Tag Archives: letter-mems-top

IEEE, the world’s largest technical professional organization dedicated to advancing technology for humanity, this week announced the next milestone phase in the development of the International Roadmap for Devices and Systems (IRDS)—an IEEE Standards Association (IEEE-SA) Industry Connections (IC) Program sponsored by the IEEE Rebooting Computing (IEEE RC) Initiative—with the launch of a series of nine white papers that reinforce the initiative’s core mission and vision for the future of the computing industry. The white papers also identify industry challenges and solutions that guide and support future roadmaps created by IRDS.

IEEE is taking a lead role in building a comprehensive, end-to-end view of the computing ecosystem, including devices, components, systems, architecture, and software. In May 2016, IEEE announced the formation of the IRDS under the sponsorship of IEEE RC. The historical integration of IEEE RC and the International Technology Roadmap for Semiconductors (ITRS) 2.0 addresses mapping the ecosystem of the new reborn electronics industry. The new beginning of the evolved roadmap—with the migration from ITRS to IRDS—is proceeding seamlessly as all the reports produced by the ITRS 2.0 represent the starting point of IRDS.

While engaging other segments of IEEE in complementary activities to assure alignment and consensus across a range of stakeholders, the IRDS team is developing a 15-year roadmap with a vision to identify key trends related to devices, systems, and other related technologies.

“Representing the foundational development stage in IRDS is the publishing of nine white papers that outline the vital and technical components required to create a roadmap,” said Paolo A. Gargini, IEEE Fellow and Chairman of IRDS. “As a team, we are laying the foundation to identify challenges and recommendations on possible solutions to the industry’s current limitations defined by Moore’s Law. With the launch of the nine white papers on our new website, the IRDS roadmap sets the path for the industry benefiting from all fresh levels of processing power, energy efficiency, and technologies yet to be discovered.”

“The IRDS has taken a significant step in creating the industry roadmap by publishing nine technical white papers,” said IEEE Fellow Elie Track, 2011-2014 President, IEEE Council on Superconductivity; Co-chair, IEEE RC; and CEO of nVizix. “Through the public availability of these white papers, we’re inviting computing professionals to participate in creating an innovative ecosystem that will set a new direction for the greater good of the industry. Today, I open an invitation to get involved with IEEE RC and the IRDS.”

The series of white papers delivers the starting framework of the IRDS roadmap—and through the sponsorship of IEEE RC—will inform the various roadmap teams in the broader task of mapping the devices’ and systems’ ecosystem:

“IEEE is the perfect place to foster the IRDS roadmap and fulfill what the computing industry has been searching for over the past decades,” said IEEE Fellow Thomas M. Conte, 2015 President, IEEE Computer Society; Co-chair, IEEE RC; and Professor, Schools of Computer Science, and Electrical and Computer Engineering, Georgia Institute of Technology. “In essence, we’re creating a new Moore’s Law. And we have so many next-generation computing solutions that could easily help us reach uncharted performance heights, including cryogenic computing, reversible computing, quantum computing, neuromorphic computing, superconducting computing, and others. And that’s why the IEEE RC Initiative exists: creating and maintaining a forum for the experts who will usher the industry beyond the Moore’s Law we know today.”

The IRDS leadership team hosted a winter workshop and kick-off meeting at the Georgia Institute of Technology on 1-2 December 2016. Key discoveries from the workshop included the international focus teams’ plans and focus topics for the 2017 roadmap, top-level needs and challenges, and linkages among the teams. Additionally, the IRDS leadership invited presentations from the European and Japanese roadmap initiatives. This resulted in the 2017 IRDS global membership expanding to include team members from the “NanoElectronics Roadmap for Europe: Identification and Dissemination” (NEREID) sponsored by the European Semiconductor Industry Association (ESIA), and the “Systems and Design Roadmap of Japan” (SDRJ) sponsored by the Japan Society of Applied Physics (JSAP).

The IRDS team and its supporters will convene 1-3 April 2017 in Monterey, California, for the Spring IRDS Workshop, which is part of the 2017 IEEE International Reliability Physics Symposium (IRPS). The team will meet again for the Fall IRDS Conference—in partnership with the 2017 IEEE International Conference on Rebooting Computing (ICRC)—scheduled for 6-7 November 2017 in Washington, D.C. More information on both events can be found here: http://irds.ieee.org/events.

IEEE RC is a program of IEEE Future Directions, designed to develop and share educational tools, events, and content for emerging technologies.

IEEE-SA’s IC Program helps incubate new standards and related products and services, by facilitating collaboration among organizations and individuals as they hone and refine their thinking on rapidly changing technologies.

