Tag Archives: letter-pulse-business

Kinetic Solutions, Inc., a full-service process and mechanical contractor for high-technology markets worldwide, announced today the acquisition of Mega Fluid Systems, a global supplier of chemical and slurry delivery equipment to the global semiconductor, LED, pharmaceutical, specialty chemicals and solar/PV industries. According to the details of the agreement, Mega Fluid Systems will operate as a Kinetics company, but will maintain its brand and product line. The acquisition marks another strategic decision in the latest string of investments to strengthen the Kinetics global footprint and position it as a leader in critical process facilities systems services, advanced process equipment and facility management solutions.

Kinetics, now in its 45th year, and Mega share a long legacy, as Mega was originally spun out of Kinetics in 2004. The reacquisition brings the story full circle, and allows Kinetics to offer a comprehensive range of equipment solutions that cover the scope of service and provide global turnkey solutions from feasibility studies through design, construction, construction management, commissioning and closeout.

“We are excited to welcome Mega Fluid Systems home to the Kinetics family,” said Peter Maris, president and CEO of Kinetics. “Adding the Mega portfolio of chemical and slurry delivery systems not only extends our process tool offering, it broadens our global reach and allows us to better serve our customers from R&D to volume manufacturing. Together, with the addition of Wafab and Mega, we are now operating from 20 offices with 1,800 employees worldwide.”

The Mega Fluid Systems product line includes leading-edge chemical, slurry and slurry-blend delivery systems, as well the supporting slurry filtration, metrology and world-class control and SCADA systems.

“As an independent brand for over 20 years, Mega established itself as a trusted supplier of high-performance blend and delivery systems, and built our reputation on innovation and ingenuity,” said Delton Hyatt, president, Mega Fluid Systems. “We are proud to bring that reputation home and be reunited with Kinetics. Together, we are a powerhouse of innovative process and mechanical solutions.”

“The Mega product line is a welcome addition to our existing portfolio of legacy process media distribution systems,” said Steve McGuigan, executive VP and general manager of Kinetics Equipment Solutions Group. “Combined with our chemical process systems and other offerings of facility management and high-purity installation capabilities, this strengthens Kinetics’ ability to serve our customers’ needs globally.”

More than Moore (MtM) wafer demand reached almost 45 million 8-inch eq wafers in 2017. The wafer demand is expected to reach more than 66 million 8-inch eq. wafers by 2023, with an almost 10% CAGR between 2017 and 2023. According to Yole Développement (Yole)’s definition, the MtM applications include MEMS & sensors, CIS , and power, along with RF devices.

For the first time, the market research and strategy consulting company Yole announces a global technology & market analysis dedicated to the MtM industry. The Wafer Starts for More Than Moore Applications report is the first part of a valuable series that will be released all year long.

“Yole’s analysts are part of the powerful semiconductor community”, explains Emilie Jolivet, Director, Semiconductor and Software at Yole. “Their daily interactions with leading companies allow them to collect a large amount of relevant data and cross their vision of market segments’ evolution and technology breakthroughs. Wafer Starts for More Than Moore Applications report is the first opportunity to get an overview of the MtM industry based on a 20-year expertise.”

“Numerous megatrend market drivers will contribute to MtM devices’ growth”, confirms Amandine Pizzagalli, Technology & Market Analyst, Semiconductor Manufacturing at Yole. “The megatrends are covering the following market segments: 5G including wireless infrastructure & mobile, mobile with additional functionalities, voice processing, smart automotive, AR/VR and AI.”

What is the status of the MtM wafer demand? Which market drivers will contribute to the growth of MtM devices? Which semiconductor substrate materials and wafer diameter dominate the MtM industry today? What are Yole’s expectations for the next 5 years? The analysts propose you a comprehensive analysis of the MtM wafer demand market.

Driven by the increasing deployment of renewable energy sources , and industrial motor drives, as well as the growing EV/HEVs industry, power devices’ wafer market size will grow at an almost 13% CAGR from 2017 to 2023. In 2017, it accounted for more than 60% of overall MtM wafer starts. According to Yole’s analysts, it will continue dominating the MtM industry.

