research to device manufacturers, giving them crucial information to improve the next generation of electronic devices.

Speaking on behalf of project coordinator, Tyndall National Institute, CEO Dr. Kieran Drain said: “We are delighted to coordinate the ASCENT programme and to be partners with world-leading institutes CEA-Leti and imec. Tyndall has a great track record in running successful collaborative open-access programmes, delivering real economic and societal impact. ASCENT has the capacity to change the paradigm of European research through unprecedented access to cutting-edge technologies. We are confident that ASCENT will ensure that Europe remains at the forefront of global nanoelectronics development.”

“The ASCENT project is an efficient, strategic way to open the complementary infrastructure and expertise of Tyndall, Leti and imec to a broad range of researchers from Europe’s nanoelectronics modelling-and-characterisation sectors,” said Leti CEO MarieNoëlle Semeria. “Collaborative projects like this, that bring together diverse, dedicated and talented people, have synergistic affects that benefit everyone involved, while addressing pressing technological challenges.”

“In the frame of the ASCENT project, three of Europe’s leading research institutes – Tyndall, imec and Leti – join forces in supporting the EU research and academic community, SMEs and industry by providing access to test structures and electrical data of state-of-the-art semiconductor technologies,” stated Luc Van den hove, CEO of imec. “This will enable them to explore exciting new opportunities in the ‘More Moore’ as well as the ‘More than Moore’ domains, and will allow them to participate and compete effectively on the global stage for the development of advanced nano-electronics.”

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 65384.

Different forecasting algorithms are highlighted and a framework is provided on how best to estimate product demand using a combination of qualitative and quantitative approaches.

BY JITESH SHAH, Integrated Device Technology, San Jose, CA

Nothing in the world of forecasting is more complex than predicting demand for semiconductors, but this is one business where accurate forecasting could be a matter of long-term survival. Not only will the process of forecasting help reduce costs for the company by holding the right amount of inventory in the channels and knowing what parts to build when but implementing a robust and self-adaptive system will also keep customers happy by providing them with products they need when they need. Other benefits include improved vendor engagements and optimal resource (labor and capital) allocation.

Talking about approaches…

There are two general approaches to forecasting a time-based event; qualitative approach and quantitative or a more numbers-based approach. If historical time-series data on the variable of interest is sketchy or if the event being forecasted is related to a new product launch, a more subjective or expert-based predictive approach is necessary, but we all intui- tively know that. New product introductions usually involve active customer and vendor engagements, and that allows us to have better control on what to build, when, and in what quantity. Even with that, the Bass Diffusion Model, a technique geared towards helping to predict sales for a new product category could be employed, but that will not be discussed in this context.

Now if data on past information on the forecasted variable is handy and quantifiable and it’s fair to assume that the pattern of the past will likely continue in the future, then a more quant-based, algorithmic and somewhat automated approach is almost a necessity.

But how would one go about deciding whether to use an automated approach to forecasting or a more expert-based approach? A typical semiconductor company’s products could be segmented into four quadrants (FIGURE 1), and deciding whether to automate the process of forecasting will depend on which quadrant the product fits best.

Figure 1

Figure 1

Time series modeling

Past shipment data over time for a product, or a group of products you are trying to forecast demand for is usually readily available, and that is generally the only data you need to design a system to automate the forecasting process. The goal is to discover a pattern in the historical, time-series data and extrapolate that pattern into the future. An ideal system should be built in such a way that it evolves, or self-adapts, and selects the “right” algorithm from the pre-built toolset if shipment pattern changes. A typical time-series forecasting model would have just two variables; an independent time variable and a dependent variable representing an event we are trying to forecast.

That event Qt (order, shipment, etc.) we are trying to forecast is more or less a function of the product’s life-cycle or trend, seasonality or business cycle and randomness, shown in the “white board” style illustration of FIGURE 2.

Figure 2

Figure 2

Trend and seasonality or business cycle are typically associated with longer-range patterns and hence are best suited to be used to make long-term forecasts. A shorter-term or horizontal pattern of past shipment data is usually random and is used to make shorter-term forecasts.

Forecasting near-term events

Past data exhibiting randomness with horizontal patterns can be reasonably forecasted using either a Naïve method or a simple averaging method. The choice between the two will depend on which one gives lower Mean Absolute Error (MAE) and Mean Absolute % Error (MAPE).