Imec is granting its Lifetime of Innovation Award to Dr. Kinam Kim, President and General Manager of Semiconductor Business at Samsung Electronics. The selection recognizes Dr. Kim’s leadership and strategic vision, as well as his undeniable impact in the semiconductor industries.

The award ceremony will take place on May 16, during the global edition of the Imec Technology Forum (ITF), one of Europe’s leading tech events on technologies and solutions that will drive groundbreaking innovation across sectors in nano-electronics and the Internet of Things, smart health, smart cities, smart industries and smart energy.

“Dr. Kim has been a driving force at Samsung for more than 30 years, and the beacon the industry has used to navigate towards further innovations and technological breakthroughs in memory and computing,” states Luc Van den hove, president and CEO of imec. “His unparalleled contributions, leadership and strategic vision have not only paved the way for Samsung’s role as a world leader in the field, but have also shaped today’s society and our relation with computers, mobile and other similar devices.”

Dr. Kim joined Samsung Electronics in 1981, and led the development and advancement of various memory technologies such as DRAM and NAND flash, and logic technologies such as Application Processor and Communication Modem. As CEO of Samsung Advanced Institute of Technology (SAIT), he spearheaded the research and development of technologies that have significantly impacted the semiconductor industry, such as graphene, carbon nanotubes and quantum dots, advanced materials, 3D fusion technologies, batteries and printed electronics.

Imec’s Lifetime of Innovation Award was launched in 2015, in support of imec’s commitment to recognizing the prominent individuals who have made outstanding contributions to the industry. Previous recipients were Dr. Morris Chang in 2015 and Dr. Gordon Moore in 2016.

dr kim samsung

SEMI, the global association connecting and representing the worldwide electronics manufacturing supply chain, today reported that worldwide sales of semiconductor manufacturing equipment totaled $41.24 billion in 2016, representing a year-over-year increase of 13 percent. 2016 total equipment bookings were 24 percent higher than in 2015. The data are available in the Worldwide Semiconductor Equipment Market Statistics (WWSEMS) Report, now available from SEMI.

Compiled from data submitted by members of SEMI and the Semiconductor Equipment Association of Japan (SEAJ), the Worldwide SEMS Report is a summary of the monthly billings and bookings figures for the global semiconductor equipment industry. The report, which includes data for seven major semiconductor producing regions and 24 product categories, shows worldwide billings totaled $41.24 billion in 2016, compared to $36.53 billion in sales posted in 2015. Categories cover wafer processing, assembly and packaging, test, and other front-end equipment. Other front-end includes mask/reticle manufacturing, wafer manufacturing, and fab facilities equipment.

Spending rates increased for Rest of World (primarily Southeast Asia), China, Taiwan, Europe and South Korea while the new equipment markets in North America and Japan contracted. Taiwan claimed the largest market for new semiconductor equipment for the fifth year in a row with $12.23 billion in equipment sales. South Korea remained the second largest market for the second year in a row. The market in China increased 32 percent, surpassing both Japan and North America to become the third largest market. The 2016 equipment markets in Japan and North America fell to fourth and fifth place, respectively. The global other front-end segment decreased 5 percent; the wafer processing equipment market segment increased 14 percent; total test equipment sales increased 11 percent; and the assembly and packaging segment increased 20 percent.

Semiconductor Capital Equipment Market by World Region (2015-2016)

2016
2015
% Change
Taiwan
12.23
9.64
27%
South Korea
7.69
7.47
3%
China
6.46
4.90
32%
Japan
4.63
5.49
-16%
North America
4.49
5.12
-12%
Rest of World
3.55
1.97
80%
Europe
2.18
1.94
12%
Total
41.24
36.53
13%

Source: SEMI (www.semi.org) and SEAJ, March 2017; Note: Figures may not add due to rounding.

The ConFab – an exclusive conference and networking event for semiconductor manufacturing and design executives from leading device makers, OEMs, OSATs, fabs, suppliers and fabless/design companies – announces Keynotes in the May 14-17 event being held at the Hotel del Coronado in San Diego.

The ConFab 2017 is excited to welcome these distinguished Keynote speakers: Hans Stork, Senior Vice President and Chief Technical Officer at ON Semiconductor; Mohan Trivedi, Distinguished Professor of Electrical and Computer Engineering and founding director of the Computer Vision and Robotics Research Laboratory, as well as the Laboratory for Intelligent and Safe Automobiles at the University of California San Diego; Dr. Alissa Fitzgerald, Founder and Managing Member of A.M. Fitzgerald & Associates, and Bill McClean, President of IC Insights.

