Tag Archives: letter-mems-top

imec and Holst Centre (established by imec and TNO), today announced a new sensor hub integrated as a system-on-chip (SoC) intended for a broad range of wearable health devices and applications. The SoC combines an unprecedented number of biomedical analog interfaces into a single chip, on-board digital signal processing, high fidelity operation, and multi-day monitoring capability with a single battery.  Thanks to its small form factor, the SoC can be easily integrated in new innovative designs enabling maximum user comfort. This new SoC is an enabler towards the transformation of today’s mainly curative approach to healthcare to one that is preventative, predictive and personalized.

biomed hub

The biomedical analog interfaces include three ECG channels, photo-plethysmography (PPG), galvanic skin response (GSR), two multi-frequency bio-impedance (BIO-Z) channels to support new applications such as impedance-tomography, body fluid analysis and stroke volume measurements, and three reconfigurable channels.

While high performance multi-modal analog readouts have been demonstrated, they lack on-board signal processing capabilities, or are too large in size. Alternatively, existing reconfigurable readouts are smaller, but have limited performance. Imec’s and Holst Centre’s SoC moves beyond current solutions and combines advanced biomedical readouts, supported by an ARM Cortex M0+ controller and accelerators for sample-rate conversion, matrix processing, data compaction, and power management circuitry (PMIC).  The PMIC operates from a battery source (2.9- 4.5V) and generates the required voltages for the readout IC. It supports dynamic voltage scaling optimized for, but not limited to, low power and high performance applications, and can be fully customized for specific healthcare applications.

“There is a clear need for accurate and reliable bio-sensing in wearables, and we are working on the building blocks to enable this,” stated Chris Van Hoof, program director wearable health at imec. “Our new SoC sensor hub underscores patient-centric capabilities and can be integrated in numerous wearable fitness and healthcare applications such as patch monitors, chest band heart rate monitors, respiration or hydration monitors and devices for blood-pressure calculation.”

Solid State Technology announced today that its premier semiconductor manufacturing conference and networking event, The ConFab, will be held at the iconic Hotel del Coronado in San Diego on May 14-17, 2017. A 30% increase in attendance in 2016 with a similar uplift expected in 2017, makes the venue an ideal meeting location as The ConFab continues to expand.

    

For more than 12 years, The ConFab, an invitation-only executive conference, has been the destination for key industry influencers and decision-makers to connect and collaborate on critical issues.

“The semiconductor industry is maturing, yet opportunities abound,” said Pete Singer, Editor-in-Chief of Solid State Technology and Conference Chair of The ConFab. “The Internet of Things (IoT) is exploding, which will result in a demand for “things” such as sensors and actuators, as well as cloud computing. 5G is also coming and will be the key technology for access to the cloud.”

The ConFab is the best place to seek a deeper understanding on these and other important issues, offering a unique blend of market insights, technology forecasts and strategic assessments of the challenges and opportunities facing semiconductor manufacturers. “In changing times, it’s critical for people to get together in a relaxed setting, learn what’s new, connect with old friends, make new acquaintances and find new business opportunities,” Singer added.

Dave Mount

David Mount

Solid State Technology is also pleased to announce the addition of David J. Mount to The ConFab team as marketing and business development manager. Mount has a rich history in the semiconductor manufacturing equipment business and will be instrumental in guiding continued growth, and expanding into new high growth areas.

Mainstream semiconductor technology will remain the central focus of The ConFab, and the conference will be expanded with additional speakers, panelists, and VIP attendees that will participate from other fast growing and emerging areas. These include biomedical, automotive, IoT, MEMS, LEDs, displays, thin film batteries, photonics and advanced packaging. From both the device maker and the equipment supplier perspective, The ConFab 2017 is a must-attend networking conference for business leaders.

The ConFab conference program is guided by a stellar Advisory Board, with high level representatives from GLOBALFOUNDRIES, Texas Instruments, TSMC, Cisco, Samsung, Intel, Lam Research, KLA-Tencor, ASE, NVIDIA, the Fab Owners Association and elsewhere.

Details on the invitation-only conference are at: www.theconfab.com. For sponsorship inquiries, contact Kerry Hoffman at [email protected]. For details on attending as a guest or qualifying as a VIP, contact Sally Bixby at [email protected].

BY DR. BERND DIELACHER, DR. MARTIN EIBELHUBER and DR. THOMAS UHRMANN, EV Group, St. Florian, Austria

Over the past several decades, miniaturization has significantly improved clinical diagnostics, pharmaceutical research and analytical chemistry. Modern biotechnology devices— such as biosensors, fully integrated systems for diagnostics, cell-analysis or drug discovery—are often chip-based and rely on close interaction of biological substances at the micro- and nanoscale. Thus, process technologies that enable the production of surface patterns and integration of fluidic components with small feature sizes are needed (FIGURE 1).

FIGURE 1. Biotechnology devices utilize a variety of structures at the micro- and nanoscale that interact with biological substances.

FIGURE 1. Biotechnology devices utilize a variety of structures at the micro- and nanoscale that interact with
biological substances.

