Tag Archives: letter-mems-top

The ongoing slump in shipments of standard personal computers along with the drop-off in tablets are setting the stage for cellphone IC sales to finally surpass integrated circuit revenues in total personal computing systems this year, based on new forecasts in the recently released update of IC Insights’ 2017 IC Market Drivers Report.

IC sales for cellular phone handsets are projected to grow 16% in 2017 to $84.4 billion, as shown in Figure 1, while the integrated circuit market for personal computing systems (desktop and notebook PCs, tablets, and thin-client Internet-centric units) is now forecast to increase 9% to $80.1 billion this year, according to the 150-page update to the 590-page report, originally released in 4Q16.

Fig 1

Fig 1

IC sales for both cellphones and total personal computing systems are strengthening significantly in 2017 primarily because of strong increases in the amount of money being spent on memory, with the average selling price (ASP) of DRAM expected to climb 53% and NAND flash ASP forecast to rise 28% this year. In 2016, IC sales for cellphone handsets grew 2% after rising 1% in 2015, while dollar volume for integrated circuits used in personal computing systems increased just 1% last year after falling 6% in 2015. Cellphone IC sales are also getting a lift from a projected 5% increase in shipments of smartphones, which are being packed with more low-power DRAM and nonvolatile flash storage, while growth in personal computing is expected to be held back by 3% declines in both standard personal computer and tablet unit volumes in 2017.

Shrinking shipments of desktop and notebook computers enabled cellphone IC sales to surpass integrated circuit revenues for standard PCs in 2013.  During 2015 and 2016, cellphone IC sales came close to catching up with integrated circuit sales for total personal computing systems.  In 2017, cellular phone handsets are now forecast to take over as the largest end-use systems category for IC sales.  The gap between IC sales for cellphones and total personal computing systems is projected to widen by the end of this decade.  Cellphone integrated circuit sales are expected to increase by a compound annual growth average (CAGR) of 5.3% in the 2015-2020 forecast period to $92.1 billion versus personal computing IC revenues rising by CAGR of just 2.9% to $83.8 billion in 2020, says the Update of IC Insights’ 2017 IC Market Drivers Report.

The refreshed forecast shows IC sales for standard PCs climbing 11.2% in 2017 to $67.5 billion after increasing about 4% in 2016 to $60.7 billion.  Tablet IC sales are now expected to drop 2% to $11.8 billion in 2017 after falling 11% in 2016 to $12.1 billion, based on the updated outlook.  IC sales for thin-client and Internet/cloud computing centric systems—such as laptops based on Google’s Chromebook platform design—are projected to rise 15% in 2017 to a $838 million after surging 21% in 2016 to $728 million.  Between 2015 and 2020, IC sales for standard PCs are expected to grow by a CAGR of 4.1% to $71.6 billion in the final year of the updated outlook, while table integrated circuit revenues are projected to fall by -3.9% annual rate in the period to about $11.0 billion and ICs in Internet/cloud computing are forecast to rise by CAGR of 13.8% to more than $1.1 billion.

With the increasing sophistication of future vehicles, new and more advanced semiconductor technologies will be used and vehicles will become technology centers.

BY DR. JEAN-CHARLES CIGAL and GREG SHUTTLEWORTH, Linde Electronics, Taipei, Taiwan

Large efforts are being deployed in the car industry to transform the driving experience. Electrical vehicles are in vogue and governments are encouraging this market with tax incentives. Cars are becoming smarter, capable of self-diagnostics, and in the near future will be able to connect with each other. Most importantly, the implementation of safety features has greatly reduced the number of accidents and fatal- ities on the roads in the last few decades. Thanks to extensive computing power, vehicles are now nearing autonomous driving capability. This is only possible with a dramatic increase in the amount of electronic devices in new vehicles.

Recent announcements regarding acquisitions of automotive electronics specialists by semiconductor giants and strategic plans from foundries highlight the appetite from a larger spectrum of semiconductor manufacturers for this particular market. Automotive electronics has become a major player in an industrial transformation.

Automotive electronics is, however, very different from the consumer electronics market. The foremost focus is on product quality, and the highest standards are used to ensure the reliability of electronics components in vehicles. This has also an impact on the quality and supply chain of materials such as gases and chemicals used in the manufacturing of these electronics devices.

Automotive electronics market: size and trends

When you include integrated circuits, optoelectronics, sensors, and discrete devices, the automotive electronics market reached around USD 34 billion in 2016 (FIGURE 1). While this represents less than 10% of the total semiconductor market, it is predicted to be one of the fastest growing markets over the next 5 years.

Screen Shot 2017-06-16 at 12.34.08 PM

There are several explanations for such growth potential:

• The vehicle market itself is predicted to steadily grow on an average 3% in the coming 10 years and will be especially driven by China and India, although other developed countries will still experience an increase in sales.
• The semiconductor content in each car is steadily increasing and it is expected that the share of electronic systems in the vehicle cost could reach 50% of the total car cost by 2030 (FIGURE 2).