Hans Stork, Senior Vice President and Chief Technical Officer at ON Semiconductor

Hans Stork, Senior Vice President and Chief Technical Officer at ON Semiconductor

Mohan Trivedi, Distinguished Professor of Electrical and Computer Engineering and founding director of the Computer Vision and Robotics Research Laboratory

Mohan Trivedi, Distinguished Professor of Electrical and Computer Engineering and founding director of the Computer Vision and Robotics Research Laboratory

Mohan Trivedi, Distinguished Professor of Electrical and Computer Engineering and founding director of the Computer Vision and Robotics Research Laboratory

Mohan Trivedi, Distinguished Professor of Electrical and Computer Engineering and founding director of the Computer Vision and Robotics Research Laboratory

 

 

 

 

 

 

 

 

 

 

“The five hottest areas for semiconductor growth in the coming years are the Internet of Things (IoT), automotive, 5G, virtual reality/augmented reality (VR/AR), and artificial intelligence (AI). The ConFab 2017 program will take a close look at the challenges of these applications in the semiconductor industry, not just on the microprocessor and memory side, but on the MEMS, sensor, display, power and analog side. Many new innovations in packaging will also addressed,” said Pete Singer, Conference Chair of The ConFab and Editor-in-Chief of Solid State Technology.

In addition to our great Keynotes, the 2017 Agenda brings together sessions on heterogeneous integration and advanced packaging, starting with a talk from Islam Salama, Director with Intel, followed by Bill Chen, ASE Fellow, and Jan Vardaman, President of TechSearch. Siemens will speak on Smart Manufacturing, which will encompass the Industrial Internet of Things (IIoT). A panel discussion on Advanced Packaging will be moderated by Vinayak Pandey, Vice President of STATS ChipPAC with additional sessions that will focus on MEMS and sensors. Speakers include Kevin Shaw, CTO and Founder of Algorithmic Intuition and J.C. Eloy, President and CEO of Yole Développement. Another panel will look into the coming opportunities and changes in a range of diverse markets, including MEMS and Sensors, power electronics, biomedical, LEDs, displays and more. Those panelists include Valerie Marty of Connected Micro, Laura Rothman Mauer of Veeco, David Butler of SPTS and Mike Rosa of Applied Materials. Jason Marsh of NextFlex will provide an update on flexible electronics on Wednesday.

The ConFab is a high-level conference for decision-makers and influencers to connect, innovate and collaborate in multiple sessions, one-on-one private business meetings, and other networking activities. For more information, visit www.theconfab.com.

About The ConFab

The ConFab is the premier semiconductor manufacturing conference and networking event bringing over 200 notable industry leaders together. The ConFab is owned and produced by Extension Media and hosted by Pete Singer, Solid State Technology’s Editor-in-Chief, and Conference Chair. To inquire about participating – if you represent an equipment, material or service supplier, contact Kerry Hoffman, Director of Sales, at [email protected]. To inquire about attending, contact Sally Bixby, Sr. Events Director at [email protected]

About Extension Media

Extension Media is a privately held company operating more than 50 B2B magazines, engineers’ guides, newsletters, websites and conferences that focus on high-tech industry platforms and emerging technologies such as: chip design, semiconductor and electronics manufacturing, embedded systems, software, architectures and industry standards. Extension Media also produces industry leading events including The ConFab, the Internet of Things Developers Conference (IoT DevCon 2017) and the new Machine Learning Developers Conference (ML DevCon 2017), and publishes Embedded Systems Engineering, EECatalog.com, Embedded Intel® Solutions, EmbeddedIntel.com, Chip Design, ChipDesignMag.com, Solid State Technology and Solid-State.com.

Today, SEMI announced updates to its World Fab Forecast report, revealing that fab equipment spending is expected to reach an industry all-time record − more than US$46 billion in 2017.  The record is expected to be broken again in 2018, nearing the $50 billion mark. These record-busting years are part of three consecutive years of growth (2016, 2017 and 2018), which has not occurred since the mid-1990s. The report has been the industry’s most trusted data source for 24 years, observing and analyzing spending, capacity, and technology changes for all front-end facilities worldwide. See Figure 1.

fab equipment spending

Figure 1: Fab Equipment Spending (Front End Facilities)

SEMI‘s World Fab Forecast report (end of February 2017) provides updates to 282 facilities and lines equipping in 2017, 11 of which are expected to spend over $1 billion each in 2017. In 2018, SEMI’s data reflect 270 fabs to equip, with 12 facilities spending over $1 billion each.  The spending is mainly directed towards memory (3D NAND and DRAM), Foundry and MPU.  Other strong product segments are Discretes (with LED and Power), Logic, MEMS (with MEMS/RF), and Analog/Mixed Signal.