Naïve Method The sample table in FIGURE 3 shows 10 weeks’ worth of sales data. Using the Naïve approach, the forecasted value for the 2nd week is just what was shipped in the 1st week. The forecasted value for the 3rd week is the actual sales value in the 2nd week and so on. The difference between the actual value and the forecasted value represents the forecast error and the absolute value of that is used to calculate the total error. MAE is just the mean of total error. A similar approach is used to calculate MAPE, but now each individual error is divided by the actual sales volume to calculate % error, which are then summed and divided by the number of forecasted values to calculate MAPE.

Figure 3

Figure 3

Averaging Instead of using the last observed event and using that to forecast the next event, a better approach would be to use the mean of all past observations and use that as the next period’s forecast. For example, the forecasted value for the 3rd week is the mean of the 1st and 2nd week’s actual sales value. The forecasted value for the 4th week is the mean of the previous three actual sales values, and so on (FIGURE 4).

Figure 4

Figure 4

MAE and MAPE for the Naïve method are 4.56 and 19% respectively, and the same for the averaging method are 3.01 and 13% respectively. Right there, one can conclude that averaging is better than the simple Naïve approach.

Horizontal Pattern with Level Shift But what happens when there is a sudden shift (anticipated or not) in the sales pattern like the one shown in FIGURE 5?

Figure 5

Figure 5

The simple averaging approach needs to be tweaked to account for that, and that is where a moving average approach is better suited. Instead of averaging across the entire time series, only 2 or 3 or 4 recent time events are used to calculate the forecast value. How many time periods to use will depend on which one gives the smallest MAE and MAPE values and that can and should be parameterized and coded. The tables in FIGURE 6 compare the two approaches, and clearly the moving average approach seems to be a better fit in predicting future events.

Figure 6

Figure 6

Exponential Smoothing But oftentimes, there is a better approach, especially when the past data exhibits severe and random level shifts.

This approach is well suited for such situations because over time, the exponentially weighted moving average of the entire time series tends to deemphasize data that is older but still includes them and, at the same time, weighs recent observations more heavily. That relationship between the actual and forecasted value is shown in FIGURE 7.

Figure 7

Figure 7

Again, the lowest MAE and MAPE will help decide the optimal value for the smoothing constant and, as always, this can easily be coded based on the data you already have, and can be automatically updated as new data trickles in.

But based on the smoothing equation above, one must wonder how the entire time series is factored in when only the most recent actual and forecasted values are used as part of the next period’s forecast. The math in FIGURE 8 explains how.

Figure 8

Figure 8

The forecast for the second period is assumed to be the first observed value. The third period is the true derived forecast and with subsequent substitu- tions, one quickly finds out that the forecast for nth period is a weighted average of all previous observed events. And the weight ascribed to later events compared to the earlier events is shown in the plot in FIGURE 9.

Figure 9

Figure 9

Making longer term forecasts

A semiconductor product’s lifecycle is usually measured in months but surprisingly, there are quite a few products with lifespans measured in years, especially when the end applications exhibit long and growing adoption cycles. These products not only exhibit shorter-term randomness in time-series but show a longer-term seasonal / cyclical nature with growing or declining trend over the years.

The first step in estimating the forecast over the longer term is to smooth out some of that short- term randomness using the approaches discussed before. The unsmoothed and smoothed curves might resemble the plot in FIGURE 10.

Figure 10

Figure 10

Clearly, the data exhibits a long-term trend along with a seasonal or cyclical pattern that repeats every year, and Ordinary Least Square or OLS regression is the ideal approach to forming a function that will help estimate that trend and the parameters involved. But before crunching the numbers, the dataset has to be prepped to include a set of dichotomous variables representing the different intervals in that seasonal behavior. Since in this situation, that seasonality is by quarters representing Q1, Q2, Q3 and Q4, only three of them are included in the model. The fourth one, which is Q=2 in this case, forms the basis upon which to measure the significance of the other three quarters (FIGURE 11).

Figure 11

Figure 11

The functional form of the forecasted value by quarter looks something like what’s shown in FIGURE 12.

Figure 12

Figure 12

The intercept b0 moves up or down based on whether the quarter in question is Q2 or not. If b2, b3 and b4 are positive, Q2 will exhibit the lowest expected sales volume. The other three quarters will show increasing expected sales in line with the increase in the respective estimated parameter values. And this equation can be readily used to reasonably forecast an event a few quarters or a few years down the road.

