Tag Archives: letter-mems-business

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $37.6 billion for the month of April 2018, an increase of 20.2 percent from the April 2017 total of $31.3 billion and 1.4 percent more than last month’s total of $37.1 billion. Monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average. Additionally, a newly released WSTS industry forecast projects annual global market growth of 12.4 percent in 2018 and 4.4 percent in 2019.

“The global semiconductor industry has posted consistently strong sales so far in 2018, and the global market has now experienced year-to-year growth of greater than 20 percent for 13 consecutive months,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Although boosted in part by impressive growth in the memory market, sales of non-memory products also grew by double digits in April on a year-to-year basis, and all major regional markets posted double-digit year-to-year gains. The global market is projected to experience significant annual growth this year, with more modest growth expected next year.”

Regionally, year-to-year sales increased in the Americas (34.1 percent), China (22.1 percent), Europe(21.4 percent), Japan (14.6 percent), and Asia Pacific/All Other (10.2 percent). Compared with last month, sales were up in China (3.2 percent), Japan (2.7 percent), Europe (1.4 percent), and the Americas (0.8 percent), but down slightly in Asia Pacific/All Other (-0.8 percent).

Additionally, SIA today endorsed the WSTS Spring 2018 global semiconductor sales forecast, which projects the industry’s worldwide sales will be $463.4 billion in 2018. This would mark the industry’s highest-ever annual sales, a 12.4 percent increase from the 2017 sales total. WSTS projects year-to-year increases across all regional markets for 2018: the Americas (14.0 percent), Europe (13.4 percent), Asia Pacific (including China) (12.3 percent), and Japan (8.6 percent). In 2019, growth in the semiconductor market is expected to moderate, with sales increases of between 4-5 percent expected across each of the regions. WSTS tabulates its semi-annual industry forecast by convening an extensive group of global semiconductor companies that provide accurate and timely indicators of semiconductor trends.

For comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, consider purchasing the WSTS Subscription Package. For information about the global semiconductor industry and market, check out SIA’s free 2018 Factbook.

Apr 2018

Billions

Month-to-Month Sales                              

Market

Last Month

Current Month

% Change

Americas

8.10

8.16

0.8%

Europe

3.58

3.63

1.4%

Japan

3.21

3.30

2.7%

China

11.98

12.36

3.2%

Asia Pacific/All Other

10.23

10.15

-0.8%

Total

37.09

37.59

1.4%

Year-to-Year Sales

Market

Last Year

Current Month

% Change

Americas

6.08

8.16

34.1%

Europe

2.99

3.63

21.4%

Japan

2.88

3.30

14.6%

China

10.12

12.36

22.1%

Asia Pacific/All Other

9.21

10.15

10.2%

Total

31.28

37.59

20.2%

Three-Month-Moving Average Sales

Market

Nov/Dec/Jan

Feb/Mar/Apr

% Change

Americas

8.63

8.16

-5.5%

Europe

3.40

3.63

6.6%

Japan

3.21

3.30

2.8%

China

12.01

12.36

2.9%

Asia Pacific/All Other

10.35

10.15

-1.9%

Total

37.60

37.59

0.0%

NVIDIA and Taiwan’s Ministry of Science and Technology today announced an extensive collaboration that will advance Taiwan’s artificial intelligence capabilities.

Announced at the start of Computex 2018, the partnership will extend over the next decade to build up local deep learning and associated AI technologies.

“Taiwan was at the center of the PC revolution and now it is investing to play an important role in the next era of computing,” said Jensen Huang, founder and chief executive officer of NVIDIA. “With the essential infrastructure and tools, the rich talent in Taiwan’s schools and industry will create world-changing breakthroughs in science and society.”

Taiwan Premier Lai Ching-te expressed enthusiasm for the collaboration, which he called essential to sharpening national competitiveness.

“Taiwan is committed to be an important global player in the AI ecosystem,” Premier Lai said. “NVIDIA is the leader of AI computing in the world. By collaborating with NVIDIA, we will gain the expertise and technical platforms to train AI talents, build the strongest AI ecosystem of both software and hardware, and further reshape the world with our own technologies and services of AI.”