In parallel, 5G, a hot topic today, will likely be a huge part of the MtM evolution, bringing any service to any user anywhere, but also requiring new antennas, along with filtering functionality. These stringent requirements will lead to increasing demand for RF components like RF filters, PAs , and LNAs to ensure access to tomorrow’s radio network.

Meanwhile, the demand for advanced mobile applications that integrate more functionalities will require aggregating more and more devices such as fingerprint sensors, ambient light sensors, 3D sensing, microphones, and inertial MEMS devices. This will, in the near future, contribute to strong wafer growth in the MEMS & sensors wafer market. Additionally, smart automobiles have reached a new level of complexity requiring the development and integration of new sensors. As such, Yole expects smart automobiles to drive consistent growth of CIS and sensor wafer production over the next five years, fueled by the expanding integration of high-value sensing modules like radar, imaging, and LiDAR. Although automotive will be mainly supported by these growth areas, classical MEMS & sensors such as MEMS pressure sensors and inertial MEMS will still continue growing at a reasonable rate, supporting the standard automotive world.

Yole’s investigations are based on numerous discussions with leading semiconductor players. Applied Materials Inc. is part of them. Amandine Pizzagalli recently had the opportunity to debate with Mike Rosa, Head of Marketing, 200mm Equipment Products Group (EPG) at Applied Materials. During this discussion, both exchanged their vision of the MtM industry and its evolution.

“Today, while many of these technologies exist on 200mm and below wafer sizes much of this business falls within the purview of the 200mm Equipment Product Group”, explains Mike Rosa from Applied Materials. “With the exception of Power Bipolar-CMOS-DMOS (BCD) and some Discretes, 2.5D Interposer, CMOS Image Sensors and some Photonics devices in the market – all other technologies in the MtM segment are manufactured on 200mm and 150mm wafer sizes today. So, to support our customers on current and future wafer size requirements, we work across the company to share the domain knowledge acquired, for example in the 200mm group on MEMS or Discrete Power, with the 300mm group in order to ensure continuity of technology development onto the larger wafer sizes.”

The full interview is available on i-micronews.com, semiconductor manufacturing news or click Here.

In terms of wafer size, the MtM wafer market is dominated by the 6-inch wafer format, followed by the 8-inch size, which is mostly supported by power device applications. However, though 6-inch will continue increasing in the next few years, its share will decrease compared to 8-inch. “We expect 8-inch wafer diameter to progress significantly and surpass the 6-inch wafer size by 2023”, explains Amandine Pizzagalli from Yole. And she adds: “This transition will be driven first by power and MEMS & sensor applications, where the vast majority will convert their components from 6-inch to 8-inch over the next five years due to increasing volume production.”

Nevertheless, 12-inch will represent the fastest growth from 2017 to 2023, with a 15% CAGR. The 12-inch wafer demand should also grow from 3.3 million units in 2017 to 7.5 million in 2023, mainly fueled by BSI CIS (Including 3D stacked BSI, 3D hybrid BSI).

On the other side, 4-inch wafer diameter is in large demand today for MtM applications driven by RF SAW filter products. However, 4-inch’s adoption will decrease due to the transition from 4-inch to 6-inch for these applications. Yole still sees some MtM products manufactured in wafer sizes below 4-inch, i.e. 3-inch and 2-inch wafer formats. However, these represent a very small volume, and the analysts expect such sizes to die out, aside from small volumes still used for producing MEMS, power, and RF SAW devices.

The Wafer Starts for More Than Moore Applications report is the first research performed by Yole’s analysts, gathering all the wafer starts markets for MtM applications. Yole’s market forecast methodology is based on both top bottom and a bottom up approach with dozens of interviews of companies across the entire semiconductor value chain. With this report, the company proposes an assessment of the wafers market for MEMS & Sensors, CIS, power and RF devices. This analysis reveals the market metrics at wafer market level for the whole MtM industry from 2017-2023. It evaluates market developments in terms of market size, substrate sizes/formats, and by MtM application.