So there you have it. This shows how easy it is to automate some features of the forecasting process, and the importance of building an intelligent, self- aware and adaptive forecasting system. The results will not only reduce cost but help refocus your supply-chain planning efforts on bigger and better challenges.

JITESH SHAH is a principal engineer with Integrated Device Technology, San Jose, CA

SEMI, the global industry association for companies that supply manufacturing technology and materials to the world’s chip makers, today reported that worldwide semiconductor manufacturing equipment billings reached US$9.52 billion in the first quarter of 2015. The billings figure is 7 percent higher than the fourth quarter of 2014 and 6 percent lower than the same quarter a year ago. The data is gathered jointly with the Semiconductor Equipment Association of Japan (SEAJ) from over 100 global equipment companies that provide data on a monthly basis.

Worldwide semiconductor equipment bookings were $9.66 billion in the first quarter of 2015. The figure is 2 percent lower than the same quarter a year ago and 3 percent lower than the bookings figure for the fourth quarter of 2014.

The quarterly billings data by region in billions of U.S. dollars, quarter-over-quarter growth and year-over-year rates by region are as follows:

Region

1Q2015

4Q2014

1Q2014

1Q15/4Q14

(Q-o-Q)

1Q15/1Q14

(Y-o-Y)

Korea

2.69

2.09

2.03

29%

33%

Taiwan

1.81

2.03

2.59

-11%

-30%

North America

1.47

1.83

1.85

-19%

-20%

Japan

1.26

1.11

0.96

13%

31%

China

1.17

0.68

1.71

73%

-32%

Europe

0.69

0.58

0.58

19%

19%

Rest of World

0.43

0.59

0.42

-27%

1%

Total

9.52

8.91

10.15

7%

-6%

Source: SEMI/SEAJ June 2015; Note: Figures may not add due to rounding.

Imagination Technologies (IMG.L) and TSMC announce a collaboration to develop a series of advanced IP subsystems for the Internet of Things (IoT) to accelerate time to market and simplify the design process for mutual customers. These IP platforms, complemented by highly optimized reference design flows, bring together the breadth of Imagination’s IP with TSMC’s advanced process technologies from 55nm down to 10nm.

The IoT IP subsystems in development include small, highly-integrated connected solutions for simple sensors which combine an entry-level M-class MIPS CPU with an ultra-low power Ensigma Whisper RPU for low-power Wi-Fi, Bluetooth Smart and 6LowPan, as well as OmniShield multi-domain hardware enforced security, and on-chip RAM and flash. The advanced RF and embedded flash capabilities from TSMC enable Imagination to push the boundaries of IoT integration.

At the higher end, highly-integrated and sophisticated audio and vision sensors will be a key component of future mutual customers’ SoCs for a wide range of IoT applications such as smart surveillance, retail analytics and autonomous vehicles. As part of the collaboration, Imagination and TSMC are working together to realize reference IP subsystems that bring together Imagination’s PowerVR multimedia IP, MIPS CPUs, Ensigma RPUs and OmniShield technology to create highly-integrated, highly-intelligent connected audio and vision sensor IP platforms. These IP subsystems will leverage advanced features such as GPU compute, power-managed CPU clusters and on-chip high-bandwidth communications, demonstrating that high-performance local processing and connectivity can be integrated efficiently and cost-effectively.

Tony King-Smith, EVP marketing, Imagination, says: “We have been working with TSMC for more than two years on advanced IP subsystems for IoT and other connected products. Many of our licensees rely on TSMC to provide them with leading-edge, low-power, high-performance silicon foundry capabilities. Through our ongoing collaboration with TSMC, we are focused on creating meaningful solutions that will help our mutual customers quickly create differentiated, secure and highly integrated products.”

Suk Lee, TSMC senior director, Design Infrastructure Marketing Division, says: “In order to simplify our customers’ designs and shorten their time-to-market, TSMC and our ecosystem partners are transitioning from chip-design enablers to subsystem enablers. We are working closely with Imagination, an established IP leader, as part of our new IoT Subsystem Enablement initiative to help companies get their IoT and connected products to market more quickly and easily.”

IC Insights will release its Update to the 2015 IC Market Drivers report in June. The Update includes revisions to IC market conditions and forecasts for the 2015 2018 automotive, smartphone, personal computer and tablet markets, as well as an update to the market for the Internet of Things. This bulletin reviews IC Insights’ 2015 unit shipment forecast for total personal computing unit shipments.