Today’s miniaturized biotechnology devices can be found in numerous applications, including fields related to human health as well as environmental and industrial sciences. For example, chemical sensors and biosensors are commonly used to analyze pH values, levels of electrolytes and blood-gas. Glucose sensors are a prominent example of highly successful commercial devices used for diabetes monitoring, where miniaturization has enhanced the development of implantable chips for continuous glucose level monitoring inside the human body.Fully integrated systems, including micro- and nanopumps for accurate insulin release, have also been shown. In general, such controlled drug delivery systems offer new opportunities for the treatment of common acute and chronic diseases. Moreover, microneedle arrays, which allow minimally invasive and painless delivery of drugs through the skin, neural electrodes for stimulation or monitoring signals inside the brain, or prosthetic devices such as artificial retinas, have also been developed.

Microfluidics plays a key role in the transport and manipulation of biological fluids in biotechnology devices. For example, laminar flow behavior can be overserved, which allows a well-defined control of liquids. Capillary forces can enable fluid flow without the need of active pumps. In addition, short distances reduce diffusion times of molecules, which lead to faster biological reactions. Overall, microfluidic devices offer a high degree of parallelization while using extremely-low-volume samples. Microfluidic devices that perform complete tasks or analysis, usually done in a laboratory, are referred to as lab-on-chip (LOC) devices. Other names include bio-chips or micro-Total-Analysis- Systems (μ-TAS). These systems are used in applications such as in-vitro diagnostics, high-throughput screening, genomics and drug discovery. LOC devices are also ideally suited for point-of-care testing (POCT), where they provide rapid diagnostics at the patient site.

Nanoimprint lithography

To successfully commercialize such products in a fast growing market with stringent requirements and high regulatory hurdles, precise and cost-effective micro- structuring technologies are essential. Nanoimprint lithography (NIL) has evolved from a niche technology to a powerful high-volume manufacturing method that is able to serve today’s needs and overcome the challenges of increasing complexity of microfluidic devices in particular, and biotechnology devices in general. NIL is a patterning technique capable of producing a multitude of different sizes and shapes on a large scale by imprinting either into a biocompatible resist or directly into the bulk material with resolutions down to 20 nm. NIL can be distinguished between three types of imprint technologies: hot-embossing or thermal NIL, UV-NIL, and micro- contact printing (μ-CP).

Hot-embossing is a cost-effective and relatively simple process, well suited for the fabrication of polymer microfluidic devices with very high replication accuracy of small features down to 50 nm (FIGURE 2). A polymer sheet or spin-on-polymer is heated above its glass transition temperature, transforming the material into a viscous state. A stamp containing the negative copy of the struc- tures is then pressed into the polymer with sufficient force to conformally mold the polymer. De-embossing is done after cooling the substrate below a certain temperature where the material retains its shape when removing the stamp. During hot-embossing, the structure is trans- ferred by displacement of the viscous material. The process is characterized by short flow paths of the material, moderate flow velocities and imprinting temperatures. Residual stress is therefore low, especially when comparing the process to injection molding, which is an alternative production technique for microfluidics.

FIGURE 2: a) 200-μm wide microfluidic channels and b) 10- μm pillar arrays with high aspect ratios (7:1) fabricated by hot- embossing (Courtesy of National Research Council Canada). c) Schematic drawing of hot-embossing process flow.

FIGURE 2: a) 200-μm wide microfluidic channels and b) 10- μm pillar arrays with high aspect ratios (7:1) fabricated by hot- embossing (Courtesy of National Research Council Canada). c) Schematic drawing of hot-embossing process flow.

FIGURE 2: a) 200-μm wide microfluidic channels and b) 10- μm pillar arrays with high aspect ratios (7:1) fabricated by hot- embossing (Courtesy of National Research Council Canada). c) Schematic drawing of hot-embossing process flow.

Because of the much higher process temperatures and pressures associated with injection molding, final products produced by this process usually experience higher internal residual stress, which easily results in significant deformation, such as warpage and shrinkage. In addition, a surface solidifi- cation layer is formed at the interface of the cold mold during the injection of the high-temperature molten polymer. This effect significantly influences the replication accuracy and optical quality. Extensive effort in process development and simulation is therefore often necessary for injection molding to replicate small features in an accurate manner. In contrast, hot-embossing allows precise replication of micro- and nanostructures with less effort and is superior when replicating high-aspect ratio features or when using very-thin substrates. Structures with high-aspect ratios are often needed in microfluidic chips for filtration elements, particle separation or cell sorting.

The ability to use very thin substrates enables the patterning of spin-on-polymer layers on top of other materials or even roll-to-roll embossing using polymer foils for very-high-throughput production. Parallel wafer-based batch processing also enables fabrication of typical-sized microfluidic chips with throughputs compa- rable to or even higher than injection molding or similar techniques. Since master stamps for hot-embossing do not need to withstand the high temperatures and forces required for mold inserts for injection molding, they are less expensive to produce. Therefore, hot-embossing is also a well suited technology for R&D and allows easier design changes in volume-production. UV-NIL refers to a technique where a transparent stamp is pressed into a photo-curable resist and cross-linked by UV-light while still in contact (FIGURE 3). In biotechnology applications, the resist is usually coated onto silicon or glass substrates. Unlike hot-embossing, the UV-NIL stamp is brought in contact with the resist using minimum force to conformally join the stamp and substrate. The different mechanisms of curing and stamp attachment account for different advantages and fields of application of the respective technologies.

