Tag Archives: letter-pulse-business

RF power semiconductors for wireless infrastructure (for <4GHz and >3W) was over a US$1 billion business for 2018. The segment was essentially revenue flat, but Gallium Nitride (GaN) continues to make inroads into this segment.

“Gallium Nitride should continue to gain share over the next few years,” noted ABI Research Director Lance Wilson. “It bridges the gap between two older technologies, exhibiting the high-frequency performance of Gallium Arsenide combined with the power handling capabilities of Silicon LDMOS. It is now a mainstream technology which has achieved measurable market share and, in the future, will capture a significant part of the market.”

The wireless infrastructure sub-segment while representing about two-thirds of total RF power device sales has been anemic recently but is still holding its own.

The eventual deployment of 5G also offers an upside for the wireless Infrastructure segment. The main issue is one of timing on a large-scale rollout. Wilson also added, “the business environment for the RF power semiconductor device business has become more complex with potential trade tariffs, merger and acquisition troubles and other similar issues clouding the market”.

These findings are from ABI Research’s RF Power Semiconductor Devices for Mobile Wireless Infrastructure report. These reports are part of the company’s 5G & Mobile Network Infrastructureresearch service, which includes research, data, and Executive Foresights.

Synopsys, Inc. (Nasdaq: SNPS) today announced a collaboration with IBM to apply design technology co-optimization (DTCO) to the pathfinding of new semiconductor process technologies for the 3-nanometer (nm) process node and beyond. DTCO is a methodology for efficiently evaluating and down-selecting new transistor architectures, materials and other process technology innovations using design metrics, starting with an early pathfinding phase before wafers become available. The collaboration will extend the current Synopsys DTCO tool flow to new transistor architectures and other technology options while enabling IBM to develop early process design kits (PDKs) for its partners to assess the power, performance, area, and cost (PPAC) benefits at IBM’s advanced nodes.

“Process technology development beyond 7 nanometers requires the exploration of new materials and transistor architectures to achieve optimum manufacturability, power, performance, area, and cost. A major challenge for foundries is to converge on the best architecture in a timely manner while vetting all the possible options,” said Dr. Mukesh Khare, vice president of Semiconductor Research, IBM Research Lab. “Our DTCO collaboration with Synopsys allows us to efficiently select the best transistor architecture and process options based on metrics derived from typical building blocks, such as CPU cores, thus contributing to faster process development at reduced cost.”

In this collaboration, IBM and Synopsys are developing and validating new patterning techniques with Proteus mask synthesis, modeling new materials with QuantumATK, optimizing new transistor architectures with Sentaurus TCAD and Process Explorer, and extracting compact models with Mystic. Design rules and process assumptions derived from these process innovations are used to design and characterize a standard cell library while Fusion Technology at the block level using the Synopsys physical implementation flow based on IC Compiler II place-and-route, StarRCextraction, SiliconSmart® characterization, PrimeTime® signoff, and IC Validator physical verification benefits the evaluation of PPAC.

The scope of the joint development agreement covers multiple facets, including:

  • DTCO to optimize transistor- and cell-level design across routability, power, timing, and area
  • Evaluate and optimize new transistor architectures, including gate-all-around nanowire and nanoslab devices, with process and device simulation
  • Optimize variation-aware models for SPICE simulation, parasitic extraction (PEX), library characterization, and static timing analysis (STA) to accurately encapsulate the effects of variation on timing and power for highest-reliability design with least over-design and design flow runtime overhead
  • Gather gate-level design metrics to refine the models, library architecture, and design flows to maximize PPAC benefits

“Synopsys has developed the only complete DTCO solution, from materials exploration to block-level physical implementation,” said Dr. Antun Domic, chief technology officer at Synopsys. “IBM’s extensive process development and design know-how makes them an ideal partner for extending our DTCO solution to 3 nanometers and beyond.”

Cabot Microelectronics Corporation (Nasdaq: CCMP), a supplier of chemical mechanical planarization (CMP) polishing slurries and second largest CMP pads supplier to the semiconductor industry, and KMG Chemicals, Inc. (NYSE: KMG), a global provider of specialty chemicals and performance materials, have entered into a definitive agreement under which Cabot Microelectronics will acquire KMG in a cash and stock transaction with a total enterprise value of approximately $1.6 billion. Under the terms of the agreement, KMG shareholders will be entitled to receive, per KMG share, $55.65 in cash and 0.2000 of a share of Cabot Microelectronics common stock, which represents an implied per share value of $79.50 based on the volume weighted average closing price of Cabot Microelectronics common stock over the 20-day trading period ended on August 13, 2018.  The transaction has been unanimously approved by the Boards of Directors of both companies and is expected to close near the end of calendar year 2018.