Five years ago, touchscreen tablets began pouring into the personal computing marketplace, stealing growth from standard personal computers and signaling the start of what has been widely described as the “post-PC” era. Led by Apple’s iPad systems, tablet shipments overtook notebook PCs in 2013, and it appeared as if they would surpass total personal computer units (counting both desktop and portable systems) by 2016. However, that scenario no longer seems possible after tablet growth lost significant momentum in 2014 and then nearly stalled out in the first half of 2015 due to the rise in popularity of large-screen smartphones and the lack of interest in new tablets that do not add enough features or capabilities to convince existing users to buy replacements. Consequently, IC Insights has downgraded its forecast for the overall personal computing market, including much lower growth in tablets and continued weakness in standard PCs (Figure 1).

The updated forecast shows total personal computing unit shipments (desktop PCs, notebook PCs, tablets, and Internet/cloud-computing “thin-client” systems) dropping 1 percent in 2015 to 545 million. In the original forecast of the 2015 IC Market Drivers report (MD15), total personal computing system shipments were projected to rise 8 percent in 2015 to 609 million units, followed by a 10 percent increase in 2016 to 670 million. The revised outlook cuts the compound annual growth rate (CAGR) of personal computing unit shipments to 2.1 percent between 2013 and 2018. Total personal computing system shipments are now projected to reach 578 million in 2018.

Worldwide shipments of keyboard-equipped standard PCs (desktops and notebooks) peaked in 2012 at 345 million, but they are expected to decline by a CAGR of -0.5 percent in the 2013-2018 timeperiod. In the updated outlook, tablets are projected to account for 45 percent of total systems sold in 2018 (259 million units) versus the MD15’s original forecast of 57 percent (423 million) that year. Further into the future, tablets are now expected to account for about half of personal computing system shipments with the remaining units being divided between standard PCs and Internet/cloud-centric platforms.

IC Insights June Report

Figure 1

 

Additional details on the IC market for medical and wearable electronic is included in the 2015 edition of IC Insights’ IC Market Drivers—A Study of Emerging and Major End-Use Applications Fueling Demand for Integrated Circuits.  This report examines the largest, existing system opportunities for ICs and evaluates the potential for new applications that are expected to help fuel the market for ICs.

EV Group (EVG), a supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology and semiconductor markets, today announced that its NILPhotonics Competence Center—established to assist customers in enabling new and enhanced products and applications in the field of photonics—has generated strong interest from customers and resulted in multiple system orders since its launch in December 2014. New system orders have included the company’s EVG700/7000 Series UV-NIL (UV nanoimprint lithography) systems with SmartNIL technology to support high-volume manufacturing applications, including displays, light emitting diodes (LEDs) and wafer-level optics.

EV Group wafer

Since its initial launch, the NILPhotonics Competence Center has also expanded the products and applications it is supporting. These include photonic and microfluidic devices for bio-medical applications that pave the way for faster and more accurate diagnosis of diseases, as well as plasmonic structures that simultaneously carry optical and electrical signals and can be scaled to the smallest dimensions to enable new chip designs as well as better-performing devices, such as waveguides and sensors.

“The prevailing perception has been that despite the potential benefits of NIL technology, the barrier to entry for integrating it into high-volume manufacturing (HVM) is high. That simply isn’t the case. EV Group has invested significant resources over many years in developing NIL technology as an HVM-capable solution for a number of applications,” stated Markus Wimplinger, corporate technology development and IP director at EV Group. “Today, we have the world’s largest installed base ofmore than 200 systems at customer facilities around the globe supporting volume-manufacturing of LEDs, MEMS, optics, photovoltaics and other devices. Our NILPhotonics Competence Center allows us to more easily bring all of our process and product capabilities and expertise to bear in helping our customers enable new photonic products and applications.”

EVG’s NILPhotonics Competence Center leverages EVG’s process and equipment know-how in NIL and other process areas such as wafer bonding to support emerging photonic applications and significantly shorten time to market through fast process implementation and optimization, as well as through customized equipment design. In addition, EVG has a global partner network to draw from to support its customers’ process integration and optimization efforts across the NIL infrastructure, including template manufacturing, resist materials and supporting equipment. As a result, EVG is able to provide consultation and support across all phases of the product lifecycle—from design for manufacturing and prototyping through process development, qualification runs, pilot manufacturing and process transfer.