Screen Shot 2017-06-16 at 12.34.20 PM

While it is clearly challenging to describe what the driving experience will be in 10 to 15 years, some clear trends can be identified:

• Safety: The implementation of integrated vision systems, in connection with dozens of sensors and radars, will allow thorough diagnoses of surrounding areas of the vehicles. Cars will progressively be able to offer, and even take decisions, to prevent accidents.
• Fuel efficiency: The share of vehicles equipped with (hybrid) electrical engines is expected to steadily grow. For such engines, the electronics content is estimated to double in value compared to that of standard combustion engines.
• Comfort and infotainment: Vehicle drivers are constantly demanding a more enhanced driving experience. The digitalization of dashboards, the sound and video capabilities, and the customization of the driving and passenger environment should heighten the pleasure of time spent in the vehicle.

In order to coordinate all these functions, communication systems (within the vehicle, between vehicles, and between vehicles and infrastructures) are critical and large computing systems will be necessary to treat large amount of data.

Quality really makes automotive electronics different

Automotive electronics cannot be defined by specific technologies or applications. They are currently characterized by a very large portfolio of products based on mature technologies, spanning from discrete, optoelectronics, MEMS and sensors, to integrated circuits and memories.

Until now, the automotive electronics market has been the preserve of specialized semiconductor manufacturers with long experience in this field. The reason for this is the specific know-how required for quality management.

A component failure that appears harmless in a consumer product could have major safety consequences for a vehicle in motion. Furthermore, operating conditions of automotive electronics components (temperature, humidity, vibration, acceleration, etc.), their lifetime, and their spare part availability are differentiators to what is common for consumer and industrial devices (FIGURE 3).

Screen Shot 2017-06-16 at 12.34.39 PM Screen Shot 2017-06-16 at 12.34.47 PM

Currently, some of the most technologically advanced vehicles integrate around 450 semiconductor devices. As they become significantly more sophisticated, the semiconductor content will drastically increase, with many components based on the most advanced semiconductor technology available. Introducing artificial intelligence will require advanced processors capable of computing massive amount of data stored in high-performance and high capacity memory devices. This implies that not only the most advanced semicon- ductor devices will be used, but that these will need to achieve the highest degree of reliability to allow a flawless operation of predictive algorithms.

It is expected that smart vehicles capable of fully autonomous driving will employ up to 7,000 chips. In this case, even a failure rate of 1ppm, already very low by any standard today, would lead to 7 out of 1,000 cars with a safety risk. This is simply unacceptable.

The automotive electronics industry has therefore introduced quality excellence programs aimed at a zero defect target. Achieving such a goal requires a lot of effort and all constituents of the supply chain must do their part.

The automotive electronics industry is one of the most conservative in terms of change management. Longestablished standards and documentation procedures ensure traceability of design and manufacturing deviations. Qualification of novel or modified products is generally costly and lengthy. This is where material suppliers can offer competence and expertise to provide material with the highest quality standards.

What does this mean for a material supplier?

As a direct contact to its customer, the material supplier is responsible for the complete supply chain from the source of the raw material to the delivery at the customer’s gate. The material supplier is also accountable for long-term supply in accordance with the customer’s objectives.
There are essentially two fields where the material supplier can support its customer: quality and supply chain (FIGURE 4).

Screen Shot 2017-06-16 at 12.34.53 PM

Given the constraints of the automotive electronics market, material qualification must follow extensive procedures. While a high degree of material purity is a prerequisite, manufacturing processes are actually much more sensitive to deviations of material quality, as they potentially lead to process recalibration. Before qualification starts, it is critical that candidate materials are comprehensively documented. This includes the manufacturing process, the transport, the storage, and, where appropriate, the purifi- cation and transfill operations. Systematic auditing must be regularly performed according to customers’ standards. As a consequence, longer qualification times are expected. Any subsequent change in the material specification, origin, and packaging must be duly documented and is likely to be subject to a requalification process.

Material quality is obviously a critical element that must be demonstrated at all times. This commands the usage of high-quality products with a proven record. Sources already qualified for similar applica- tions are preferred to mitigate risks. These sources must show long-term business continuity planning, with process improvement programs in place. Purity levels must be carefully monitored and documented in databases. State-of-the-art analysis methods must be used. When necessary, containment measures should be deployed systematically. Given the long operating lifetime of automotive electronic compo- nents, failure can be related to a quality event that occurred a long time before.

Because of the necessary long-term availability of the electronics components and the material qualification constraints, manufacturers and suppliers will generally favor a supply contract over several years. Therefore, the source availability and the supply chain must be guaranteed accordingly.

Material suppliers are implementing improved quality management systems for their products in order to fulfill the expectations of their customers, in terms of quality monitoring and trace- ability. Certificate of analysis (COA) or consistency checks are not sufficient anymore; more data is required. In case deviation is detected, the inves- tigation and response time must be drastically reduced and allow intervention before delivery to the customer. Finally, the whole supply chain must be monitored.

Several tools must be implemented in order to maintain a reliable supply chain of high-quality products (FIGURE 5): statistical process and quality controls (SPC/SQC), as well as measurement systems analysis (MSA), allow systematic and reliable measurement and information recording for traceability. Imple- menting these tools particularly at the early stages of the supply chain allows an “in-time” response and correction before the defective material reaches the customer’s premises. Furthermore, some impurities that were ignored before may become critical, even below the current detection limits. Therefore, new measurement techniques must be continuously inves- tigated in order to enhance the detection capabilities.

Screen Shot 2017-06-16 at 12.35.04 PM Screen Shot 2017-06-16 at 12.35.12 PM

Finally, a robust supply chain must be ensured. It is imperative for a material supplier to be prepared to handle critical business functions such as customer orders, overseeing production and deliveries, and other various parts of the supply chain in any situation. Business continuity planning (BCP) was introduced several years ago in order to identify and mitigate any risk of supply chain disruption.