The combined company is expected to have annual revenues of approximately $1 billion and approximately $320 million in EBITDA, including synergies, extending and strengthening Cabot Microelectronics’ position as one of the leading suppliers of consumable materials to the semiconductor industry.  Additionally, the combined company will be a leading global provider of performance products and services for improving pipeline operations and optimizing throughput.

“We are excited about the combination of two world-class organizations with dedicated and talented employees that provide innovative, high quality solutions to solve our customers’ most demanding challenges,” said David Li, President and CEO of Cabot Microelectronics. “KMG’s industry-leading electronic materials business is highly complementary to our CMP product portfolio, while its performance materials business broadens our product offerings into the fast-growing industry for pipeline performance products and services.  We welcome KMG’s employees to our team and look forward to our future together as one company.”

Chris Fraser, KMG Chairman and CEO, said, “This is an outstanding combination, bringing together two leading companies that will benefit from increased size, scale and geographic reach. For KMG shareholders, this transaction creates significant and immediate value while also providing participation in the future growth of the combined company.  Thanks to the dedication and hard work of KMG employees around the world, KMG has achieved significant progress over the past several years, and I am confident that Cabot Microelectronics will continue to build on this success to further enhance value for our shareholders.”

SEMI today announced that all legal requirements have been met for the ESD (Electronic Systems Design) Alliance to become a SEMI Strategic Association Partner.

Full integration of the Redwood City, California-based association representing the semiconductor design ecosystem is expected to be complete by the end of 2018. The integration will extend ESD Alliance’s global reach in the electronics manufacturing supply chain and strengthen engagement and collaboration between the semiconductor design and manufacturing communities worldwide.

As a SEMI Strategic Association Partner, the ESD Alliance will retain its own governance and continue its mission to represent and support companies in the semiconductor design ecosystem.

The ESD Alliance will lead its strategic goals and objectives as part of SEMI, leveraging SEMI’s robust global resources including seven regional offices, expositions and conferences, technology communities and activities in areas such as advocacy, international standards, environment, health and safety (EH&S) and market statistics.

With the integration, SEMI adds the design segment to its electronics manufacturing supply chain scope, connecting the full ecosystem. The integration is a key step in streamlining SEMI members’ collaboration and connection with the electronic system design, IP and fabless communities. The Strategic Association Partnership will also enhance collaboration and innovation across the collective SEMI membership as ESD Alliance members bring key capabilities to SEMI’s vertical application platforms such as Smart Transportation, Smart Manufacturing and Smart Data as well as applications including AI and Machine Learning.

“The addition of ESD Alliance as a SEMI Strategic Association Partner is a milestone in our mission to drive new efficiencies across the full global electronics design and manufacturing supply chain for greater collaboration and innovation,” said Ajit Manocha, president and CEO of SEMI. “This partnership provides opportunities for all SEMI members for accelerated growth and new business opportunities in end-market applications. We welcome ESD Alliance members to the SEMI family.”

“Our members are excited about becoming part of SEMI’s broad community that spans the electronics manufacturing supply chain,” said Bob Smith, executive director of the ESD Alliance. “Global collaboration between design and manufacturing is a requirement for success with today’s complex electronic products. Our new role at SEMI will help develop and strengthen the connections between the design and manufacturing communities.”

All ESD Alliance member companies, including global leaders ARM, Cadence, Mentor, a Siemens business, and Synopsys, will join SEMI’s global membership of more than 2,000 companies while retaining ESD Alliance’s distinct self-governed community within SEMI.

TowerJazz, the global specialty foundry, announced details of its China Technical Global Symposium (TGS) event in Shanghai on August 22, 2018, focusing on the company’s analog technology offerings, advanced manufacturing solutions and commitment to customer partnerships.

In addition, TowerJazz has launched its official “WeChat” account, the most popular communication app in China, enabling the Company to support the growing activities in China while increasing interaction with Chinese users and sharing the latest TowerJazz technology information, news and events.

“China is a strong region for TowerJazz with on-going increased activities and we are answering the growing demand of Chinese players with our various advanced analog platforms, including Radio Frequency (RF) & High Performance Analog (HPA), power management, and CMOS image sensors (CIS), targeting fast growing markets such as automotive, sensors, the IoT, and 5G, among others,” said Qin Lei, TowerJazz China Country Manager. “In addition, we are pleased to launch our “WeChat” account to better reach and network with our existing and potential Chinese customers.”

Company executives and experts will provide technical sessions on TowerJazz’s leading specialty process technologies such as: RF SOI and SiGe for wireless handsets and the IoT, high performance SiGe for optical networking, 5G, mmWave and automotive applications, silicon photonics (SiPho) technology for optical networks, 65nm CMOS technology with embedded NVM solutions, 0.18um and 65nm BCD focusing on low voltage power products, and CMOS image sensors for face recognition and automotive.