FIGURE 3: (a) 100-nm grating with residual layer <10 nm imprinted into 90 nm height resist on silicon substrate and (b) 350-nm photonic crystal fabricated by UV-NIL. c) Schematic drawing of UV-NIL process flow.

FIGURE 3: (a) 100-nm grating with residual layer

UV-NIL provides very-high-alignment accuracy, pattern fidelity, and throughput whereas hot-embossing is capable of imprinting higher aspect ratios and larger structures in the upper micron range as well as combinations of micro- and nanostructures. UV-NIL offers additional opportunities for biotechnology devices where features with ultra- high precision are needed. Examples include optical-based biosensors that often rely on noble metal nanostructures that influence properties of coupled light upon the binding of molecules onto the nanostructures.Regardless of what the sensing principle is based on (e.g. localized surface plasmon resonance or photonic band gaps), small changes in shape and size can significantly alter the properties of the sensing element.

In order to produce nanostructures made of metals, either additive or subtractive processes can be used. The former involves the deposition of a metal layer onto the patterned resist followed by a lift-off process, whereas the latter involves the transfer of the pattern into an underlying metal layer by etching processes. In both cases, the small residual layer must first be removed. Having a uniform residual layer is of high importance, especially for subse- quent etching processes, and can be easily achieved with current equipment over large areas. Imprinted UV-NIL resists can also be used directly as functional layers. After many years of continuous resist development, a broad portfolio of optimized resist materials is available for various bio-applications. Another interesting aspect, especially for microfluidic devices, is the potential of nanostructures to influence surface properties. For example, nanostructures can change the surface behavior from hydrophilic to hydrophobic, which can be used to locally influence the fluid flow.

While UV-NIL is ideally suited for fabricating very small features, it is not well suited for features larger than several tens of micrometers. In cases where both highly-accurate nanostructures and large microfluidic channels are needed, hot-embossing can be used to imprint the channels on a separate substrate. The two substrates can subsequently be bonded together to produce the final device.

A third NIL option is μ-CP, where a pre-inked stamp is used to transfer materials such as biomolecules onto a substrate in a distinct pattern (FIGURE 4). Local modification of surface chemistry can, for example, be used to guide the growth of neurons on a chip. On the other hand, it can be used for the precise placement of capture molecules in biosensor fabrication. This technique is applicable on all common surfaces, such as silicon, glass or polymers with micro- and nanometer resolution and offers new possibilities for functionalization of biotechnology devices.

FIGURE 4: Bio-functionalized, micro-patterned array
created by micro-contact printing for the detection of protein- protein interactions in live cells. a) Antibody-patterns induce the recruitment of two interacting proteins to micro-patterns, which is detected by fluorescence microscopy. b) Missing interaction of the two candidate proteins leads to homogenous distribution on the functionalized surface. c) Schematic drawing of micro-contact printing process flow. [Images adapted from Schwarzenbacher et al., 2008, Nature Methods; Weghuber et al., 2010, Methods in Enzymology].

FIGURE 4: Bio-functionalized, micro-patterned array
created by micro-contact printing for the detection of protein- protein interactions in live cells. a) Antibody-patterns induce the recruitment of two interacting proteins to micro-patterns, which is detected by fluorescence microscopy. b) Missing interaction of the two candidate proteins leads to homogenous distribution on the functionalized surface. c) Schematic drawing of micro-contact printing process flow. [Images adapted from Schwarzenbacher et al., 2008, Nature Methods; Weghuber et al., 2010, Methods in Enzymology].

Although most current microfluidic devices do not follow the same degree of miniaturization in terms of chip-size compared to the microelectronics industry, large-scale parallel processing has a significant advantage in terms of costs and flexibility (FIGURE 5). Alternative fabrication techniques for microfluidic chips, such as injection molding, are principally serial processes and have limita- tions in up-scaling.Using nanoimprinting,30chipsofthe size of a microscopy slide (25 x 75 mm) can easily fit on a single 300-mm substrate. This format can be considered a good reference for an average- sized microfluidic chip. In terms of throughput, wafer-based batch processing is able to reach similar or better cycle times per device compared to alternative solutions, such as injection molding. UV-NIL has even been introduced on GEN2 substrates (370 x 470 mm). In addition, roll- to-roll processing can reach even higher throughput levels but is restricted to the structuring of flexible foils.

FIGURE 5: Large-area parallel processing offers significant advantages in terms of cost and flexibility. Additional processes, such as electrode fabrication or spotting of reagents, can also be efficiently integrated.

FIGURE 5: Large-area parallel processing offers significant advantages in terms of cost and flexibility. Additional processes, such as electrode fabrication or spotting of reagents, can also be efficiently integrated.