Analyzing the risks to business operations is fundamental to maintaining business continuity. Materials suppliers must work with manufacturers to develop a business continuity plan that facilitates the ability to continue to perform critical functions and/or provide services in the event of an unexpected interruption. The goal is to identify potential risks and weakness in current sourcing strategies and supply chain footprint and then mitigate those risks.

Because of the efforts necessary to qualify materials, second sources must be available and prepared to be shipped in case of crisis. Ideally, different sources should be qualified simultaneously to avoid any further delay in case of unplanned sourcing changes. Material suppliers with global footprint and worldwide sourcing capabilities offer additional security. Multiple shipping routes must be considered and planned in order to avoid disruption in the case, for instance, of a natural disaster or geopolitical issue affecting an entire region.

Material suppliers need to be aware and monitor regulations specific to the automotive electronics industry such as ISO/TS16949 (quality management strategy for automotive industries). This standard goes above and beyond the more familiar ISO 9001 standard, but by understanding the expectations of suppliers to the automotive industry, suppliers can ensure alignment of their quality systems and the documentation requirements for new product development or investigations into non-conformance.

Future of automotive electronics

With the increasing sophistication of future vehicles, new and more advanced semiconductor technologies will be used and vehicles will become technology centers. These technologies will allow communication and guidance computing. Most of these components (logic or memory) will be built by manufacturers relatively new to the automotive electronics world— either integrated device manufacturers (IDM) or foundries.

In order to comply with the current quality standards of the automotive industry, these manufacturers will need to adhere to more stringent standards imposed by the automobile industry. They will find support from materials suppliers like Linde that are capable of deliv- ering high-quality materials associated with a solid global supply chain who have acquired global experience in automotive electronics.

For more information about this topic or Linde Electronics, visit www.linde.com/electronics or contact Francesca Brava at [email protected].

IC Insights recently released its Update to its 2017 IC Market Drivers Report.  The Update includes IC Insights’ latest outlooks on the smartphone, automotive, PC/tablet and Internet of Things markets.

The Update shows a final 2016 ranking of the top smartphone leaders in terms of unit shipments.  As shown in Figure 1, 7 of the top 10, and 10 of the top 14 companies were headquartered in China with two South Korean (Samsung and LG) and one U.S. (Apple) and one Taiwanese company (Asus) making up the remainder of the companies listed.  It is interesting to note that OPPO and Vivo, the two fastest growing smartphone suppliers on the list last year with each company growing almost 90%, are owned by the same China-based parent company—BBK Electronics.

Samsung and Apple dominated the smartphone market from 2014 through 2016.  In total, these two companies shipped 555 million smartphones and held a combined 39% share of the total smartphone market in 2015.  Although these two companies still shipped over one-half billion smartphones (526 million) in 2016, their combined smartphone unit marketshare dropped four percentage points to 35%.

Samsung’s total smartphone unit sales were down by 4% in 2016 to 311 million units, a weak showing in a total smartphone market that grew by 4%.  With orders sagging for Apple’s pre-iPhone 7 smartphones (the iPhone 7 was first released on September 7, 2016), Apple’s total smartphone shipments dropped by 7% in 2016, much worse than the total 4% growth rate exhibited for the worldwide smartphone market. Although Samsung and Apple still hold a strong share of the high-end smartphone segment (>$200), it appears that both companies are losing smartphone marketshare to the up-and-coming Chinese producers like Huawei, OPPO, and Vivo.

Overall, there was very little “middle ground” with regard to smartphone shipment growth rates among the top 14 suppliers in 2016.  As shown, seven of the top 14 companies registered declines in 2016 shipments while five companies logged 25% or better increases.  In fact, four Chinese smartphone suppliers’ shipments surged by greater than 30% (Vivo, OPPO, Gionee, and Huawei) in 2016.  LeEco, which only began shipping its smartphone handsets in 2015, became Coolpad’s largest shareholder in October 2016. As a result, IC Insights combined the two companies’ smartphone sales for 2015 and 2016.

Figure 1

Figure 1

In 2014, Japan-based Sony was ranked 10th in smartphone shipments with sales of 40.0 million handsets. However, in 2016, Sony’s shipments of smartphones had dropped precipitously to only 15.1 million (with sales expected to increase only slightly in 2017 to about 16 million).  In contrast to the weakening fortunes of Sony, 2015-2016 smartphone sales from most of the top China-based suppliers surged.  In fact, Huawei, the third largest smartphone producer in 2016, has set its sights on surpassing Apple within the next five years.

Combined, the 10 top-14 smartphone suppliers that are based in China shipped 587 million smartphones in 2016, a 15% increase from the 511 million smartphones these 10 companies shipped in 2015.  As a result, the top 10 Chinese smartphone suppliers together held a 39% share of the worldwide smartphone market in 2016, up three points from the 36% share these companies held in 2015 and seven points better than the 32% combined share these companies held in 2014.

Imagine wearing a device that continuously analyzes your sweat or blood for different types of biomarkers, such as proteins that show you may have breast cancer or lung cancer.

Rutgers engineers have invented biosensor technology – known as a lab on a chip – that could be used in hand-held or wearable devices to monitor your health and exposure to dangerous bacteria, viruses and pollutants.