The collaboration is focused in five key areas:

  • Supercomputing infrastructure. NVIDIA and Taiwan government agencies will co-invest to bring NVIDIA’s most advanced technology to Taiwan, including the new NVIDIA® HGX-2™, which fuses AI and high performance computing into a single platform.
  • Research. NVIDIA Research, a global organization that includes some of the world’s best computer scientists, will collaborate with Taiwan researchers and startups to exchange best practices.
  • Training. NVIDIA will expand its Deep Learning Institute — which has provided developers worldwide with hands-on training for beginning and advanced AI techniques — to train thousands of Taiwanese developers on the latest AI capabilities.
  • Startups. Taiwan agencies and NVIDIA will work together to help Taiwan AI startups through NVIDIA’s Inception startup accelerator program, which is helping more than 2,800 young companies globally.
  • Innovation. Joint investment in developing AI solutions for key vertical markets for Taiwan, including manufacturing, healthcare, safe cities and transportation.

Building on Grand Plan
The announcement extends the Taiwan Ministry of Science and Technology’s “AI Grand Plan,” which was unveiled last year. Last month, MOST unveiled its Taiwania HPC supercomputer powered by NVIDIA technology. And last week, it selected NVIDIA for an AI supercomputer powered by 2,000 NVIDIA Tesla® V100 32GB Tensor Core GPUs with access to the NVIDIA GPU Cloud™ (NGC) container registry of AI-optimized software.

Speaking last Wednesday to more than 2,200 technologists, developers, researchers and business executives at NVIDIA’s GPU Technology Conference Taiwan, Huang described a series of AI initiatives underway in Taiwan. These address a range of pressing domestic issues in such fields as manufacturing, healthcare and transportation, which align with the government’s focus on furthering AI.

Among the five examples he cited:

  • Foxconn drives superhuman inspection accuracy in manufacturing. Using GPU-powered deep learning with NVIDIA HGX-1 and Tesla P4 GPUs, Foxconn is slashing its manufacturing defect detecting “escape rate.” It has cut the rate to 0.015 percent from the 4.3 percent rate expert human inspectors can achieve — a 287x performance improvement.
  • China Medical University Hospital attacks Asia’s highest cancer fatality rate. Using the NVIDIA DGX-1™ supercomputer, CMUH and Eddie Huang — a post-doc student from MOST — developed an AI to detect liver cancer. The AI diagnostic “super assistant” is especially important on Taiwan, which has Asia’s highest cancer fatality rate.
  • National Taiwan University addresses locally acute cancer type. Working with Dr. Winston Hsu, NTU has made breakthroughs in detecting nasopharyngeal carcinoma, a rare head and neck cancer that’s locally prevalent due to diet and environmental factors. NVIDIA DGX-1 enabled Dr. Hsu to combine CT scans with AI-generated MRI images into one algorithm — improving detection rates by as much as 36 percent.
  • Taoyuan City makes its streets safer. Taiwan’s third-largest city is pushing development of autonomous vehicles to cut back on accidents and carbon emissions, while improving the productivity of trucks, taxis and buses. It is using the NVIDIA DGX Station™ deskside supercomputer for AI model training and the NVIDIA DRIVE™ PX2 autonomous driving computer as it works to have 30 percent of its fixed-route buses equipped with autonomous capabilities by the start of the new decade.
  • Tainan City girds against typhoons. The municipal government of Taiwan’s fourth-largest city is deploying drones, with AI software developed using NVIDIA DGX-1 systems, to monitor the structural integrity of the city’s 1,650 bridges. By evaluating their risk to potential damage from flooding, earthquakes and mudslides, it can fix bridges before the next typhoon hits.

Upon the proposal of ST’s new President & CEO Jean-Marc Chery, the Supervisory Board has approved the establishment of a newly formed Executive Committee, entrusted with the management of the Company and led by Mr. Chery as its Chairman.

The other members of ST’s Executive Committee are:

  • Orio Bellezza, President, Technology, Manufacturing and Quality
  • Marco Cassis, President, Sales, Marketing, Communications and
    Strategy Development
  • Claude Dardanne, President, Microcontrollers and Digital ICs Group
  • Lorenzo Grandi, President, Finance, Infrastructure and Services and Chief Financial Officer
  • Marco Monti, President, Automotive and Discrete Group
  • Georges Penalver, President, Human Resources and Corporate Social Responsibility
  • Steven Rose, President, Legal Counsel
  • Benedetto Vigna, President, Analog, MEMS and Sensors Group.