SEMI (www.semi.org) forecasts that China will be third for regional spending in 2017, although China’s annual growth is minimal in 2017 (about 1 percent), as many of the new fab projects are in the construction phase.  China is busy constructing 14 new fabs in 2017 and these new fabs will be equipping in 2018. China’s annual spending growth rate in 2018 will be over 55 percent (more than $10 billion), and ranking in second place for worldwide spending in 2018.  In total for 2017, China is equipping 48 fabs, with equipment spending of $6.7 billion; looking ahead to 2018, SEMI predicts that 49 fabs to be equipped, with spending of about $10 billion.

Other regions also show solid growth rates.  The SEMI World Fab Forecast indicates that Europe/Mideast and Korea are expected to make the largest leaps in terms of growth rates this year with 47 percent growth and 45 percent growth, respectively, year-over-year (YoY).  Japan will increase spending by 28 percent, followed by the Americas with 21 percent YoY growth.

The SEMI Industry Research & Statistics team has made 195 changes on 184 facilities/lines in the last quarter, with eight new facilities added and three fab projects cancelled. SEMI’s World Fab Forecast provides detailed information about each of these fab projects, such as milestone dates, spending, technology node, products, and capacity information. The World Fab Forecast Report, in Excel format, tracks spending and capacities for over 1,100 facilities including future facilities across industry segments.  The SEMI World Fab Forecast and its related Fab Database reports track any equipment needed to ramp fabs, upgrade technology nodes, and expand or change wafer size, including new equipment, used equipment, in-house equipment, and spending on facilities for equipment. Also check out the Opto/LED Fab Forecast.

By Heidi Hoffman, FlexTech | SEMI

In 2016, the Nano-Bio Manufacturing Consortium (NBMC), a FlexTech-managed consortium focused on human performance monitoring technology, and funded in part by the Air Force Research Laboratories (AFRL), contracted with a broad-based team of industry and academia researchers, to develop a wearable monitor based on sweat analysis. The device is delivering excellent performance and reliable, wireless, actionable human performance data in a non-invasive nature.

The device, simply nick-named, the ‘patch,’ provides real-time feedback on sweat electrolytes and hydration status of the wearer as part of a larger project to predict fatigue and enhance individual performance. Continuous monitoring of physiological and biological parameters improves performance and medical outcomes by assessing overall health status and alerting for life-saving interventions.

patches

The NBMC patch project includes the non-invasive measurement of biomarkers in sweat including: electrolytes such as Sodium, Potassium, and stress – small molecules and proteins, such as cortisol and Orexin A. The patch seeks to exceed the capabilities of other devices on the market with its combination of wireless communications, microfluidics system, selective biochemical sensing, and, critically, its ability to be produced for health and human-performance monitoring devices. Technical challenges remain in ensuring readings are accurately and robustly assessing the total body hydration.

Wearable-Biofluid 1

The thin wireless patch device is the initial result of an on-going NBMC program entitled “Wearable Device for Dynamic Assessment of Hydration Status.” The patch program is led by GE Global Research, but is actually a highly-collaborative, multi-disciplinary, endeavor with partners from the Air Force Research Laboratory, University of Connecticut, University of Massachusetts-Amherst, American Semiconductor Inc., University of Arizona, UES, and Dublin City University. The project is funded by the industry and academic partners and the AFRL.

GE-Global

Devices which might leverage this technology and manufacturing capability include the next-generation of human performance monitors currently being developed by organizations as diverse as Apple, Google, and Nike. Systems encompass data acquisition, analysis, transmission, interpretation, and archiving in a secure manner.

NBMC continues to explore R&D and manufacturing strategies for making the next generation of life-saving wearable devices, through its relationship with NextFlex and management by SEMI | FlexTech.

By Denny McGuirk, SEMI president and CEO

“Do not go where the path may lead, go instead where there is no path and leave a trail.”  Attributed to Ralph Waldo Emerson, this could be the credo of our industry.  Moore’s Law has created $13 trillion of market value and we’ve been pioneering the way forward – since even before Gordon Moore made the famous “observation” that became Moore’s Law more than 50 years ago.  Our industry paved the road forward with advancements in design, materials, processing, equipment, and integration, traveling at the speed of exponential growth number in transistors per chip (doubling approximately every two years).

Today, globally, we’re shipping more than one trillion ICs per year!  Leading-edge chips boast more than 10 billion transistors at the advanced 10nm (gate length) technology node and are made with 3D FinFET architectures formed by 193nm wavelength immersion multi-patterning lithography.  It’s become a very challenging – and very expensive – road (a single lithography tool alone costs in the tens of millions of dollars).  The companies building the road ahead are bigger and fewer as massive bets now need to be placed on new fabs costing more than $5 billion and even $10 billion and where a new single chip design alone costs more than $150 million to bring into production.