Wafer bonding

NIL has an additional advantage in terms of post- processing. Electrode fabrication, surface treatments or spotting of bio-reagents can be efficiently integrated in a large-area batch. The same is true for sealing and encapsulation, an essential process step for all biotechnology devices. It is usually mandatory to close micro-fluidic channels, to fabricate a hermetic sealing for protection against environmental influences or even to provide packaging that is compatible for implantation into human bodies. In addition, interconnections to the outer world have to be incorporated, such as holes or fluidic connectors. Electronic connections or assembling the device together with an integrated microelectronic chip is also often necessary. Thus, bonding of different device layers, capping layers or interconnection layers is a key process that can be implemented together with NIL in a cost-effective large-area batch process. NIL has an additional advantage of providing a high surface quality that can significantly improve subsequent bonding of polymer devices. Surface roughness, total-thickness variation as well as warpage are usually lower than in devices fabricated by injection molding. In the following section, several well-suited bonding processes for sealing biotechnology devices are discussed (FIGURE 6).

FIGURE 6: Typical bonding options for biotechnology devices that are well suited in combination with NIL processes.

FIGURE 6: Typical bonding options for biotechnology devices that are well suited in combination with NIL processes.

A common requirement in biotechnology applications is optical transparency, at least from one side, since most devices rely on optical readouts. Glass is therefore often used as a capping layer for highly complex devices made of silicon. In such cases, anodic bonding can provide a high-quality hermetic seal, where bonding is achieved by high voltage and heat causing inter-diffusion of ions. Another process for joining glass or polymer devices is thermal bonding using high temperatures and pressures. Special attention has to be paid when using this technique for bonding polymer and, in particular, polymer micro-fluidic devices. Thermal bonding is performed by heating the substrate near or above the glass transition temper- ature, which softens the material. The additional pressure generates sufficient flow of polymer at the interface to achieve intimate contact and inter-diffusion of polymer chains. Pressure is removed after the substrate is cooled down to a specific value below the glass transition temperature. Un-optimized temperature and pressure can easily lead to deformation of microstructures. Plasma as well as UV and ozone treatment can be used to activate the polymer surface, which allows bonding at reduced temperatures and reduces the risk of deformation. Anodic and thermal bonding are interlayer-free processes and therefore do not introduce any additional material to the device.

Adhesive bonding is another process that found widespread use in sealing or encapsulating bio-technology devices. Many biocompatible adhesives are available today and high bond strength can be expected from this technique. Bonding with adhesives can be used to join many different materials. Often liquid adhesives are used, which can be cured thermally or by exposure to UV light. The latter offers a significant advantage that addresses another important issue in many pharmaceu- tical or diagnostic devices where bio-molecules have to be incorporated before sealing the device. UV-curing allows bonding at room-temperature whereas higher temperatures usually lead to denaturation or complete destruction of bio-molecules.

Adhesives usually have to be selectively deposited on the substrate, which can be achieved with μ-contact printing. Similar to bio-molecule printing, an adhesive can be trans- ferred onto the substrate according to the pattern of the stamp. In contrast, however, an adhesive can be spin coated onto a transfer plate, which is then brought into contact with the substrate. By releasing the transfer plate, the adhesive will remain on the heightened structures. This production process is an elegant solution for micro-fluidic devices where micro-channels stay free of adhesive without the need for alignment. With these methods the adhesive can be coated as a thin layer (typically on the order of several microns) with very good uniformity over large areas. Commercially available adhesive tapes offer another solution, which can be easily laminated onto the microfluidic chips either in the form of double-side-adhesive tapes or pressure-sensitive-tapes. By using this process, the tape covers the top of microfluidic channels and can alter chemical or physical parameters of the channels, which can then influence the fluidic behavior or biological function of the device. Due to the availability of a variety of different tapes, however, such influences can be addressed and eliminated in many applications.

Summary

Micro- and nanotechnology combined with biotechnology has the potential to revolutionize many areas of healthcare, agriculture and industrial manufacturing. The market for miniaturized bio-devices is rapidly growing with technologies becoming increasingly complex. For successful translation of these technologies into new products, the availability of fabrication tools is key. Today’s NIL equipment offers a well suited solution, where complexity in design does not necessarily add manufacturing cost. Together with sealing and bonding processes that are well aligned with these structuring techniques, limitations of current fabrication methods can be overcome to enable the production for next-generation biotechnology devices.

Further reading

T. Glinsner and G. Kreindl, “Nanoimprint Lithography,” in Lithography, M. Wang, Ed. InTech, 2010.
T. Glinsner, T. Veres, G. Kreindl, E. Roy, K. Morton, T. Wieser,
C. Thanner, D. Treiblmayr, R. Miller, and P. Lindner, “Fully automated hot embossing processes utilizing high resolution working stamps,” Microelectron. Eng., vol. 87, no. 5–8, pp. 1037–1040, May 2010.
G. Kreindl, T. Glinsner, and R. Miller, “Next-generation lithography: Making a good impression,” Nat. Photonics, vol. 4, no. 1, pp. 27–28, Jan. 2010.

By Christian G. Dieseldorff, Industry Research & Statistics Group at SEMI (September 6, 2016)

SEMI’s Industry Research and Statistics group has published its August update of the World Fab Forecast report. The report has served the industry for 24 years, observing and analyzing spending, capacity, and technology changes for all front-end facilities worldwide, from high-volume to R&D fabs.  SEMI’s latest data show increasing equipment spending, reaching 4.1 percent YOY in 2016 and 10.6 percent in 2017. Figure 1 (below) shows a forecast of  -2 percent decline from 2H2015 to 1H2016 and an 18 percent increase from 1H2016 to. 2H2016.