“ST’s new Executive Committee is a team of strong and experienced semiconductor industry leaders. Our first priority is to deliver on our 2018 business and financial objectives and continue on our path of sustainable and profitable growth. Customers choose ST because we are able to bring them innovation in technology and products. We will keep pushing in this direction, with a focus on fast time-to-market and strong execution, to create value for customers and for all of our stakeholders.” said Jean-Marc Chery, President & CEO of STMicroelectronics.

Leti, a technology research institute of CEA Tech, today announced its annual flagship event, Leti Innovation Days, July 4-5 in Grenoble.

This year, the institute will address how microelectronics, Leti’s core activities, are empowering new technological revolutions within industry, changing our daily lives in ways that will shape tomorrow’s global, post-modern society – in other words, how humans interact, commute, consume and much more. This two-day event gathers each year hundreds of top executives for presentations and discussions of the latest tech trends and the outlook for the future. 

Program 2018

From microelectronics to markets and end-users

–        Quantum computing: from lab to fab

–        New advances in materials

–        The virtues of photons

–        Bio-inspired circuits

–        5G: Towards less redundant processing

Sessions during the two-day event also will present novel use cases in personalized healthcare and other fields in a hyper-connected world, as well as live tech demonstrations from Renault, Rossignol and other global industrials.

On the evening of July 4, Arianespace CEO Stéphane Israël will headline a special Leti Innovation Days event about trends and visions for the space industry.

Technical Workshops

In addition, there will be seven satellite workshops on design for 3D, lithography, quantum engineering, silicon photonics, memory, 5G, and MEMS on July 2, 3 and 6.

The full program can be found here.

For free registration, please contact [email protected]

SiTime Corporation announced it has expanded its global footprint to support its rapid growth with the opening of a new Center of Excellence in Michigan.

“SiTime’s mission is to solve the most difficult timing challenges for our customers,” said Rajesh Vashist, CEO of SiTime. “To fulfil our mission, SiTime’s strategy is to deliver leading-edge solutions by employing the best talent in communities that offer the highest quality of life. Our Michigan Center is near many world-class universities. The rich talent pool in the region, especially in engineering, will help us accelerate our product development. Additionally, Michigan is at the forefront of connected and autonomous vehicle innovation, which is of strategic importance to SiTime. Our proximity and collaborative cooperation with the industry will extend our leadership in automotive timing solutions. We look forward to SiTime Michigan becoming a key contributor to our success.”

By combining unique MEMS and analog technology with a fabless semiconductor model and significant knowhow, SiTime has transformed the timing industry over the past decade. Today, SiTime sets the benchmark in performance, reliability, size, and flexibility, and is the preferred timing supplier for high-performance electronics. SiTime has cumulatively shipped 1 billion units since 2005 and has 90% share of the MEMS timing market. To support this rapid global growth and fuel innovation, SiTime has a significant presence worldwide, including China, Japan, the Netherlands, Russia, Taiwan, and Ukraine.

In Michigan, to assist with office space location, new talent acquisition, and business support services, SiTime collaborated with Ann Arbor SPARK, a non-profit economic development organization.

“The Ann Arbor region is a unique place where business intersects with advanced research, out-of-the-box thinkers, abundant financial resources, vibrant economic development and an immense talent pool,” said Paul Krutko, president/CEO, Ann Arbor SPARK. “We are thrilled to work with SiTime to help them get settled and to find the talent that will fuel their continued growth, while further energizing our technology sector.”

By Emir Demircan

SEMI Position on the European Commission’s Proposal for a Regulation Establishing a Framework for Screening Foreign Direct Investments into the European Union

In response to the European Commission’s (EC) proposed framework for screening foreign direct investments (FDI), SEMI, representing the global electronics manufacturing supply chain, offers three recommendations for consideration by EU policymakers:

To support the sophisticated global ecosystem of semiconductor manufacturers, the EU should remain open to global investment. More efforts should be made to form trade and investment agreements that support European businesses’ access to foreign markets.