“More than a decade ago, EV Group launched the NILCom Consortium with support from companies representing key aspects of the NIL supply chain in order to speed commercialization of NIL technology. Through the dedicated efforts of all of our members, we are pleased to announce that the NILCom Consortium has successfully completed its charter and will end formal operations. That said, we will continue to collaborate with companies across the NIL supply chain including our former members as needed to ensure that NIL technology continues to address future customer roadmap requirements,” added Wimplinger.

Worldwide silicon wafer area shipments increased during the first quarter 2015 when compared to fourth quarter 2014 area shipments according to the SEMI Silicon Manufacturers Group (SMG) in its quarterly analysis of the silicon wafer industry.

Total silicon wafer area shipments were 2,637 million square inches during the most recent quarter, a 3.4 percent increase from the 2,550 million square inches shipped during the previous quarter, resulting in a new quarterly volume shipment record. New quarterly total area shipments are 11.6 percent higher than first quarter 2014 shipments.

“Total silicon shipment volumes for the first quarter of this year surpassed the record high reached in the third quarter of last year,” said Ginji Yada, chairman of SEMI SMG and general manager, International Sales & Marketing Department of SUMCO Corporation. “Silicon shipments for the most recent quarter benefited from the strong market momentum the semiconductor market enjoyed last year.”

Quarterly Silicon Area Shipment Trends

Millions of Square Inches

Q1 2014

Q3 2014

Q4 2014

Q1 2015

Total

2,363

2,597

2,550

2,637

*Shipments are for semiconductor applications only and do not include solar applications

Silicon wafers are the fundamental building material for semiconductors, which in turn, are vital components of virtually all electronics goods, including computers, telecommunications products, and consumer electronics. The highly engineered thin round disks are produced in various diameters (from one inch to 12 inches) and serve as the substrate material on which most semiconductor devices or “chips” are fabricated.

All data cited in this release is inclusive of polished silicon wafers, including virgin test wafers, epitaxial silicon wafers, as well as non-polished silicon wafers shipped by the wafer manufacturers to the end-users.

The Silicon Manufacturers Group acts as an independent special interest group within the SEMI structure and is open to SEMI members involved in manufacturing polycrystalline silicon, monocrystalline silicon or silicon wafers (e.g., as cut, polished, epi, etc.). The purpose of the group is to facilitate collective efforts on issues related to the silicon industry including the development of market information and statistics about the silicon industry and the semiconductor market.

SEMI is the global industry association serving the nano- and micro-electronic manufacturing supply chains. SEMI maintains offices in Bangalore, Beijing, Berlin, Brussels, Grenoble, Hsinchu, Moscow, San Jose, Seoul, Shanghai, Singapore, Tokyo, and Washington, D.C.   For more information, visit www.semi.org.

SEMI today announced the SEMICON West 2015 technical and business program agenda tackling the most important issues facing the future of semiconductor manufacturing. In addition to the exposition with over 650 exhibitors planned, SEMICON West will feature over 180 total hours of programs —  including free technical, applications and business programs as well as an extensive lineup of exclusive programs. Discounted registration for SEMICON West ends June 5.

Exclusive programs include the three-day Semiconductor Technology Symposium (STS) conference, a comprehensive technology and business conference addressing the key issues driving the future of semiconductor manufacturing and markets. STS is offered as an intensive professional conference, with paid guaranteed classroom-style seating, lunch, and networking breaks. Aligned with the latest inputs from technology roadmaps, sessions at the STS will focus on the significant trends shaping near-term semiconductor technology and market developments in key areas including:

  • Semiconductor Manufacturing: Current Challenges and Future Opportunities for the Supply Chain
  • Adjacent Spaces: Strategies for Executing Expansion into Adjacent Markets
  • Packaging: The Very Big Picture 
  • Packaging: Digital Health and Semiconductor Technology
    • Test Vision 2020 (Automated Test Equipment)
    • Interconnect Technology for High-Performance Computing
    • Making Sense of the Lithography Landscape: Cost and Productivity Issues below 14nm and Path(s) to 5nm
    • Scaling Transistors: HVM Solutions Below 14nm; Getting to 5nm
    • Flexible Hybrid Electronics for Wearable Applications – Challenges/Solutions
    • Interconnect Technology for High-Performance Computing

In addition to the STS conference, SEMICON West continues to feature a full set of complimentary programs, including keynote addresses, executive panels, technical and business sessions.