Figure 1: Fab Equipment Spending by Quarter

Figure 1: Fab Equipment Spending by Quarter

The largest growth drivers for the industry are mobile devices (including devices using SSDs), automotive, and soon anticipated to be IoT, with these applications, in many cases, requiring 3D NAND and Logic 10nm/7nm.

The SEMI report indicates that the two industry segments leading to the biggest increase in 2H16 are Foundry (29 percent) and Memory (21 percent).  Growth in Memory is driven by a significant increase in 3D NAND spending in 2016. Comparing 2016 to 2017, Foundry growth remains quite steady, with a 14 percent increase in 2016 and 13 percent in 2017.

Companies like Samsung, Micron, Flash Alliance, Intel, and SK Hynix drive Memory growth with 3D NAND to an astounding 152 percent increase in 2016 and 29 percent in 2017. However, utilization of all this equipment is still low in 2016 but is expected to increase in 2017.

Looking at other product segments, DRAM equipment spending is expected to decline by 31 percent in 2016 and then recover slightly with 2 percent growth in 2017. Power devices also show strong growth with 25 percent in 2016 and 16 percent in 2017. The Analog segment will slump by -15 percent in 2016 but increase by 20 percent in 2017. Similarly, MPU will drop -20 percent in 2016 and then is expected to increase by 48 percent in 2017.

Comparing spending by region in 2016, SE Asia shows the largest growth, with 157 percent in 2016, driven mainly by 3D NAND (see Figure 2).

China, in third place for overall spending, shows 64 percent growth for 2016 primarily due to 3D NAND by non-Chinese companies, closely followed by Foundry companies. Although the largest spenders in China currently are overseas device companies, China-based chipmakers are starting to pick up investment activity.

Figure 2: Fab Equipment Spending by Region

Figure 2: Fab Equipment Spending by Region

By contrast, the largest growth rate in 2017 is in Europe/Mideast with about 60 percent which is mainly due to ramping of 10nm facilities. Korea is in second place for total spending, mainly driven by Samsung’s investment in DRAM and Flash. Japan in third place driven by Flash Alliance (3D NAND).

The World Fab Forecast report provides more detailed information by company and fab for construction spending, equipment spending and capacities by region and product type.  Since the last publication in May 2016, the SEMI research team has made over 330 changes to 300 facilities/lines. This includes 27 new records and 18 records closed.

For information about semiconductor manufacturing for the remainder of 2016 and in 2017, and for details about capex for construction projects, fab equipping, technology levels, and products, order the SEMI World Fab Forecast Report. The report, in Excel format, tracks spending and capacities for over 1,100 facilities including over 82 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities.  Using a bottoms-up approach methodology, the SEMI Fab Forecast provides high-level summaries and graphs, and in-depth analyses of capital expenditures, capacities, technology and products by fab.

The SEMI Worldwide Semiconductor Equipment Market Subscription (WWSEMS) data tracks only new equipment for fabs and test and assembly and packaging houses.  The SEMI World Fab Forecast and its related Fab Database reports track any equipment needed to ramp fabs, upgrade technology nodes, and expand or change wafer size, including new equipment, used equipment, or in-house equipment. Also check out the Opto/LED Fab Forecast. Learn more about the SEMI fab databases at: www.semi.org/MarketInfo/FabDatabase and www.youtube.com/user/SEMImktstats

Global growth in the number of “things” connected to the Internet continues to significantly outpace the addition of human users to the World Wide Web. New connections to the “Internet of Things” are now increasing by more than 6x the number of people being added to the “Internet of Humans” each year. Despite the increasing number of connections, IC Insights has trimmed back its semiconductor forecast for Internet of Things system functions over the next four years by about $1.9 billion, mostly because of lower sales projections for connected cities applications (such as smart electric meters and infrastructure). Total IoT semiconductor sales are still expected to rise 19% in 2016 to $18.4 billion, as shown in Figure 1, but the updated forecast first presented in the Update to the 2016 IC Market Drivers Report reduces the market’s compound annual growth rate between 2014 and 2019 to 19.9% compared to the original CAGR of 21.1%. Semiconductor sales for IoT system functions are now expected to reach $29.6 billion in 2019 versus the previous projection of $31.1 billion in the final year of the forecast.

Figure 1

Figure 1

The most significant changes in the new outlook are that semiconductor revenues for connected cities applications are projected to grow by a CAGR of 12.9% between 2014 and 2019 (down from 15.5% in the original forecast) while the connected vehicles segment is expected to rise by a CAGR of 36.7% (up from 31.2% in the previous projection). IoT semiconductor sales for connected cities are now forecast to reach $15.7 billion in 2019 while the chip market for connected vehicle functions is expected to be $1.7 billion in 2019, up from the previous forecast of $1.4 billion.

For 2016, revenues of IoT semiconductors used in connected cities applications are expected to rise 15% to about $11.4 billion while the connected vehicle category is projected to climb 66% to $787 million this year.