TowerJazz will also present the latest design enablement tools and solutions jointly developed with its EDA partners, and its sponsors Mentor, Empyrean, Silvaco and Xpeedic Technology will share the latest design capabilities offered in collaboration with TowerJazz.

Keysight Technologies, Inc. (NYSE: KEYS), a technology company that helps enterprises, service providers, and governments accelerate innovation to connect and secure the world, has acquired Thales Calibration Services in Melbourne, Australia, a subsidiary of Thales Group, effective July 2, 2018. This acquisition establishes Keysight as the largest calibration and support services organization in Australia.

Thales Calibration Services is a world-class commercial calibration facility specializing in dimensional, pressure, mass, and temperature metrology. Located in Melbourne, Thales Calibration was originally established to provide dimensional support, but expanded its capabilities and accreditation over the past several decades. It is now the largest commercial non-electronic metrology lab in Australia servicing the defense, commercial, medical, petro-chemical, and pharmaceutical industries.

“This acquisition complements our existing electrical portfolio, creating new opportunities for Keysight to support the defense sector in Australia,” said Bor-Chun Gooi, general manager for Keysight’s Managed Services Division East. “Now, Keysight is the largest calibration provider in Australia, offering customers a one stop services solution provider.”

Seoul Viosys, a global provider of UV LED Solution, announced that its product named UV WICOP which combines Seoul Semiconductor’s WICOP LEDs with compact and high efficiency technology have been launched.

The patented WICOP of Seoul Semiconductor is the world’s first product that does not require the packaging process. It has been designed using a single chip and phosphor only without any components such as lead frame and gold wire. Seoul Viosys has applied the technology to its UV LEDs and has been granted the patent for the combined technology.

Conventional UV LEDs have high manufacturing costs due to the additional components and its performance is also degraded by the overload of heat emitted from each component. However, UV WICOP has achieved low cost by delivering only a single chip without additional components and it is effective for heat dissipation. The design can be changed easily depending on the applications or customer needs.

Seoul Viosys has tested its performance by applying UV WICOP technology to various applications for water and air purification, surface disinfection. As a result, the new UV WICOP has improved performance by more than 600% with a lighting duration time of 45,000h compared to conventional high-powered LED packages that have its 2,000h to 7,000h. The price of the product has been 80% lower than those of the competitors that offer equivalent performance.

“Conventional UV LEDs have difficulty in expanding applications with low light power, short duration time and high price. The new UV WICOP of Seoul Viosys is expected to be a leading product that meets the needs of customers and contributes to market expansion for UV LED,” said Jong Man Kim, UV development executive vice president of Seoul Viosys.

“Seoul Viosys had the patent for vertical high-powered package (Patent no. USP 8,242,484) based on UV WICOP technology,” added Kim. “We will initiate the mass production for new UV WICOP with cost competitiveness in the near future.”

Rudolph Technologies, Inc. announces the appointment of David B. Miller to the role of Chairman of the Board of Directors with an effective date of August 5, 2018. Mr. Miller’s appointment is subsequent to the Company’s receipt of Thomas G. Greig’s resignation from the position.

“I am grateful for and enjoyed the opportunity to have served as Lead Director and Chairman of the Rudolph Board of Directors,” said Tom Greig. “Dave Miller brings the right skills and industry background to the chairmanship role in order to continue to drive Rudolph’s success. I look forward to supporting him as I continue to serve on our Board of Directors.”

“We greatly appreciate Tom Greig’s leadership over the past six years and his ongoing service,” commented Michael Plisinski, chief executive officer, Rudolph Technologies. “We are pleased to have Dave Miller’s leadership as Chairman while the company continues to focus on the strategy to build a well-balanced and sustainable growth company.”

Mr. Miller, who has been an independent member of Rudolph’s Board for three years, brings significant leadership and practical experience to the chairmanship role. This experience includes over 40 years within the electronics industry, including six years as president of DuPont Electronics & Communications, as well as prior service on the board of SEMI International. He brings to the role a broad international perspective and understanding of global semiconductor and display markets which have been cultivated not only from his global work experience but also as a result of residing in Asia for three years. Mr. Miller’s experience and leadership will further the market growth of Rudolph as it continues to drive its position as a vital supplier within the semiconductor value chain.

ClassOne, a supplier of new electroplating and wet process tools to the 200mm and smaller semiconductor manufacturing industry, today announced the sale its flagship Solstice® S8 CopperMax™ electroplating tool to i3 of Binghamton, NY.  i3 is rapidly expanding its St. Petersburg, FL facility to accommodate volume production work, and they need an automated plating tool with the ability to grow in tandem. CopperMax™ has been chosen to cost-effectively automate the facility’s wet-bench electroplating processes, with flexibility to easily add related downstream processes.