What follows, in Part 1 of this two-part article, is a quick look back at the industry in 2016 and the road ahead in 2017 followed by what SEMI achieved in 2016 and where SEMI’s road will lead in 2017 to keep pace our industry charging forward where there is no path. Part 2 (next week’s Global Update) will focus on SEMI 2020 initiatives.

A look back at 2016: “Straight roads do not make skillful drivers”

2016 was definitely not a straight road; truly it was a wild ride – so, SEMI members have become extremely skilled drivers. The semiconductor manufacturing industry had a slow first half with pessimism building throughout the first quarter, but by April semiconductors bottomed and NAND investment and a slate of new China projects drove a strong second half.  For semiconductor equipment, SEMI’s statistics indicate global sales in 2015 were $36.5 billion and 2016 came in at $39.7 billion, ultimately ending up about 9 percent.  For reference semiconductor materials in 2015 was $24.0 billion and 2016 came in at $24.6 billion, up nearly 2.6 percent year-over year (YoY).

But, it turns out, that’s not half the story.  2016 was full of surprises.  At the geopolitical level, Brexit, an impeachment in South Korea, and a Trump win were wholly unanticipated and leave a lot of questions as to how that road ahead might look.  In technology, the Galaxy Note 7 mobile phone became an airline hazard announcement and stalwarts like Yahoo! faded into the background (now part of Verizon).  In part due to challenges of the road ahead (and because the cost of capital remained low) M&A fever continued in semiconductors with more than $100B in deals announced in 2016.

It was an astonishing year for combinations with huge deal announcements such as Qualcomm buying NXP for $47 billion and SoftBank buying ARM for $32 billion.  Meanwhile, mergers in the equipment and materials space continued, to name a few notables ASML’s acquisition of Hermes Microvision, DuPont and Dow announcing the intent to merge (announced December 2015, but still in the works), and Lam Research and KLA-Tencor ultimately calling off their deal due to complications of regulatory pushback.  The extended supply chain was mixing things up, too, with acquisitions like the announcement by Siemens to acquire Mentor Graphics.  It has been very active, overall.  This was the second year of semiconductor M&A deals valued at more than $100 billion, a signal that size and scale is critical to build the road ahead.

A look ahead: “Difficult roads often lead to beautiful destinations”

With all the talk about roads, it’s no surprise that the automotive segment is gathering momentum as a strong growth driver for the electronics supply chain.  Not only is there increasing electronics content in cars for comfort and infotainment, but also for assisted and autonomous driving and electric vehicles which are ushering in a new era of electronics consumption.

Along with automotive, IoT (Internet of Things), 5G, AR/VR (Augmented Reality and Virtual Reality), and AI (Artificial Intelligence) round out a set of powerful IC and electronics applications drivers (see figure).  Per an IHS Study, 5G alone may enable as much as $12.3 trillion in goods and services in 2035. Gartner’s most recent forecast is cause for optimism further down the electronics manufacturing supply chain.  Gartner see IC revenue growing from 2016’s $339.7 billion to 2017’s $364.1 billion up 7.2 percent and growing further in 2018 at $377.9 billion up 3.8 percent.  For semiconductor equipment, SEMI’s forecast indicates 2015 was $36.5 billion, 2016 will come in at $39.7 billion, and 2017 is projected to be $43.4 billion, pointing to both 2016 and 2017 experiencing approximately 9 percent YoY growth.

In 2017, China investment is projected to continue as a major driver, likely consuming over 16 percent of the total global equipment investment (second only to South Korea).  SEMI is currently tracking 20 new fab projects.  Investments come from both multinationals and local Chinese ventures.  A sign of the rise of China is China’s upward production share trend of its own IC consumption market (IC Insights): 8 percent in 2009, 13 percent in 2015, and 21 percent in 2020. Further down in the electronics supply chain, fab equipment related spending in China will rise to more than $10 billion per year by 2018 and remain at that level or above for subsequent years.

NAND will continue to be a major driver with 3D NAND investment leading the way.  Silicon in Package (SiP) and heterogeneous integration will increasingly be solutions to augment traditional feature scaling to fit more transistors into less space at lower costs.  Materials innovations will be relied upon to solve front-end and packaging challenges while standard materials will be the focus of increased efficiencies and cost reduction. 200mm fab capacity will grow and stimulate new 200mm investment with upside driven by power devices and MEMS segments.  Investment in foundry MEMS will grow by an estimated 285 percent (2015 to 2017).