Sales of IoT semiconductors for wearable systems have also increased slightly in the forecast period compared to the original projection.  Sales of semiconductors for wearable IoT systems are now expected to grow 22% to about $2.2 billion in 2016 after surging 421% in 2015 to nearly $1.8 billion following Apple’s entry into the smartwatch market in 2Q15.  The semiconductor market for wearable IoT applications is expected to be nearly $3.9 billion in 2019.  Meanwhile, the forecast for IoT semiconductors in connected homes and the Industrial Internet categories remains unchanged.  The connected homes segment is still expected to grow 26% in 2016 to about $545 million, and the Industrial Internet chip market is forecast to increase 22% to nearly $3.5 billion.  The semiconductor forecast for IoT connections in the Industrial Internet is still expected to grow by a CAGR of 25.7% to nearly $7.3 billion in 2019 from $2.3 billion in 2014.

IBM (NYSE:  IBM) scientists have created randomly spiking neurons using phase-change materials to store and process data. This demonstration marks a significant step forward in the development of energy-efficient, ultra-dense integrated neuromorphic technologies for applications in cognitive computing.

An artistic rendering of a population of stochastic phase-change neurons which appears on the cover of Nature Nanotechnology, 3 August 2016. Credit: IBM Research

An artistic rendering of a population of stochastic phase-change neurons which appears on the cover of Nature Nanotechnology, 3 August 2016. Credit: IBM Research

Inspired by the way the biological brain functions, scientists have theorized for decades that it should be possible to imitate the versatile computational capabilities of large populations of neurons. However, doing so at densities and with a power budget that would be comparable to those seen in biology has been a significant challenge, until now.

“We have been researching phase-change materials for memory applications for over a decade, and our progress in the past 24 months has been remarkable,” said IBM Fellow Evangelos Eleftheriou. “In this period, we have discovered and published new memory techniques, including projected memorystored 3 bits per cell in phase-change memory for the first time, and now are demonstrating the powerful capabilities of phase-change-based artificial neurons, which can perform various computational primitives such as data-correlation detection and unsupervised learning at high speeds using very little energy.”

The results of this research are appearing today on the cover of the peer-reviewed journal Nature Nanotechnology.

The artificial neurons designed by IBM scientists in Zurich consist of phase-change materials, including germanium antimony telluride, which exhibit two stable states, an amorphous one (without a clearly defined structure) and a crystalline one (with structure). These materials are the basis of re-writable Blu-ray discs. However, the artificial neurons do not store digital information; they are analog, just like the synapses and neurons in our biological brain.

In the published demonstration, the team applied a series of electrical pulses to the artificial neurons, which resulted in the progressive crystallization of the phase-change material, ultimately causing the neuron to fire. In neuroscience, this function is known as the integrate-and-fire property of biological neurons. This is the foundation for event-based computation and, in principle, is similar to how our brain triggers a response when we touch something hot.

Exploiting this integrate-and-fire property, even a single neuron can be used to detect patterns and discover correlations in real-time streams of event-based data. For example, in the Internet of Things, sensors can collect and analyze volumes of weather data collected at the edge for faster forecasts. The artificial neurons could be used to detect patterns in financial transactions to find discrepancies or use data from social media to discover new cultural trends in real time. Large populations of these high-speed, low-energy nano-scale neurons could also be used in neuromorphic coprocessors with co-located memory and processing units.

IBM scientists have organized hundreds of artificial neurons into populations and used them to represent fast and complex signals. Moreover, the artificial neurons have been shown to sustain billions of switching cycles, which would correspond to multiple years of operation at an update frequency of 100 Hz. The energy required for each neuron update was less than five picojoule and the average power less than 120 microwatts — for comparison, 60 million microwatts power a 60 watt lightbulb.

“Populations of stochastic phase-change neurons, combined with other nanoscale computational elements such as artificial synapses, could be a key enabler for the creation of a new generation of extremely dense neuromorphic computing systems,” said Tomas Tuma, a co-author of the paper.

By Marwan Boustany, senior analyst, MEMS and sensors, IHS Markit

With less potential for organic volume growth due to slowing end-product markets, market-share competition will dominate in 2016. MEMS suppliers will therefore focus more on sensor improvement (power and performance), portfolio expansion and innovation (new sensor categories), acquisitions (rapid capability integration), new business models (software services based on sensors) and expansion into new product categories (drones, smart homes, etc.).

Even as motion sensors and other traditional MEMS markets slow down, there are new and growing opportunities, including the following:

  • Virtual-reality headsets using motion sensors and microphones are a growing category in gaming, with HTC, Facebook and Sony all offering products.
  • Drones that use motion sensors began to take off in 2015. While this is a segment with a lot of potential, regulatory issues may have an as yet unclear impact on future sales volume, especially when the potential for delivery drones from Amazon are considered.
  • Home environmental monitoring, using gas, humidity and temperature sensors, show good opportunity for growth. This segment is led by smart home products from Nest and Honeywell, as well as carbon-monoxide detection regulations and growing consumer adoption of air-purifiers.
  • E-cigarettes, using flow sensors, are also on the rise.