An artists' rendition of microparticles flowing through a channel and passing through electric fields, where they are detected electronically and barcode-scanned. Credit: Ella Marushchenko and Alexander Tokarev/Ella Maru Studios

An artists’ rendition of microparticles flowing through a channel and passing through electric fields, where they are detected electronically and barcode-scanned. Credit: Ella Marushchenko and Alexander Tokarev/Ella Maru Studios

“This is really important in the context of personalized medicine or personalized health monitoring,” said Mehdi Javanmard, an assistant professor in the Department of Electrical and Computer Engineering at Rutgers University-New Brunswick. “Our technology enables true labs on chips. We’re talking about platforms the size of a USB flash drive or something that can be integrated onto an Apple Watch, for example, or a Fitbit.”

A study describing the invention was recently highlighted on the cover of Lab on a Chip, a journal published by the Royal Society of Chemistry.

The technology, which involves electronically barcoding microparticles, giving them a bar code that identifies them, could be used to test for health and disease indicators, bacteria and viruses, along with air and other contaminants, said Javanmard, senior author of the study.

In recent decades, research on biomarkers – indicators of health and disease such as proteins or DNA molecules – has revealed the complex nature of the molecular mechanisms behind human disease. That has heightened the importance of testing bodily fluids for numerous biomarkers simultaneously, the study says.

“One biomarker is often insufficient to pinpoint a specific disease because of the heterogeneous nature of various types of diseases, such as heart disease, cancer and inflammatory disease,” said Javanmard, who works in the School of Engineering. “To get an accurate diagnosis and accurate management of various health conditions, you need to be able to analyze multiple biomarkers at the same time.”

Well-known biomarkers include the prostate-specific antigen (PSA), a protein generated by prostate gland cells. Men with prostate cancer often have elevated PSA levels, according to the National Cancer Institute. The human chorionic gonadotropin (hCG) hormone, another common biomarker, is measured in home pregnancy test kits.

Bulky optical instruments are the state-of-the-art technology for detecting and measuring biomarkers, but they’re too big to wear or add to a portable device, Javanmard said.

Electronic detection of microparticles allows for ultra-compact instruments needed for wearable devices. The Rutgers researchers’ technique for barcoding particles is, for the first time, fully electronic. That allows biosensors to be shrunken to the size of a wearable band or a micro-chip, the study says.

The technology is greater than 95 percent accurate in identifying biomarkers and fine-tuning is underway to make it 100 percent accurate, he said. Javanmard’s team is also working on portable detection of microrganisms, including disease-causing bacteria and viruses.

“Imagine a small tool that could analyze a swab sample of what’s on the doorknob of a bathroom or front door and detect influenza or a wide array of other virus particles,” he said. “Imagine ordering a salad at a restaurant and testing it for E. coli or Salmonella bacteria.”

That kind of tool could be commercially available within about two years, and health monitoring and diagnostic tools could be available within about five years, Javanmard said.

By Ayo Kajopaiye, Collaborative Technology Platforms, SEMI

What does Smart Manufacturing mean for the future of the electronics manufacturing supply chain?  SEMI members hold many different perspectives, but one thing is clear ─ the impact of Smart Manufacturing will be huge. SEMI is fully involved with many of the activities that center on Smart Manufacturing.

During the North America Standards meetings that took place at SEMI’s new Headquarters in February, the Automation Technology Committee Chapter in Taiwan was successfully chartered.  K.C. Chou, co-chair of the new Committee, believes in SEMI’s role, saying, “SEMI has a strong reputation for successful standardization which is why the Taiwan PCB industry has selected the global SEMI Standards platform to develop consensus on equipment communication and other manufacturing areas where standards are needed to drive down cost.”

What does the formation of this Committee mean for Smart Manufacturing in the PCB industry? “The industry can now use the Committee to drive consensus on how to adopt GEM technology so it can be implemented consistently” says Brian Rubow, director of Client Training and Support at Cimetrix. “Without these standards agreed upon, every equipment that needs to be integrated may have to have different technology adopted, making the process more difficult just to create a line that will produce their product since a lot of custom integration has to be done. However, once a standard is adopted, instead of spending time dealing with protocols, communication methods and messaging scenarios, they will be able to be a lot more productive and focus on building products and not worry about integrated equipment” he continues.

Next steps

The next step for the new Committee is to propose a ballot for distribution that will address adoption of GEM technology. “Anyone who is interested in this technology, now is the best time to get involved and get their ideas into the collaboration,” Rubow adds. He expects the balloting process to begin over the next quarter.

Many other Smart Manufacturing Programs

SEMI also has a Smart Manufacturing Initiative that is being led by a group of industry leaders through the SEMI Smart Manufacturing Advisory Council. This Council works closely with the Smart Manufacturing Special Interest Group which consists of a broader group of members across different regions as they focus on facilitating collective efforts on issues related to smart manufacturing. Also, members that are part of this group are connected to information and resources that can help with the implementation, supply, services or research of smart manufacturing systems. SEMI plans to continue to play an essential role in the emergence of Smart Manufacturing in the electronics industry.

For questions regarding the Smart Manufacturing Special Interest Group and Advisory Council please contact Tom Salmon, VP of Collaborative Technology Platforms – [email protected] or 408-943-6965.