“There are far better things ahead than any we leave behind”

SEMI, the global non-profit association connecting and representing the worldwide electronics manufacturing supply chain, has been growing with the industry for 47 years.  SEMI has evolved over the years, but it has remained as the central point to connect.  Whether connecting for business, connecting for collective action, or connecting to synchronize technology, SEMI connects for member growth and prosperity.

As a reminder, here are SEMI’s mission, vision, and 2020 strategic focus areas.

  • Mission — our focus for the next five years
    • SEMI provides industry stewardship and engages our members to advance the interests of the global electronics manufacturing supply chain.
  • Vision — what we stand for
    • SEMI promotes the development of the global electronics manufacturing supply chain and positively influences the growth and prosperity of its members.  SEMI advances the mutual business interests of its membership and promotes a free and open global marketplace.
  • Members’ Growth — 2020 strategic focus
    • SEMI enables member growth opportunities by evolving SEMI communities and building new communities across the global electronics manufacturing supply chain via cooperation, partnerships, and integration.
  • Members’ Prosperity — 2020 strategic focus
    • SEMI enables members to prosper by building extended supply chain collaboration forums providing opportunities to increase value while optimizing the supply chain for SEMI members.

Our industry is in the midst of a vast change.  To deal with the escalating complexity (making a semiconductor chip now uses the great majority of the periodic table of the elements) and capital cost, many companies have had to combine, consolidate, and increasingly collaborate along the length of the electronics manufacturing supply chain.

Some companies have broadened their businesses by investing in adjacent segments such as Flexible Hybrid Electronics (FHE), MEMS, Sensors, LEDs, PV, and Display.  Lines are blurring between segments – PCBs have morphed into flexible substrates, SiP is both a device and a system.  Electronics integrators are rapidly innovating and driving new form factors, new requirements, and new technologies which require wide cooperation across the length of the electronics manufacturing supply chain and across a breadth of segments.

The business is changing and SEMI’s members are changing.  When SEMI’s members change, SEMI must change, too – and SEMI has, and is.  SEMI developed a transformation plan, SEMI 2020, which I wrote about at the beginning of 2016.  We’re well on our way on this path and in next week’s e-newsletter Global Update, I’d like to update you on what we’ve accomplished and what’s to come.

Each year, Solid State Technology turns to industry leaders to hear viewpoints on the technological and economic outlook for the upcoming year. Read through these expert opinions on what to expect in 2017.

Driving the industry forward with materials engineering

Raja_Prabu_fullPrabu Raja, vice president and general manager, Patterning and Packaging Group, Applied Materials, Inc.

Over the past few years, the industry has made remarkable progress in bringing 3D chip architectures to volume production. In 2017, we will continue to see exciting technology innovations for scaling 3D NAND devices to 64 layers, ramping the 10nm process node into volume manufacturing and increasing the adoption of highly integrated chip packages.

With the transition to the 3D and sub-10nm era, the semiconductor world is changing from lithography-based scaling to materials-enabled scaling. This shift requires multiple new materials and capabilities in selective processing.

The magnitude and pace of these changes are truly disruptive. For example, with 3D NAND materials innovations for hard mask deposition and hard mask etch are essential. The challenge is to build high aspect ratio vertical structures with uniform profiles from the top to the bottom as more layers are added. Selective removal processes can remove targeted materials in vertical and horizontal structures without damage or residue throughout the stack.

For logic/foundry, the introduction of the 10nm process node in volume manufacturing brings significant growth in the number of patterning steps. This trend will increase even more for 7nm and below designs. Patterning these advanced nodes requires innovative etch capabilities to deliver feature-scale uniformity with low line edge roughness. Selective processes and alternative manufacturing schemes will also be needed as the industry seeks solutions for layer-to-layer vertical alignment. We expect this to result in a two-fold increase in the number of materials to be deposited and removed.

Finally, the industry will continue to adopt new and improved packaging schemes for enabling increased device performance, lower power consumption and to deliver desired form factors. In 2016, we saw the volume adoption of Fan-Out packaging in mobile devices and this trend is expected to grow further in 2017. The high performance computing segment will pursue 2.5D interposer and/or 3D TSV packaging schemes for higher memory bandwidth, lower latency and better power efficiency.

Applied Materials is focused on delivering game-changing selective process technologies and materials innovations to help solve the industry’s toughest challenges.

Fueled by lightning-fast demand for ubiquitous connectivity, the number of connected Internet of Things (IoT) devices globally will jump by 15 percent year-over-year to 20 billion in 2017, according to new analysis from IHS Markit (Nasdaq: INFO).

In a free new report entitled “IoT Trend Watch 2017,” IHS Markit technology analysts have identified four key trends that will drive the IoT this year and beyond. Increasingly, the report says, businesses see the IoT as a tremendous opportunity to create unique value propositions by linking disparate systems of connected devices that range from multiscreen content sharing to smart city networks.