Yole’s report also discloses the competitive landscape with key players in technology development and manufacturing. A detailed analysis of the key market drivers that will shape the MtM market in the future are also part of this technology & market report.

 If we did not know before, now we are all aware: microLEDs for display applications is a very hot topic and Apple is strongly commited to the development of its own technology. Las Vegas Consumer Electronics Show 2018 (1) and now Bloomberg, the high tech planet is revolving around microLED technologies. Indeed, last week, the financial news media giant published an article highlighting microLED which generated substantial interest and debate from Wall Street . According to Mark Gurman from Bloomberg (2), despite some ups and downs since it acquired the microLED start up Luxvue in 2014, Apple is still committed to the technology and hoping to begin mass production within the next few years.

illus_microled_ip_apple-luxvue_yole_jan2018

The recent report, “MicroLED Displays: Intellectual Property Landscape” released by Yole Développement (Yole) and its partner, Knowmade beginning of 2018, confirms substantial microLED IP development has been underway at Apple. In this patent landscape analysis, Apple ranks first in term of the size, strength and depth of its portfolio with more than 60 patent families.

“Apple has been working on IP development to master all key elements of a new microLED display technology”, asserts Dr. Eric Virey, Technology & Market Analyst from Yole. And he adds “If successful, the expectation is that they will rapidly move on to establish a supply chain, possibly handling some aspects of design and manufacturing internally”

Apple’s portfolio covers many thrust areas and shows a strong commitment to tackle all the major technology bottlenecks that have so far prevented the technology from reaching the market.
The bulk of the development effort, however, is focused on transfer, assembly and interconnects, with more than 40 patents. The emphasis is on the company’s MEMS-based microchip transfer technology that was at the core of Luxvue effort.

Other key patents cover multiple aspects of microLED technologies such as improving the efficiency of microLED chips, another challenge that has been vexing companies trying to leverage the large efficiency gains that microLED display could offers. Color conversion, light management, pixel and display architectures, testing, and integration of sensors are other key aspects which Apple is addressing in its portfolio.

“A detailed analysis of Apple’s portfolio is a good indication of its technology advancement”, explains Dr. Nicolas Baron, CEO & Founder of Knowmade, partner of Yole.“Because of its strong and broad patent portfolio, Apple is showing a clear positioning in this domain and announces its strategy to become a leader in this up and coming industry”.

However, it’s not enough to guaranty exclusivity and full freedom of exploitation.. While the bulk of the microLED display research effort started around 2010, digging deeper into the global microLED IP landscape reveals some important patents filed by companies like Sony, Sharp and various research organizations all the way back to the early 2000’s.

Enabling microLED displays requires bringing together three major levels of expertise: LED, transistor backplanes (glass or Si-CMOS based) and chip transfer. The supply chain is complex and lengthy compared to that of traditional displays. Each process is critical and managing every aspect effectively will be challenging. No one company appears today positioned to execute across these multiple technologies and be able to vertically integrate all of the components. Today the IP landscape reflects those challenges through the variety of players involved. Only a few companies including Apple, have a broad microLED IP portfolio, but enough have patents on key technology bricks to predict that complex licensing and legal battles will arise if and when microLED displays enter volume manufacturing.

MicroLED technology could be the holy grail of display companies. Therefore, it could represent an opportunity to strongly differentiate from the crowded LCD and soon-to-be-crowded OLED display industries. Recent investments by Facebook, Sharp/Foxconn, Google, Intel and Samsung confirm the growing interest and point toward a challenging but exciting future for microLEDs.

“It remains to be seen who will be first to market”, asks Dr. Eric Virey from Yole. “With more than 120 companies involved and the efforts accelerating at all major companies, there is no doubt that the buzz will keep increasing and the industry landscape evolve at an accelerating pace.”