Leading MEMS sensor manufacturer trends

Following is a top-line review of the three leading MEMS sensor manufacturers, based on 2015 revenue:

1. STMicroelectronics 

STMicroelectronics is still the revenue leader for consumer MEMS, thanks to its business across a wide range of sensor types. The company’s consumer MEMS revenue lead continued to erode at a fast rate last year, with competitors growing share, the company’s first-place revenue lead has narrowed from $100 million in 2014 to around $10 million in 2015. STMicroelectronic’s motion sensor revenue continued to decline in 2015, however it was helped by its growing success with 6-axis inertial measurement units (IMUs) used mainly by manufacturers in China.

STMicroelectronics was hit hard in the last two years, because Apple shifted its gyroscope business to InvenSense in 2014; however, STMicroelectronics won the Apple Watch business in 2015 with its 6-axis IMU and also increased its share of motion sensors used by Samsung in 2016.

2. Knowles

Knowles is still the dominant leader in MEMS microphones, leading the second-ranked suppler (Goertek) by a power of three in units and revenue. In addition to offering a wide range of analog and digital-output microphones, Knowles has also started shipping its VoiceIQ microphones with local processing in 2016, as it seeks to address both mobile and internet of things (IoT) applications.

While MEMS microphone price erosion has led to revenue decline for Knowles, it still ranks second after STMicroelectronics thanks to a favorable shift in Microphone adoption. The company has dramatically narrowed the lead enjoyed by STMicroelectronics — from more than $100 million in 2014 to just $10 million last year. Knowles provides a large share of MEMS sensors used in Apple’s products, as well as a share in most handsets, tablets and wearable products from other manufacturers.

3. InvenSense

InvenSense overtook Bosch and moved into third-ranked revenue position in the MEMS market last year. The company leads in consumer motion sensor revenue, thanks to dramatic volume growth for 6-axis IMUs as well as its dedicated optical-image stabilization (OIS) gyroscope. InvenSense is the standout MEMS supplier in terms of motion sensor revenue growth, with 26 percent year-over-year revenue growth, while the other sensor leaders suffer declining revenue.

Apple is the key and dominant source of this revenue for InvenSense, especially as it loses share in Samsung to STMicroelectronics in 2016. The company is increasingly pushing its MEMS microphone products against strong competition and hopes to release an ultrasonic fingerprint sensor in 2017 to capitalise on a rapidly growing segment.

top mems suppliers

Source: The IHS Markit MEMS & Sensors for Consumer & Mobile Intelligence Service provides comprehensive insight and analysis on MEMS sensors used in smartphones, wearables and consumer electronics. For information about purchasing this report, contact [email protected].

STMicroelectronics (NYSE:STM) has been named the MEMS Manufacturer of the Year at the MEMS World Summit, the MEMS Manufacturing Conference gathering the top executives in the Worldwide MEMS Manufacturing Industry. The event took place in Shanghai on July 25-26, 2016.

The prestigious recognition from the advisory board members of the MEMS World Summit, which consists of leading research institutes, leading Equipment Manufacturers and MEMS Manufacturers, underlines ST’s position as an industry leader with 11 billion MEMS sensors shipped to date and the only company with the expertise to cover the full range of micro-machined silicon devices that include both sensors and micro-actuators. In naming ST, the jury highlighted the significant role of ST’s high-efficiency 6-axis MEMS sensor modules in driving the transformation of smartphones into intelligent personal assistants as one of the key winning factors. Other high-score criteria for ST included product development, revenue, and company culture.

“ST has always been a leader in MEMS and we want to recognize their continued presence at the top. The evaluating criteria for selecting this year’s winner were also based on factors such as revenue, product development, company culture, and company awareness,” said Salah Nasri, Advisory Board Chair of MEMS World Summit.

“The performance of 6-axis MEMS sensor modules, which have become a key building block of today’s consumer and IoT devices, has enabled new features in smartphones and more broadly new user experiences,” said Andrea Onetti, Group VP and General Manager, MEMS Sensors Division, STMicroelectronics. “ST is honored to receive this award as we strive to bring continuous innovation to the development and deployment of MEMS technologies for a variety of fields, including industrial and automotive.”

Andrea Onetti collected the Award on behalf of ST at the MEMS World Summit’s Gala Dinner.

Beyond its gloom, the MEMS industry is showing numerous emerging devices that hold promise for future growth. These innovative MEMS solutions were listed by the MEMS & Sensors team of Yole Développement (Yole) in the Status of the MEMS Industry 2016 report (Yole Développement, May 2016). Today, more than 100 businesses, startups and large companies are involved in exciting developments using MEMS technology. The MEMS approach can be defined as a transfer function: It lowers cost and improves integration and performance.

transfer function

“MEMS can be seen as a ‘transfer function’ using semiconductor and micromachining technologies to create devices replacing devices that are more complex, bulky or less sensitive,” explains Dr. Eric Mounier, Sr. Technology & Market Analyst at Yole. Yole has identified at least 5 criteria that determine the success of a MEMS device. They are: size reduction, potential cost reduction, “good enough” specifications, batch manufacturing compared to existing solutions, and reliability.
At least 10 to 15 years of development are required to achieve all the successful criteria.