The Tuesday Keynote Panel includes Jo De Boeck, senior VP and CTO of imec; Mike Campbell, senior VP of Engineering at Qualcomm; and Subashish Mitra, associate professor at Stanford University who will tackle the issue of “Scaling the Walls of sub-14nm Manufacturing.” Doug Davis, senior VP and GM, IoT Group at Intel, will present the Wednesday Keynote.

SEMICON West TechXPOT conference sessions on the exhibition floor are also provided free to exposition attendees. Sessions at the TechXPOTs are developed for engineers, technologists, and business leaders seeking solutions to key technology challenges, exploring cutting-edge and future technology developments and assessing their impact on the semiconductor supply chain. Developed in conjunction with SEMI technical committees, partner organizations, and technologists, the TechXPOT agenda will provide a deeper view of key technology developments and their business impact:

  • What’s Next for MEMS?
  • Automating Semiconductor Test Productivity
  • Emerging Generation Memory Technology: Update on 3D NAND, MRAM and RRAM
  • Materials Session: Contamination Control in the Sub-20nm Era
  • Subsystem and Component Suppliers at Critical Cross Roads to Deliver on Yield and Productivity
  • Equipment and Materials Opportunities for Flexible Hybrid Electronics
  • Packaging Session: Auto Utopia — Gearing up Semiconductor to Turn Dreams to Reality
  • The Evolution of the New 200mm Fab for the Internet of Everything
  • Monetizing the IoT: Opportunities and Challenges for the Semiconductor Sector
  • CMP Technical and Market Trends
  • Factory of the (Near) Future: Using Industrial IoT in Semiconductor Manufacturing Sector
  • Update on Industry Status of 450mm

Other key programs include:

  • Silicon Innovation Forum Conference is a two-day innovation conference that includes a one-day startup/investor forum and a one-day research forum.
  • Sustainable Manufacturing Forum is a three-day event starting on July 13; it delves into issues of Regulatory Compliance, Sustainable Technologies, and Sustainable Supply Chains.
  • “Bulls and Bears,” a session where a panel of technical and financial thought leaders address provocative questions on the state of the microelectronics industry and the outlook for the future.

Discounted registration for SEMICON West 2015 (www.semiconwest.org) through June 5.  Early-bird pricing for the Semiconductor Technology Symposium (STS), Test Vision 2020, and Sustainable Manufacturing Forum (SMF) applies through June 5. Premier sponsors of SEMICON West 2015 include Applied Materials, KLA-Tencor, and Lam Research.

MEMS Industry Group (MIG), the trade association advancing micro-electromechanical systems (MEMS) and sensors across global markets, today announced the creation of a new TSensors division headed by TSensors Summit, Inc. Founder Dr. Janusz Bryzek. MIG’s new division will extend TSensors Summit’s visionary efforts to accelerate a world in which everyone has access to “Abundance” — food, safe water, clean air, healthcare and other vital resources — through the foundational use of sensors and MEMS.

“TSensors has proven itself to be vibrant and incredibly innovative, with initiatives designed to positively change the human experience through the widespread adoption of sensors,” said Karen Lightman, executive director, MEMS Industry Group. “Clearly this is an ambitious goal — but with the success of past TSensors Summits, combined with MIG’s global membership base and organizational structure, I am confident that this goal has a greater potential for realization. We are thrilled to welcome Janusz Bryzek and the TSensors community to MIG. Together we aim to realize the vision of trillions of sensors improving the quality of people’s lives.”

“One of the greatest strengths of TSensors Summit has been our visionary speakers, who have given TED-like talks while outlining an amazing future enabled by new sensor-based systems,” said Dr. Janusz Bryzek, TSensors Summit founder, now heading MIG’s TSensors division. “By joining MEMS Industry Group — with its depth in promoting MEMS commercialization — we will be able to increase the momentum and breadth of TSensors’ initiatives. This will help to both accelerate solutions to major global problems through the use of sensor-based systems as well as to bring unprecedented business opportunities to member companies involved in the design and production of sensor-related products and services.”

TSensors Summit – a MEMS Industry Group® Enterprise will take place on December 9-10, 2015 in Orlando, FL.