Yole Group of Companies including Yole and Knowmade keeps its fingers on the pulse of this promising technology. The full article is available on i-micronews.com.
And the Group will keep delivering up to date analysis. Dr Virey and Pars Mukish from Yole is also part of the key microLEDs conferences all year long. Next presentations will take place during the following conferences:

CS International Conference (April 10-11, Brussels, Belgium)
• “Revolutionising displays with MicroLEDs” on April 11 at 9:20AM
Pars Mukish, Business Unit Manager, Solid State Lighting & Displays

Display Week (May 21-25 – Los Angeles, CA, USA):
•  “Economic Health of the Display Supply Chain/Where Is the Growth and Profits/Best Investment Outlook”on May 21 at 8:10AM
•  “Status and Prospects of microLED Displays” on May 24 at 9:00AM
Dr. Eric Virey, Senior Technology & Market Analyst, MicroLED

The market for organic materials used to manufacture organic light-emitting diode (OLED) display panels jumped during the second half of 2017, according to IHS Markit (Nasdaq: INFO), a world leader in critical information, analytics and solutions. The market, as measured by revenue, was estimated to be $355 million in the second half of 2017, up 20 percent from the first half of the year.

According to the OLED Materials Market Tracker by IHS Markit, in 2016 and the first half of 2017, the OLED materials market seemed saturated, posting revenues at almost the same level. However, the sudden spike in growth was observed in the second half of 2017.

“The growth of OLED materials demand has been offset by price reduction, resulting in the market saturation until mid-2017.” said Jimmy Kim, Ph.D. and senior principal analyst at IHS Markit. “However, the launch of the iPhone X as well as the expansion of OLED panel manufacturing capacity boosted the demand in the second half.”

Revenue_forecast_for_OLED_materials_market

The iPhone X, Apple’s first OLED panel-using smartphone, was launched in the third quarter of 2017 and it brought a huge additional demand for OLED materials. At the same time, LG Display has set up a new E4-2 fab for OLED TV panels.

“Apple is expected to apply OLED panels to more of its products and OLED TV is also one of the most emerging products in the TV market,” Kim said. “Considering demand growth and current investment plans regarding OLED manufacturing capacities, the OLED materials market is expected to continue to grow until 2020, reaching $824 million by the second half of 2020.

The OLED Material Market Tracker by IHS Markit includes market analysis and forecasts for organic light-emitting materials, consumption of the materials by AMOLED panel makers, and the status of organic light-emitting materials suppliers.

NVIDIA and Arm today announced that they are partnering to bring deep learning inferencing to the billions of mobile, consumer electronics and Internet of Things devices that will enter the global marketplace.

Under this partnership, NVIDIA and Arm will integrate the open-source NVIDIA Deep Learning Accelerator (NVDLA) architecture into Arm’s Project Trillium platform for machine learning. The collaboration will make it simple for IoT chip companies to integrate AI into their designs and help put intelligent, affordable products into the hands of billions of consumers worldwide.

“Inferencing will become a core capability of every IoT device in the future,” said Deepu Talla, vice president and general manager of Autonomous Machines at NVIDIA. “Our partnership with Arm will help drive this wave of adoption by making it easy for hundreds of chip companies to incorporate deep learning technology.”

“Accelerating AI at the edge is critical in enabling Arm’s vision of connecting a trillion IoT devices,” said Rene Haas, executive vice president, and president of the IP Group, at Arm. “Today we are one step closer to that vision by incorporating NVDLA into the Arm Project Trillium platform, as our entire ecosystem will immediately benefit from the expertise and capabilities our two companies bring in AI and IoT.”

Based on NVIDIA® Xavier™, an autonomous machine system on a chip, NVDLA is a free, open architecture to promote a standard way to design deep learning inference accelerators. NVDLA’s modular architecture is scalable, highly configurable and designed to simplify integration and portability.

NVDLA brings a host of benefits that speed the adoption of deep learning inference. It is supported by NVIDIA’s suite of powerful developer tools, including upcoming versions of TensorRT, a programmable deep learning accelerator. The open-source design allows for cutting-edge features to be added regularly, including contributions from the research community.