The global micro- and nano-electronics (MNE) industry consists of organizations specializing in research, design, equipment, materials, semiconductor manufacturing, assembly and applications – a complex global ecosystem that contributes 2 trillion USD (SEMI data) to the world economy. With its production of smaller, faster, more reliable products with higher performance, the MNE industry is one of the world’s most capital- and research-intensive sectors. Today, a state-of-the-art semiconductor manufacturing fab can easily cost billions of euros and might require international investment to deliver cutting-edge solutions.

Europe’s MNE industry plays a pivotal role in this global value chain through its investments in emerging technologies such as autonomous driving, smart healthcare, artificial intelligence and industrial automation. The region’s MNE industry features leading electronics manufacturing equipment and materials businesses, world-class research and development (R&D) and educational institutions, and vital semiconductor manufacturing hubs that are home to multinationals headquartered both inside and outside of the EU.

In the proposed framework, the EU recognizes that FDI is an important engine of economic growth, jobs and innovation. Its work to maintain a climate of open investment and connect European businesses with leading innovators and investors around the world has laid the groundwork for the success of European industrial technologies sector. These efforts have set an example for rich cross-border business relations even in the face of rising protectionist practices around the world.

The proposed EC regulation aims to establish an EU-level framework for exchanging information related to a broad range of technologies between the EC and Member States, and to assess, investigate, authorize, condition, prohibit, or unwind FDI in certain technologies on the grounds of security or public order. EU policymakers should bear in mind that a new EU-level FDI screening mechanism must be implemented very carefully. Stakeholders must clearly understand how FDI can pose a threat to security and public order in the EU.

Only transparent and precise definitions of FDI, security and public order and a limited scope of targeted technologies can provide the regulatory certainty for the EU to remain an attractive destination for foreign investors and European investees alike. On the contrary, unclear regulations could sow insecurity amongst potential investors, leading to delays or cancellation of much-needed investments and choking access to finance in capital-intensive sectors such as MNE.

MNE is a key enabling technology and advances in semiconductors enable market adoption of game-changing technologies such as artificial intelligence. The EU should ensure that future regulations do not cause lock-in effects or limit the growth of key technologies in Europe.

In the interest of security and public order, the proposed EU regulation permits Member States and the EC to screen FDI in critical infrastructure such as energy, transportation, communications and critical technologies including semiconductors, artificial intelligence and cybersecurity.  While it might be easier to screen critical infrastructure and the large-scale public services it provides for potential threats in security and public order, applying the same FDI filter to critical technologies can be extremely challenging.

Semiconductors are embedded in virtually all smart devices and systems including computers, mobile phones, cars, and aircraft. The ubiquity of chips raises the prospect that FDI in European smart technologies – and the supply chain that develops them – could be subject to screening. This level of regulatory oversight is likely to hamper not only EU’s competitiveness in key enabling technologies such as MNE but also ever-evolving applications including artificial intelligence. Also, the proposed screening framework calls for the assessment of FDI risks to security or public order by determining if an investor is controlled by foreign governments through “significant funding.” In the context of FDI, differentiating between state and private actors in other countries can be extremely challenging or even impossible, and the term “significant funding” is not clearly defined. Under this light, SEMI recommends:

  1. Defining a limited scope with clear conditions, explaining in quantitative and qualitative terms how FDI in key enabling technologies can threaten public order and security, and
  2. Introducing criteria that identifies whether an FDI leads to market distortions in Europe because a government investment program is not aligned with EU state-aid rules.

FDI is a powerful tool to support economic growth and competitiveness. Many Member States already screen FDI on the grounds of security and public order. Future regulations should ensure that additional screening neither duplicates national and EU-level assessments nor hampers Member States’ competitiveness.

Under the proposed regulation, the EC could screen FDI at the Union level. However, because many Member States already have detailed screening procedures in place to protect national security and public order, the draft regulation could increase red tape by duplicating administrative processes and regulations at the national and EU levels. Policymakers should keep in mind that FDI must in principle remain a national competence, with each Member State establishing its own national policy aimed at attracting FDI and supporting its economic growth. Many Member States compete to increase their share of EU FDI in key technologies that underpin national economic growth. Likewise, international investors already subject each Member State to their own investment criteria before making significant FDI decisions. Any proposed regulation that pushes Member States to share national-level FDI information could dilute successful FDI policies of some Member States and hamper the EU’s overall competitiveness.