IHS Markit defines IoT as a conceptual framework, powered by the idea of embedding connectivity and intelligence into a wide range of devices. “These internet-connected devices can be used to enhance communication, automate complex industrial processes and provide a wealth of information that can be processed into useful actions – all aimed at making our lives easier,” said Jenalea Howell, research director – IoT connectivity and smart cities for IHS Markit.

According to the report, the industrial sector — led by building automation, industrial automation and lighting — will account for nearly one half of new connected devices between 2015 and 2025.

IHS Markit has named these four trends as leading the IoT evolution in the coming years:

Trend #1 – Innovation and competitiveness are driving new business models and consolidation

  • To date, the focus on IoT monetization has rightly revolved around the way in which suppliers earn revenue selling components, software or services to IoT application developers. Increasingly, however, the focus is shifting to the IoT developers themselves and how they will monetize new streams of data delivered by their IoT deployments.
  • A wide range of monetization models are being tested, reflecting the fragmented nature of the IoT market across numerous vertical industries. Successful models will revolve around “servitization” and closer, ongoing relationships with end customers, the report says.

Trend #2 – Standardization and security are enabling scalability

  • With the high growth in IoT deployments and much hype surrounding the promise of the IoT marketplace, scaling the IoT is highly dependent on two factors: first, the pace at which devices are connected and second, the ability to manage a large number of devices.
  • Currently, diverse standards and technologies make it difficult to evaluate the many technology options available. Stakeholders also must take a holistic, end-to-end view of securing systems comprehensively and move beyond focusing only on device security.
  • By 2020, the global market for industrial cybersecurity hardware, software and devices is expected to surpass $1.8 billion as companies deal with new IoT devices on business networks as well as a new wave of mobile devices connected to corporate networks.

Trend #3 – Business models are keeping pace with IoT technology

  • The methods used to monetize the IoT are almost as diverse as the IoT itself. Many pioneers of the IoT sold products to build it. That is still happening, of course, but now there is a shift to reaping the benefits of the data that’s been created.
  • An overabundance of business models are being tested to determine which models work and for which applications. Advertising, services, retail and big data are just a few of the areas that have spawned many innovative experiments in monetization. In the coming years, the pace of innovation will slow as successful business models are identified.

Trend #4 – Wireless technology innovation is enabling new IoT applications

  • Advances in wireless technologies will continue to extend the IoT at both the low and high ends. At the low end, low-power wide-area network (LPWAN) promises low cost, low power and long range, connecting millions of devices that previously could not be unified in a practical way. At the high end, 802.11ad makes it possible to wirelessly connect very high performance applications such as 4k video.
  • Beyond 2020, 5G has the potential to address new, mission-critical use cases, particularly where mobility is essential. By 2020, IHS Markit expects around two billion device shipments by integrated circuit type will feature integrated cellular technology.

HID Global forecasts a shift in the use of identity technology that will lead to increased adoption of mobile devices and the latest smart card technology, a greater emphasis and reliance on the cloud, and a radical new way of thinking of trust in smart environments and Internet of Things (IoT).

Ultimately, HID Global predicts the 2017 trends will transform the way trusted identities are used with smart cards, mobile devices, wearables, embedded chips and other “smart” objects, particularly in industries focused on regulatory compliance, such as government, finance and healthcare markets. This shift will precipitate the move from legacy systems to NFC, Bluetooth Low Energy and advanced smart card technology to meet the evolving needs of enterprises and governments worldwide.

The forecast for 2017 is also based on a breakthrough in adoption of mobile identity technology in 2016. Exemplifying industry-wide trending, HID Global experienced tremendous uptick in customer deployments of its broad mobility solutions and has a strong pipeline of future customer installations in the works to make verification of identities optimized for mobile applications.

“HID Global has forecasted top trends based on our broad view of the market in close collaboration with customers and partners who are assessing and deploying innovative solutions across markets worldwide,” said Stefan Widing, President and CEO of HID Global. “We have been at the forefront of major technology shifts over the years and HID Global believes 2017 will mark an important phase in the industry, as organizations seek to use the broadest range of smart devices ever. This will directly impact how customers view and use trusted identities on both mobile devices and smart cards for more activities in more connected environments in the years ahead.”

HID Global focuses on four significant trends in 2017 that will influence how organizations create, manage and use trusted identities in a broad range of existing and new use cases.