“i3 has selected CopperMax™ for several excellent reasons,” said ClassOne CEO Byron Exarcos. “Our proprietary CopperMax™ cation exchange membrane technology is simply unrivaled in this market. The plating chamber has been designed to dramatically reduce consumables cost while maintaining extremely high levels of feature quality—even for challenging deposition processes such as TSV. CopperMax customers routinely see reductions in additive consumables cost approaching 95%. What’s more, our Solstice platform is engineered for easy expansion, and is designed to support multiple independent processes simultaneously. It’s a perfect fit for facilities that want to grow beyond wet bench work.”

The Solstice S8 CopperMax platform can be configured with from 2 to 8 entirely independent, field-retrofittable process chambers. CopperMax™ also supports multiple wafer sizes simultaneously, allowing i3 to easily migrate from 4- to 6-inch wafers as their production requirements change. i3 will be working with ClassOne to add Solvent and UBM processing chambers to the same CopperMax™ tool in the coming months.

“CopperMax is a perfect fit for our needs,” said Neal Driver, VP-General Manager of i3 Microsystems. “The tool is incredibly flexible and will grow with us as we expand our production environment. We have also been impressed by ClassOne’s outstanding commitment to helping us develop and perfect our deposition processes. They’ve made a serious corporate commitment to customer service, and it shows.”

i3 is a highly-secure, vertically-integrated semiconductor supplier to the defense and aerospace industries. With Solstice® platforms now in production at several of the world’s foremost defense contractors, ClassOne has emerged as the supplier of choice for the exacting requirements of the defense and aerospace industries.

By Laith Altimime

In a bid to reinvigorate Europe’s electronics strategy and strengthen the region’s position in key emerging technologies, European electronics industry CEOs in June called on public and private actors to accelerate collaboration at the European Union and national levels. The CEO’s proposed new strategic actions include creating a European Design Alliance to pool the expertise of design houses and forming an electronics education and skills task force consisting of representatives from industry, research, European institutions, member states and SEMI.

The business executive’s calls – embodied in “Boosting Electronics Value Chain in Europe,” a report submitted to Mariya Gabriel, Commissioner for Digital Economy and Society, of the European Commission – come as global competition in the electronics industry intensifies. The document highlights Europe’s need to buttress its position amongst others in artificial intelligence (AI), autonomous driving and personalized healthcare – applications that rely on new semiconductor architectures, materials, equipment and design methodologies.

The European semiconductor industry plans to pour more than 50 billion EUR into technology development and innovation by 2025, deepening its investments in research, innovation and manufacturing to help drive Europe’s digital transformation.

For its part, SEMI, as the industry association connecting the electronics value chain, is well-positioned to bring together member companies and public actors to address key challenges facing the sector. This year in April, SEMI announced that Electronics System Design Alliance (ESD Alliance) will join SEMI, adding key electronics design companies to SEMI membership and unlocking the full potential of collaboration between electronics design and manufacturing.  With the ESD Alliance, SEMI adds the product design segment to the electronics supply chain, streamlining and connecting the full ecosystem. The integration also promises to support the industry coordination required to develop specialized (AI) chips used in various smart applications.

SEMI Europe is also accelerating its education and workforce development activities. SEMI Europe this year created its Workforce Development Council Europe, chaired by Emir Demircan, SEMI Europe’s senior manager of public policy, based in Brussels. The council is designed to connect electronics industry human resources representatives with members to evolve best practices in hiring that help Europe gain, train and retain world-class talent.

Other SEMI Europe workforce development activities include the following:

  • SEMI member forums across Europe are helping young talent with career opportunities in the semiconductor industry.
  • In November, SEMICON Europa will host a Career Café where STEM students will explore careers in electronics design and manufacturing.
  • With the participation of representatives from the European Commission, SEMI Europe’s Industry Strategy Symposium in April focused on strategies for attracting more skilled workers into electronics design and manufacturing.

Looking ahead, semiconductor sales is forecast to reach USD 1 trillion by 2030. The global semiconductor industry is at the heart of a new era of connectivity, developing breakthrough solutions for ascendant data-driven technologies such as AI and Internet of Things (IoT). SEMI Europe’s role in strengthening the region’s position in the global electronics industry to help drive this extraordinary growth is critical. SEMI Europe will continue to foster public-private partnerships to tackle industry challenges that are too big, too risky and too costly for companies and government institutions to address alone.

Contact: Laith Altimime, President, SEMI Europe, [email protected] ; Emir Demircan, Sr Manager Public Policy, [email protected]

Originally published on the SEMI blog.