Emir Demircan is Senior Manager Public Policy at SEMI Europe. Contact Emir at [email protected] , 0032484903114. 

Originally published on the SEMI blog.

By Heidi Hoffman, Sr. Director of FHE, MEMS and Sensors Marketing, SEMI

Peel-and-stick simplicity isn’t just for adhesive bandages any more. IoT and flexible hybrid electronics (FHE) are bound to change hardware business models. And flexible displays will breathe life into any surface.

These were among the insights foreshadowing the future of the FHE, electronic textiles, IoT, MEMS and sensors industries at the FLEX Japan and MEMS & Sensors Forum Japan 2018. At the April event, organized by SEMI-FlexTech-MSIG, nearly 200 attendees shared their observations and lessons learned in the development of processes, products and applications. Presentations and discussions revealed these five takeaways.

1. Expect the unexpected with FHE development

Flexible Hybrid Electronics (FHE) continues to shrink the size and weight of products, enabling new markets and concepts. “FHE takes printed electronics and adds ICs for getting performance out of the PE structure,” said Wilfried Bair of NextFlex, adding that “peel- and-stick electronic products are one example of unexpected new markets enabled by FHE capabilities.” One potential application is large peel-and-stick safety sensors adhered to buildings to warn of structural dangers.

2018FLEX Japan

 

Another surprising turn: With new insights into OLED technology originally developed for flexible displays, Cambridge Display Technology (CDT) has devised an innovative medical diagnostic tool for markets such as biomedical and agricultural monitoring. The tool features an atmosphere-processable OLED component with a simplified OLED structure encapsulated in aluminum foil.

2. IoT and FHE devices should change hardware business models

This is the standard business model for many new FHE products: develop a product, manufacture it, find customers and sell. FHE and IOT device developers were encouraged by Jam Kahn of Gemalto to consider flipping the script: During FHE product development, explore building an after-market revenue stream by controlling and mining the data for trends it reveals. Because of its data harvesting potential, IoT is an excellent emerging technology for this strategy.

The “Experience Economy” could create 200 connectable items per person, generating strong revenue streams from the collection and analysis of massive amounts of sensor-generated data. The key is for the data to be actionable. That means hardware suppliers must extend their focus to software development. “A recent study of California investors found that by 2025, 60 percent of global business profits will be from data,“ noted Harri Koopla of VTT, who advised hardware producers to examine business models that produce continuous value by leveraging software. “With FHE, we are creating the path to digitization for non-digital industries, and these industries need complete solutions,” he said.

Xenoma smartshirt features

 

Hardware provider Xenoma, for example, sells an electronic shirt with sensors for measuring muscle movements, heart rate and other health-related data. Xenoma’s Ichiro Amimori said the company offers its open-source software development kit for free under one condition: The developer must share the collection data with Xenoma. The idea is that the more data collected, the greater Xenoma’s ability to improve human health over the long term and achieve its long-term vision of alleviating disease.

3. Roll-to-roll and sheet-to-sheet manufacturing will meet in the middle

One of the big advantages of flexible and printed electronics was its promise to enable the manufacturing of electronics on a roll-to-roll (R2R) process in atmospheric (or close) conditions, like newspaper, rather than one sheet at a time, as with displays or wafers. But as development of inks and interconnects progressed, along with the placement of discrete and thinned-die components and basic flexible substrates on a moving web, most research and development (R&D) and limited-production runs moved to sheet-fed systems to control material costs for experiments and low-volume production. R&D on printing electronics processes split into two camps: the simple printed components camp on R2R, and the camp backing more flexible hybrid electronics development on a sheet-by-sheet basis. But progress didn’t stop.

R2R functional testing

 

Harri Koopla of VTT highlighted new R2R inspection and test capabilities in the VTT pilot line in Finland. R2R processing advances incorporate ideas from biology, chemistry, optics, optoelectronics, advanced inspection and test capability, illustrating the multidisciplinary nature of FHE. While accurate, high-speed, pick and place of thinned, bare die remains the domain of sheet-to-sheet manufacturing, look for more improvements in accuracy and speed.