Also be sure to take a look at SEMI’s Smart Manufacturing Central webpage for information related to Smart Manufacturing – www.semi.org/en/smart-manufacturing-central

SEMICON West 2017

Smart Manufacturing topics (Manufacturing, Automotive, and MedTech) will be covered at SEMICON West 2017. Under the “Programs” tab at the top, visit the “Agenda at a Glance” (filter listings to Smart Topics).  Learn more and register now.

Other SEMI shows will also feature Smart Manufacturing topics, including SEMICON Taiwan (September 13-15 in Taipei), SEMICON Europa (November 14-17 in Munich), and SEMICON Japan (December 13-15 in Tokyo).

IC Insights recently released its Update to its 2017 IC Market Drivers Report.  The Update includes IC Insights’ latest outlooks on the smartphone, automotive, PC/tablet and Internet of Things markets.

In the Update, IC Insights scaled back its total semiconductor sales forecast for system functions related to the Internet of Things in 2020 by about $920 million, mostly because of lower revenue projections for connected cities applications (such as smart electric meters and infrastructure supported by government budgets).  The updated forecast still shows total 2017 sales of IoT semiconductors rising about 16.2% to $21.3 billion (with final revenues in 2016 being slightly lowered to $18.3 billion from the previous estimate of $18.4 billion), but the expected compound annual growth rate between 2015 and 2020 has been reduced to 14.9% versus the CAGR of 15.6% in IC Insights’ original projection from December 2016. Total semiconductor sales for IoT system functions are now expected to reach $31.1 billion in 2020 (Figure 1) versus the previous projection of $32.0 billion in the final year of the forecast.

Figure 1

Figure 1

IC Insights’ revised outlook for IoT semiconductor sales by end-use market categories shows that semiconductor revenues for connected cities applications are projected to grow by a CAGR of 8.9% between 2015 and 2020 (down from 9.7% in IC Insights’ original forecast).  Meanwhile, the IoT semiconductor market for wearable systems is expected to show a CAGR of 17.1% (versus 18.8% in the previous projection).  The lower growth projection in chip sales for connected cities systems is a result of anticipated belt tightening in government spending around the world and the slowing of smart meter installations now that the initial wave of deployments has ended in many countries.  Slower growth in semiconductor sales for wearable systems is primarily related to IC Insights’ reduced forecast for smartwatch shipments through 2020.

The updated outlook nudges up semiconductor growth in the industrial Internet category to a CAGR of 24.1% (compared to 24.0% in the December 2016 forecast) and slightly lowers the annual rate of increase in connected homes and connected vehicles to CAGRs of 21.3% and 32.9%, respectively (from 22.7% and 33.1% in the original 2017 report).

Market for MEMS microphones and ECMs, micro-speakers and audio ICs will be worth US$20 billion in 2022. Compared to 2006, the audio business is about to experience profound changes.

When Yole Développement (Yole), part of Yole Group of Companies released its first microphone report in 2006, the MEMS microphone industry was at the early stage, with emerging players and applications. The “More than Moore” market research & strategy consulting company was announcing a US$116 million market for 260 million units. Today, market figures are at another scale. Therefore, 2017 volume will reach the 5 billion units milestone for a market value over US$1 billion.
Microphone has become a key technology for major MEMS and semiconductor companies. Knowles, Goertek, AAC as well as new comers such as Vesper are part of today’s landscape.

acoustic mems market

Acoustic MEMS & Audio Solutions report reviews the complete evolution of the audio world including MEMS microphones, ECMs, micro-speakers and audio ICs since 2010.

In parallel, System Plus Consulting and KnowMade combine their expertise to perform dedicated reports focused on leading microphone companies, Vesper and Knowles: the Vesper VM1000™ microphone report is a reverse engineering & costing analysis highlighting the innovative piezoelectric technology developed by Vesper. Indeed the company has developed the first piezoelectric MEMS technology microphone. “This innovation reshuffles the cards of the microphone industry, mainly based on capacitive silicon MEMS technologies until now”, commented Romain Fraux, System Plus Consulting’s CTO.

Under competitive conditions, Yole’s analysts interviewed Vesper’s CEO, Matt Crowley to understand Vesper’s strategy and learn more about its latest device. With this disruptive solution, Vesper starts playing the big league with leading companies such as Knowles, Goertek… Full interview: The future is voice-powered.

The Knowles MEMS Microphones patent-to-product mapping details the main patented features of Knowles’ device embedded in iPhone 7 Plus™. Mixing data from System Plus Consulting’s teardown and KnowMade’s IP analysis, this report makes the connection between the features of Knowles technologies and its patent portfolio. The report also reviews Knowles’s patent landscape and the IP litigations involving patents identified in the Patent-to-Product mapping analysis.
“The technology developed by Knowles in the early 2000s has strongly impacted the audio landscape triggering an unprecedented revolution,” said Coralie Legreneur, KnowMade’s IP analyst. Knowles never stopped improving its solution and today, within a very intense and competitive global market, the company is showing strong IP activities.

Audio is becoming a key function of multiple existing and new products that increasingly has to be analysed as a complete landscape compared to independent devices.