Stronger adoption of mobile devices and advanced smart cards underscores the need for trusted identities

  • Similar to the adoption of consumer trends to IT in past years, 2017 will also see further consumerization of security, with heightened demand from users seeking to open doors, and login to cloud-based resources, as well as have personalized on-demand printing of documents, and to deploy printed credentials remotely or conduct other transactions and daily activities using trusted IDs on their phone, wearable or smart card.
  • Trusted IDs that integrate security, privacy and convenience will provide a new level of assurance to these applications and transactions, while being uniquely positioned to make secure access more personalized to the individual.
  • The industry will look towards complete identity relationship management that considers the need to grant access based on the context or circumstances for risk-appropriate authentication across trusted identities assigned to people, devices, data and things in smart offices, buildings and other environments that are becoming more connected every day.

Greater emphasis on the cloud through “hybrid” solutions that combine on-premises and the cloud to create common management platforms for digital IDs

  • Organizations are recognizing the interdependencies of technologies and platforms needed for business agility, cost management and providing a better user experience within a mobile workforce, or for digital commerce and relationship management that continues to require more reach, flexibility, security.
  • In banking, government, healthcare and other regulated markets, multi-factor authentication for physical and IT access control will have more opportunities to merge into integrated systems that will also provide a more convenient experience for users and increase security.
  • This model will make it easier for administrators to deploy and maintain an integrated system throughout the complete identity lifecycle — from onboarding to offboarding;
  • It will make it possible to monitor and manage employees’ access rights as their role changes within an organization, ensuring employees only have access to what they need in a current role.
  • Credential issuance for physical ID cards will also experience a digital transformation, as the use of cloud technologies will enable managed service models for badge printing and encoding.

Emerging IoT uses cases to connect, more people, places and things, increasing the need to ensure the Internet of Trusted Things (IoTT)

  • Trusted identities will increasingly be employed to help secure, customize and enhance the user experience across a growing range of industry segments that are embracing the power of the IoT.
  • Organizations will look towards streamlining processes and operations using real-time location systems, presence- and proximity-based location functionality, condition monitoring solutions, beacons and cloud-based models for emerging IoT applications using Bluetooth Low Energy. These applications will include a growing number of energy efficient, productivity and safety-oriented use cases that will need to know the identity of occupants in a physical space to manage environmental conditions, book meeting rooms and auto-configure audio visual equipment and alarms.
  • Bluetooth Low Energy-based solutions will also advance existing secure proof of presence capabilities to include the predictive analytics and functionality based on location-based technologies.

Embedding trusted identities more deeply in everyday activities for businesses and consumers

  • Trusted identities will become an embedded feature of more use cases rather than simply an add-on capability. This trend of “security by design” will lead to many more convenient approaches to using digital identities across a growing variety of activities, services and industries.
  • Along with popular secure access use cases, new applications will emerge, such as employee mustering capabilities to address emergencies as well as the need to more accurately determine who is in a building in real-time.
  • New capabilities for managing and using trusted IDs will be driven by the increase of temporary offices, mobile knowledge workers and the evolution of the workplace, where adapting to the preferences of today’s talent pool is driving the need for more open, flexible workspaces. Consumers also will begin seeing trusted identities used in many everyday scenarios, such as guaranteeing authorized use of corporate and heavy machinery fleets, as well as creating new ways to safeguard students and validate drivers.

These trends will drive new user experiences that are tailored to vertical market requirements. Following are three particularly compelling examples:

Banking: A digital identity transformation will drive consistency across multiple service channels to improve the user experience, from faster instant issuance that is revolutionizing the way customers receive new or replacement debit and credit cards, to “out-of-band” mobile push capabilities that increase trust and reduce fraud for consumers, and deliver a much easier path to compliance for financial institutions. Digital IDs will also push the industry to increase trust levels by better associating a user’s true identity (biometrics) with their digital identities.

Government: Trusted identities will change the way citizens interact with government agencies and systems. Passports, national IDs, driver licenses and other credentials will co-exist with new disruptive technologies to change the way IDs are issued by government agencies and used by citizens. Citizen IDs are poised to move to mobile phones this year, where state and national governments will begin offering mobile driver’s licenses and other mobile identity IDs as an option alongside the physical document. Meanwhile, the combination of mobile with innovative physical and logical features will provide more options for government agencies to stay ahead of the counterfeiters by advancing the security, personalization, management and issuance of physical documents.

Healthcare: In the increasingly connected healthcare environment, institutions will seek to implement better systems to improve the patient experience and enhance efficiencies, while safeguarding and managing access to equipment, facilities, patient data and electronic prescriptions of controlled substances (EPCS) across the healthcare continuum. From hospital to home, healthcare organizations will seek to employ a combination of strong authentication, and new IoT applications to address these challenges.

HID Global anticipates the shift in the use of identity technology will drive industry trends in 2017, along with new solutions and capabilities that enhance the user experience for years to come.