Another new manufacturing concept that turns business models on their heads – “minimal fabs” – focuses on creating limited-run equipment and processes that use 3D printing and do not require cleanrooms. With a relatively low cost of entry, the approach enables electronics to be produced affordably anywhere.

4. Powering the IoT is a grand challenge

The requirement for edge devices to function without intervention for long periods raises hard questions about how to power the devices. Using organic photovoltaics (OPV) in textiles to harvest energy from light could be one solution, according to Kasimaesttro Sugino of the Suminoe Textile Technical Center.  

ULVAC’s answer to the IoT power issue are requirements for edge device micro-batteries to be environmentally benign, safe, flexible and compatible with semiconductor processing less than .1 mm in height. The micro-batteries must also feature a long life and support continuous power output, high power density, low self-discharge (over 10 years) and mass production, said Shunsuke Sasaki of ULVAC. The batteries are being built on silicon, glass and stainless steel with dry, thin-film vacuum processing.

5. Flexible displays bring any surface to life

With their durability, flexibility, low-cost processing and programmability, flexible displays can transform any surface into a content-rich display with messages that make lives healthier, simpler and safer.

FlexEnable

 

One example is FlexEnable’s organic thin-film transistor (OTFT), a device made possible not only by recent advances such as the ability to build organic material transistors on plastic and the increasing clarity of new film materials but by continuous manufacturing process improvements. These advances are improving switching times and the color and video capabilities of thin-film transistors while retaining their flexibility, low power consumption and communication capabilities. Simon Jone of FlexEnable gave the examples of wrapping a display around the blind spots of automobiles or replacing side-view mirrors with interior monitors showing feeds from an external camera, approaches that would improve safety while reducing wind drag and increasing fuel efficiency.

E Ink’s reflective technology and flexible products are coming to market with a wider color spectrum. The company’s Michael McCreary said its designers are specifying the panels for innovative projects such as the exterior walls of the San Diego International Airport parking garage. Used to communicate with airport visitors, the installation is weather-proof, programmable and self-powered.

Originally published on the SEMI blog.

Analog Devices, Inc. awarded Bob Reay, Leonard Shtargot, Jesper Steensgaard, and Sam Zhang the title of Analog Devices Fellow, a distinguished technical position given to engineers who contribute significantly to the company’s success through exceptional innovation, leadership and an unparalleled ability to unite and mentor others.

“These Fellows exemplify Analog Devices’ unwavering commitment to technological innovation,” said Ray Stata, cofounder and chairman of the board, Analog Devices. “Bob and Leonard hold numerous patents and have mentored many budding innovators. Jesper has a diverse skill set that makes him not only an exceptional engineer, but a passionate teacher and leader. Sam, through his incredible work on inertial MEMS (microelectromechanical systems) sensors, has helped Analog Devices introduce groundbreaking sensors used in a wide range of applications and industries.”

Bob Reay
Bob is an innovator, technologist, teacher and historian who earned both his B.S. and M.S. degrees in Electrical Engineering from Stanford University. During his 30 years at Linear Technology Corp. (LTC), which is now part of Analog Devices, Bob was granted 22 patents. He is credited with helping to build LTC’s CMOS Interface business, opening the company’s first remote design center in Singapore, and serving as the first vice president and general manager of LTC’s Mixed-Signal business unit. Bob’s thoughtful and well-reasoned approach to problem solving has led people to seek his advice for technical and strategic challenges alike.

Leonard Shtargot
Leonard joined Linear Technology in 2001 as a design engineer with a B.S. EECS from the University of California at Berkeley. Leonard has contributed innovations in power conversion technology and designed several families of high-performance DC/DC switching regulators focusing on new circuits, high-voltage silicon process improvements, advanced flip-chip package designs, and test techniques. These products have been widely adopted by the automotive and industrial technology sectors. Leonard is also a hands-on teacher who mentors other engineers and often can be found in the lab or test floor helping his colleagues solve technical problems.