“From mobile phones to cars, from home assistants to drones, audio products like microphones, speakers and audio ICs are essential for all the new systems driving consumer electronic markets”, comments Guillaume Girardin Technology & Market Analyst, MEMS & Sensors at Yole.
The total audio business was worth more than US$15 billion in 2016. Moreover, Yole announces today a CAGR close to 6%, in 2022. The audio device market will become a key feature in all the applications it is involved in. According to the Acoustic MEMS & Audio Solutions report, there is clearly room for more benefits in the audio supply and value chain, as well as other significant changes.

At the device level, the MEMS microphone market has almost reached the US$1 billion milestone, with a value of US$ 993 million in 2016. Combined with the US$700 million ECM market, now the acquisition of sound is almost a US$2 billion value market.

The µspeaker market is estimated to be worth US$8.7 billion. In addition to these two visible elements of the audio chain, the audio IC market, which includes codecs, DSPs and amplifiers, should reach US$4.3 billion in 2016.

Mobile remains the main market segment for microphones. This sector was very demanding in terms of volume but not so much in terms of performance: against two microphones per smartphone initially, mobile manufacturers developed solutions with more than five devices per system. “We are today in a new phase. With innovative technologies, smarter software, more algorithms, we reach a new level of performances and see solutions with higher value,” said Guillaume Girardin from Yole.

By Paula Doe, SEMI

Autonomous automobiles, smart manufacturing, smart buildings, mobile human health monitoring, and 4G+ communications hardware for connecting all these devices will drive strong 24 percent growth in units and 14 percent in value for the MEMS sector, according to Yole Développement. “These emerging markets will give a noticeable boost to MEMS growth going forward,” says Yole Founder and President Jean Christophe Eloy, who will discuss the changes coming to the sector at SEMICON West 2017, on July 11.

These emerging applications are changing what’s required from MEMS suppliers. We are seeing bigger building blocks with higher value, integration of more functions and more processing power in the package, and increased demand for software intelligence to turn the sensor data into useful information, Eloy notes. This probably also means a shake up in the players, as it’s not clear who will capture the value of this growth opportunity, as the key skills move even more towards integration and software to enable functions.

Emerging smart autos, manufacturing, healthcare and increasingly complex high speed communications will boost MEMS market to more than $25 billion in the next six years. Source: Yole Développement.

Emerging smart autos, manufacturing, healthcare and increasingly complex high speed communications will boost MEMS market to more than $25 billion in the next six years. Source: Yole Développement.

Demand for smart audio, smart visual and more RF

The demand for RF filters required by the increasing complexity of communicating all this data with high-speed 4G/4G+ mobile technology will make RF MEMS BAW filters the fastest-growing segment of the MEMS business, likely seeing some 35 percent compound annual growth, jumping from $2.2 billion in 2017 to a $10.2 billion market in 2022, according to Yole analysts.

Demand for audio processing will also be particularly strong, with 11 percent growth in units for MEMS microphones, increasingly for more sophisticated applications that use the devices in an always-listening capacity, continually sensing what is happening around in the home, in the car or in the factory. That means more processing power and software are needed to detect key sounds form the background noise, and even recognize what they mean. .

Another coming change: MEMS micro speakers will soon finally hit the market. STMicroelectronics is currently making wafers for USound for qualification. “Micro speakers will happen next year,” says Eloy, noting that this will enable a proliferation of small and diffuse audio applications, and will increase demand for more and more sophisticated audio ICs for processing, as audio increasingly becomes a more main used human-machine interface.

Growing opportunity for adding audio value based on MEMS means interest by a host of competing players. Source: Yole Développement.

Growing opportunity for adding audio value based on MEMS means interest by a host of competing players. Source: Yole Développement.

Smarter image sensing will also make its way into more applications, while various types of 3D imaging like ultrasonics, radar, and LIDAR are starting to get traction not only in automotive applications, but also in smartphones for autofocus and for facial recognition for security.

Adding intelligence at the edge

The next generation of sensor technology will also clearly integrate more intelligence. IoT applications are generating immense amounts of data, which needs to be intelligently processed into useful information for local action. However, sending all that data to the cloud and back for processing is often not practical. “Now that we have so much sensor data available ─ not just motion, but also sound, imaging, IR, UV, and other spectra ─ the next opportunity is to add artificial intelligence (AI) or machine learning at the edge, so the sensors report only the selective information required to signal problems that need action,” says Pete Beckman, co-director, Northwestern/Argonne Institute for Science and Engineering, Argonne National Laboratory. Beckman will talk at SEMICON West (July 11-13) about his lab’s open platform that allows researchers to experiment with adding machine learning to sensor nodes.

The Argonne Waggle platform includes a Linux-based single board computer to handle encrypted networking and data caching.  It also pulls sensor data from customized boards or off-the-shelf sensor devices.  The Waggle management (wagman) board controls power and diagnostics.  The third key component is a single board computer focused completely on edge computing, supporting AI and machine learning.  With eight CPU cores and a GPU, the edge processor can be trained to recognize sounds and images or other patterns, using open source software like UC Berkeley’s Caffe deep learning software and the OpenCV computer vision package. “We isolated this part on a separate board to run the newest software available, and out on the leading edge of development, all of this AI software can still be a little buggy,” Beckman notes.

The group is working with the city of Chicago on a network of these smart nodes to monitor things like traffic incidents, air pollution, ice on roads, or potential flooding.  Other researchers are the using the platform to measure pollen and particulates in air to predict asthma outbreaks, or monitor water flow patterns across a prairie site.