“Based on this segmentation, and out of all the MEMS devices in development that could undergo significant growth in the future, we foresee ultrasonic and gas sensors as well as microspeaker as the next success for the MEMS industry,” details Dr. Mounier.

As Yole’s market forecast announces, the gas sensor market is showing a 7.3% CAGR for the 2014–2021 period. The market should reach US$920 million in 2021. Moreover Yole’s analysts highlight a potential upside market of almost US$65 million in 2021. This positive scenario might be possible if gas sensors are widely adopted in consumer products, analysts say (Source: Gas Sensor Technology & Market report, Yole Développement, February 2016).

Microspeakers could be part of the success story as well. Indeed a big transition is happening now: for the first time, silicon speakers are ready for volume production, enabling the creation of a brand-new multibillion-dollar market for MEMS manufacturers. Last month, Yole’s analysts had an interesting interview with USound, an Austrian company founded three years ago by several veterans of the MEMS industry.

“Prototypes of the first balanced-armature replacement and the first micro-tweeter are currently being sampled to selected customers,” USound asserted. “Pre-production will start at the end of the summer, along with internal qualification. The technology is ready for adoption and will revolutionize the personal-audio market, similar to what happened with the MEMS microphone.”

USound intends to evolve into an audio-system developer, offering complete solutions ranging from hardware to firmware, in order to simplify technology adoption and help our customers achieve optimum product performance. To read the full interview, click USound.

For the next few months, Yole will pursue its investigation into the MEMS world. Numerous technology and market reports will be released, and Yole’s MEMS & Sensors team will attend many key conferences to present its vision of the industry.

For example, in mid-September Yole will be part of two major events in Asia: MEMS & Sensors Conference Asia and Sensor Expo & Conference – China. At both conferences, Yole will present attendees with the status of the industry and its new virtuous cycle. Yole’s Speaker, Claire Troadec, MEMS & Semiconductor Manufacturing Analyst, will focus her presentation on the Chinese MEMS industry, which is steadily transforming from “Made in China” to “Created in China.” Claire will also review the Chinese MEMS players and the new virtuous cycle the MEMS industry.

Despite strong double-digit percentage increases in annual unit shipments, semiconductor sensor sales growth has become uncharacteristically lethargic because of steep price erosion in several major product categories. Strong unit demand is being fueled by new wearable systems, greater automation in vehicles, and the much-anticipated Internet of Things (IoT), but sharply falling average selling prices (ASPs) on accelerometers, gyroscope chips, and magnetic-field measuring devices are capping annual growth of total sensor revenues in the low- to mid-single digit range, based on data in IC Insights’ 2016 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discretes.

The 2016 O-S-D Report shows worldwide dollar-volume revenues for sensors rising by a compound annual growth rate (CAGR) of 5.3% between 2015 and 2020 compared to an 8.9% annual rate in the last five years. In contrast, total sensor unit shipments are expected to climb by a CAGR of 12.4% in the five-year forecast period compared to a blistering 20.5% rate of increase in the 2010-2015 period, when new sensing, navigation, and automated embedded control functions in smartphones drove up strong growth along with steady increases in automotive and industrial applications.

Despite recent years of weak sales growth—just 1% in 2015 to $6.4 billion—the sensor market is expected to end this decade with 10 consecutive years of record-high revenues and reach $8.3 billion in 2020 (Figure 1). Unit shipments of sensors have reached record high levels each year since the beginning of the last decade—even in the 2009 downturn year, when worldwide unit volume grew 9% while sensor revenues dropped 3%. Record sensor shipments are expected to continue for another five years, reaching 28.9 billion units in 2020, according to the 360-page 2016 O-S-D Report, which contains a detailed five-year forecast of sales, unit volume, and ASPs for more than 30 individual product types and device categories in optoelectronics, sensors/actuators, and discretes.

Figure 1

Figure 1

Competition between suppliers and requirements for low-cost sensors in new high-volume applications drove down ASPs from about $0.66 in 2010 to $0.40 in 2015.  The need to squeeze more sensing solutions into wearable systems, far-flung IoT-connected applications, and multi-sensor packages for increased accuracy and multi-dimensional measurements is exerting more pricing pressure in the market, concludes the 2016 O-S-D Report.   The report’s forecast shows sensor ASPs dropping by a CAGR of  6.3% in the next five years to only $0.29.

Total sensor sales are expected to grow by about 3% in 2016 to $6.6 billion with worldwide shipments rising 13% to nearly 18.2 billion units this year.  Sales of sensors made with microelectromechanical systems (MEMS) technology (i.e., accelerometers, gyroscope devices, and pressure sensors, including microphone chips)—are expected to grow by 4% in 2016 to $4.8 billion with unit shipments increasing 10% to 7.6 billion.  The 2016 O-S-D Report projects MEMS-based sensor sales rising by a CAGR of 5.5% in the next five years to $6.1 billion in 2020 with unit shipments growing by an annual rate of 11.9% to nearly 13.4 billion.  ASPs for MEMS-based sensors are expected to decline by a CAGR of -5.7% to $0.45 in 2020 from $0.61 in 2015, according to the annual O-S-D Report.