Jesper Steensgaard
Jesper is another alumnus of Linear Technology and earned his Ph.D. from the Technical University of Denmark in 1999. With 22 U.S. patents, Jesper has contributed to the release of 79 high-performance, successive-approximation-register A/D converters since 2007 and spearheaded the development of a new line of “intrinsically-linear” SAR A/D converters with performance levels that are now the best in the industry. He excels at both detailed circuit design and system-level concepts. Jesper was the founder of his own company, Esion LLC, and has held academic positions at Columbia University and Oregon State University.

Sam Zhang
Sam joined Analog Devices in 2001 after earning a B.S. degree in Electrical Engineering from Tsinghua University and a M.S. degree in Mechanical Engineering from the George Washington University. He has been awarded 21 U.S. patents with another five pending. For more than a decade, Sam has been the principal designer of ADI’s low-G inertial MEMS products, including the company’s first 3-axis accelerometer and MEMS microphone products. He also led the design of several generations of high-performance 3-axis accelerometer products and created a design methodology that accurately predicts inertial sensor offset. His latest groundbreaking contributions have been in the areas of ultra-low noise accelerometers and condition-based monitoring sensors that are re-shaping the way machine health is being addressed.

Leti, a research institute at CEA Tech, and Cellmic LLC, a company dedicated to improving patient healthcare with smartphones and biophotonics, today announced that they joined forces to accelerate the market adoption of lens-free imaging and sensing techniques by growing Leti’s patent portfolio with a core patent from Cellmic.

Pioneered by Aydogan Ozcan, UCLA’s chancellor’s professor, and his research group, this patented computational lens-free imaging approach reconstructs detailed images of specimens from their holographic shadows that contain unique 3D information of samples, such as tissue sections, blood smears and cell cultures. Cellmic LLC, a UCLA spin-off, holds some of the core patents of this important computational imaging technique.

Lens-free microscopy has emerged as a powerful imaging and sensing platform that replaces bulky and expensive optical components that are found in standard optical microscopy systems with dedicated algorithms. Leti developed a lens-free microscope in 2012. Today the technology offers an ultra-wide field-of-view, tracking more than 10,000 biological, microscopic objects at a time per image, providing lab techs with a cost-effective, highly compact and robust solution. The Cellmic patent complements Leti’s IP portfolio and accelerates its ongoing valorization of its lens-free technology for diagnostics, biomedical sensing and related applications.

“Lens-free, on-chip imaging offers a very unique opportunity to bring advanced microscopy and sensing tools into your pocket with a fraction of the cost of existing technologies,” said Ozcan, who is also a co-founder of Cellmic LLC. “We are proud to have made fundamental contributions to establish this technique, which has been benefiting researchers in both academia and industry at a global scale.”

“Our partnership with Leti will help this powerful imaging and sensing technology to reach different markets through Leti’s powerful collaborations with other companies in various industries,” added Neven Karlovac, the CEO and co-founder of Cellmic LLC.

“Ozcan’s research lab and Cellmic have done ground-breaking work in developing lens-free imaging techniques,” said Jean-Marc Dinten, Leti Imaging department manager and international expert. “This core patent complements our lens-free technology development, such as point-of-care diagnosis for spinal meningitis.”

EV Group (EVG), a supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology and semiconductor markets, today announced that it has started construction work for the next expansion phase of its corporate headquarters. The new building will house EVG’s “Manufacturing III” facility, which will more than double the floor space for the final assembly of EVG’s systems.

“With our innovative manufacturing solutions for the high-tech industry as well as new biomedical applications, we operate in very dynamic markets with great future prospects,” stated Dr. Werner Thallner, executive operations and financial director at EV Group. “In light of the high capacity utilization in all areas of our existing facilities, as well as the positive market outlook, we decided to implement our plans for building our Manufacturing III facility this year. This will support our long-term growth targets at our corporate headquarters in St. Florian am Inn.”

EVG Manufacturing III Photo 1

The new Manufacturing III building, adjacent to the new test room site that was opened just a few months ago, will be built next to the river Inn. The ultramodern building will provide approximately 4,800 square meters of additional space in total, which will benefit not only manufacturing but other departments as well. In addition to an expansion of warehouse space, a new delivery area with a dedicated packaging site designed for cleanroom equipment will be created, along with an airfreight security zone and new truck loading docks for the shipment of the completed systems to EVG’s worldwide customers.

The construction of the new Manufacturing III building is set to be completed in early 2019.