Adding intelligence to development

“If the MEMS industry is going to innovate more smartly, we can’t keep doing things the same old way we always have, and the foundries have to do their part to do things differently as well,” notes Tomas Bauer, Silex Microsystems‘ SVP Sales & Business Development, who will discuss Silex’s efforts to use tailored IT systems to speed the development of MEMS devices. Since most innovative MEMS devices depend on developing a whole new wafer process, ramping to stable volume production has often taken years. So Silex has worked on developing information systems to track the wafers through development, with a cockpit view for easy access to all the statistics on the runs and the risk items, immediate notification of potential issues, and more sophisticated queuing and optimization of pathways of development batches to speed throughput in the high-mix fab, Silex’s also uses optical inspection tools during processing so its engineers can roll back the images to see what went wrong. “Instead of trying to standardize the process, we need to find ways to speed the development of the custom process,” Bauer suggests.

At SEMICON West 2017 (July 11-13), the MEMS and Sensors session also features David Horsley from University of California (Davis) on piezoelectric MEMS opportunities, and Thin Film’s Arvind Kamoth  and Princeton’s James Sturm on new technologies for systems integrating sensors and CMOS on flexible substrates.

See the SEMICON West Agenda-at-a-Glance; for best pricing, register now for SEMICON West 2017.

After several years of low and inconsistent growth rates primarily because of intense pricing pressure, the market for semiconductor sensors and actuators finally caught fire in 2016 with several of its largest product categories—acceleration/yaw and magnetic-field sensors and actuator devices—recording strong double-digit sales increases in the year, according to IC Insights’ new 2017 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discretes.  In addition to the easing of price erosion, substantial unit-shipment growth in sensors and actuators continues to be fed by the spread of intelligent embedded control, new wearable systems, and the expansion of applications connected to the Internet of Things, says the 2017 O-S-D Report.

The new 360-page report shows worldwide sensor sales grew 14% in 2016 to a record-high $7.3 billion, surpassing the previous annual peak of $6.4 billion set in 2015, when revenues increased 3.7%. Actuator sales climbed 19% in 2016 to an all-time high of $4.5 billion from the previous record of $3.8 billion in 2015.  The 2017 O-S-D Report forecasts total sensor sales rising by a compound annual growth rate (CAGR) of 7.5% in the next five years, reaching $10.5 billion in 2021, while actuator dollar volumes are expected to increase by a CAGR of 8.4% to nearly $6.8 billion in the same timeframe.  Figure 1 shows the relative market sizes of the five main product categories in the sensors/actuator segment, along with the projected five-year growth rates for the 2016-2021 forecast period.

The sensor/actuator market ended four straight years of severe price erosion in 2016 and finally benefitted from strong unit growth.  The average selling price (ASP) of sensors and actuators declined by -0.9% in 2016 versus an annual average of -9.3% during the four previous years (2012-2015), says IC Insights’ new O-S-D Report.  All sensor product categories and the large actuator segment registered double-digit sales growth in 2016.  It was the first time in five years that sales growth was recorded in all sensor/actuator product categories, partly due to the easing of price erosion but also because of continued strong unit demand worldwide.  Sensor/actuator shipments grew 17% in 2016 to a record-high of 20.3 billion units from 17.4 billion in 2015, when the volume also increased 17%.

Figure 1

Figure 1

Strong 2016 sales recoveries occurred in acceleration/yaw-rate motion sensors (+15%), magnetic-field sensors and electronic compass chips (+18%), and the miscellaneous other sensor category (+20%) after market declines were registered in 2015. Sales growth also strengthened in pressure sensors, including MEMS microphone chips, (+10%) and actuators (+19%) in 2016.  The new O-S-D Report forecasts sales of acceleration/yaw sensors growing 9% in 2017 to about $3.0 billion, magnetic-field sensors (and compass chips) rising 8% to nearly $2.0 billion, and pressure sensors increasing 8% to $2.7 billion this year.  Actuator sales are projected to grow 8% in 2017 to about $4.9 billion.

About 82% of the sensors/actuators market’s revenues in 2016 came from semiconductors built with microelectromechanical systems (MEMS) technology—meaning pressure sensors, microphone chips, acceleration/yaw motion sensors, and actuators that use MEMS-built transducer structures to initiate physical action in a wide range of devices, including inkjet printer nozzles, microfluidic chips, micro-mirrors, and surface-wave filters for RF signals.  MEMS-built products represented 48% of total sensor/actuator shipments in 2016, or about 9.8 billion units last year.

MEMS-based product sales climbed 15.4% in 2016 to a record-high $9.7 billion after rising 5.1% in 2015 and 5.8% in 2014.   Some inventory corrections and steep ASP erosion in MEMS-built devices have suppressed revenue growth in recent years, but this group of products—like the entire sensors/actuator market—is benefitting from increased demand in new wearable systems, IoT, and the rapid spread of intelligent embedded control, such as autonomous automotive features rolling into cars.  MEMS-based sensors and actuator sales are forecast to rise 7.9% in 2017 to $10.5 billion and grow by a CAGR of 8.0% in the 2016-2021 period to $14.3 billion, says the new O-S-D Report.

By Lung Chu, President of SEMI China

Lung250As China embarks on the Made in China 2025 plan with electronics and semiconductor technology as one of the Top 10 focus areas, China’s semiconductor industry has an unprecedented growth opportunity.  However, besides the huge investment required, China IC industry is faced with strong competition in terms of technology, products, talent, and supply chain access from many leading global layers in an increasingly interconnected world and a highly global semiconductor market.

To be successful, it is critical that China’s semiconductor industry speed up its integration into the global industry supply chain. The goal is to achieve sustainable growth through “win-win” collaboration with global partners and leveraging industry platforms to become a significant player and partner in the international semiconductor manufacturing industry ecosystem.

China semiconductor industry growth

In recent years, many new 12-inch fab projects have been announced, started construction, or in ramp-up stage in China, including UMC in Xiamen, PSC in Hefei, TSMC in Nanjing, YMTC in Wuhan and Nanjing, as well as GLOBALFOUNDRIES in Chengdu.  Many China-based foundries are adding 12-inch capacity including SMIC fabs in Shanghai, Beijing and Shenzhen, and HLMC in Shanghai area. The production capacity of these ~20 new fabs is expected to come online in the next three to five years.

SEMI has seen active interest in several local cities in attracting global and China-based companies to set up semiconductor fabrication facilities.  The strong trend for expansion and investment shows no signs of slowdown in China. The current investment fever in semiconductors in China is a balancing act ─ it will lead both to the development of a regional industry supply chain and the demand for capital investment in China. However, as with any expansion bubble, new production capacity in some mature nodes might create overcapacity and raises questions of sustainability paired with the severe shortage of skilled workers/engineers and uncertainty of future fund availability for continuing operations and investment.

Rise of China

China’s expansion in semiconductor manufacturing should be viewed through a global context.  SEMI advocates for free trade and open markets, international cooperation for intellectual property (IP) rights protection, industry Standards, and environmental protection. SEMI promotes the global electronics manufacturing supply chain and works to positively influence the growth and prosperity of its members.

In 2016, before stepping down, the U.S. Obama administration delivered a report from the Council of Advisors on Science and Technology. Part of the report addressed the rise of China’s semiconductor industry and recommended the United States should improve its environment for development of the semiconductor and high-tech industry and continue to invest in advanced technologies.

Each country will evaluate their own course as the China market expands. However, the rise of the semiconductor industry in China need not be viewed simply as a threat to the world; instead, it is a significant growth driver and business opportunity for global suppliers.  IC chips top the list of all Chinese bulk imports in terms of dollar value. China desires to develop its IC chip industry to better fulfill its inherent demand. China currently has low market share and limited technical capability in four major areas identified in the China National IC Development Guideline: IC design, manufacturing, package/testing, and equipment/material.

China is clear about its intentions with regard to growing its own semiconductor supply chain. In the short term, heavy dependency on foreign suppliers (especially equipment and material) is inevitable.  Going forward, cooperation with foreign semiconductor suppliers/partners with an open-minded and “win-win” attitude is an imperative strategy in solving the development bottleneck issues concerning equipment/materials and other key areas in China’s semiconductor industry.

SEMI China focuses on member value

China is the world’s largest manufacturing base for electronics products, as well as the world’s largest market for demand of IC chips. Now, as China’s semiconductor industry experiences a transformation in development, SEMI China is working to provide more value to its local and global members as the industry is rapidly changing. SEMI China promotes Chinese enterprises for industry growth and prosperity, and helps outstanding local companies advance in the international market. SEMI China is also using its global, specialized, and localized industry association platform to promote the development of the semiconductor industry in China.

SEMI China has 11 industry committees and is committed to SEMI global values and the China region. All the SEMI China committees have the strong connections needed to communicate and collaborate not only with China’s semiconductor industry, but with the global ecosystem.

SEMI, the global trade association that advances the growth and prosperity of electronics manufacturing, was the world’s first semiconductor industry group, established in 1970. It has witnessed the flourishing development of the semiconductor industry over the last 47 years and continues to be devoted to promoting the healthy development of the industry. SEMI is keeping pace with the industry and offering specialized and global platform services to the entire industry ecosystem. In the last two years, SEMI became a strategic partner with both FlexTech Alliance and the MEMS & Sensors Industry Group (MSIG). In the future, SEMI is also providing association services for the Fab Owner Association (FOA) to continue expanding collaboration along the electronics manufacturing supply chain. The intent is to include a wider span of the interdependent electronics manufacturing supply chain and the key adjacent opportunities that drive global growth opportunities.

SEMICON China is an industry event platform organized in partnership with major chip manufacturers, packaging and testing companies in China, and suppliers of equipment and materials worldwide. The world’s leaders come to discuss global industry trends, cutting-edge technologies and market opportunities on the same stage, as well as the development of global and Chinese semiconductor industries. This year, the importance of SEMICON China was validated ─ with over 69,000 attendees and a record number of exhibitors ─ the largest SEMICON show ever.

Global competition in semiconductor manufacturing has long been a part of the environment with growth starting in the U.S. and spreading to Europe, Japan, Korea, Taiwan, Southeast Asia, and China. Global competition has resulted in new innovations and a global march to the demanding cadence of Moore’s Law. Compared to other countries, China’s semiconductor industry is relatively weak and the barriers to entry for leading-node production remain challenging. Despite this, China is moving forward ─ with a focus to increase domestic semiconductor chip demand. The Chinese M&A wave is another growth driver for the industry. I hope that going forward we can all embrace the industry’s growth, and not fear China’s advancement.