The integration of NVDLA with Project Trillium will give deep learning developers the highest levels of performance as they leverage Arm’s flexibility and scalability across the wide range of IoT devices.

“This is a win/win for IoT, mobile and embedded chip companies looking to design accelerated AI inferencing solutions,” said Karl Freund, lead analyst for deep learning at Moor Insights & Strategy. “NVIDIA is the clear leader in ML training and Arm is the leader in IoT end points, so it makes a lot of sense for them to partner on IP.”

ON Semiconductor (Nasdaq: ON) today announced it has recognized 20 companies with supplier excellence awards. Selected from among the company’s extensive list of preferred global suppliers, the 2017 award winners represent partners who have demonstrated a deep commitment to ensuring high quality and supply continuity in an evolving semiconductor market.

elected from more than 3,000 active production suppliers, the finalists gathered for a two-day awards event and executive conference in Hong Kong, China, with the focus of anticipating the future of semiconductor growth and accelerating customer needs.

“As a top 20 global semiconductor design and manufacturing company, ON Semiconductor creates innovative semiconductor and general electronic component solutions to solve our customers’ design challenges and reduce their time to market,” said Jeffrey Wincel, vice president and chief procurement officer at ON Semiconductor. “All the suppliers recognized today demonstrated a similar commitment to collaboration and partnership. These strong relationships are key in delivering on our business strategy, including the areas of product innovation, customer satisfaction and growth.”

Full list of award winners:

Front End (FE) Direct Material Supplier: Konfoong Materials International Company, LTD.
Back End (BE) Direct Material Supplier: Chang Wah Technology Co., Ltd.
FE Site Supplier: Plansee SE
BE Site Supplier: KETECA Singapore (Pte) Ltd
BE External Manufacturing: King Yuan Electronics Co. Ltd.
FE External Manufacturing: JiangYin ChangDian Advanced Packaging Co., LTD
Corporate Services Supplier: DHL Supply Chain
Technology Leader Award: Mentor Graphics
BE Subcon Quality Award: GEM Services, Inc.
BE Perfect Quality Award: Indium Corporation
BE Perfect Quality Award: Henkel
FE Perfect Quality Platinum Award: Shin-Etsu Handotai Co., Ltd
FE Perfect Quality Platinum Award: Brewer Science, Inc.
FE Perfect Quality Platinum Award: JSR Micro, Inc.
FE Perfect Quality Platinum Award: JX Nippon Mining & Metals
FE Perfect Quality Gold Award: Cabot Microelectronics Corporation
FE Perfect Quality Gold Award: Grikin Advanced Materials Co., Ltd.
FE Perfect Quality Award: Tanaka Kikinzoku Kogyo K.K.
FE Perfect Quality Award: Tosoh SMD, Inc.
Pinnacle Award: Global Wafers

 

Veeco Instruments Inc. (NASDAQ: VECO) today announced it has completed installation of its 100th automated Molecular Beam Epitaxy (MBE) system. The installation of Veeco’s GEN10™ MBE System last month at Silanna Semiconductor PTY Ltd. in Australia marks this significant company milestone. The company also operates a Veeco Dual GEN200® MBE System for production of advanced nitride compound semiconductor devices including ultraviolet light emitting diodes (UV-LEDs).

“Veeco has earned a reputation for consistently developing innovative and reliable MBE technology from research scale to production,” said Petar Atanackovic, Ph.D., chief scientist of Silanna Semiconductor PTY Ltd. “The flexibility and deposition capability of the GEN10 system will enable us to develop new materials at the atomic level allowing us to exploit new quantum properties. Veeco’s technology portfolio and leadership in MBE systems provides us with a clear path to easily scale to volume production in the future.”

Silanna is using the GEN10 system for advanced oxide research and development (R&D) for optoelectronic devices. The GEN10 is built upon almost 20 years of cumulative automation knowledge and derived from the company’s proven production MBE systems. Adopted by numerous leading corporations, institutions and universities for all major MBE applications, many customers choose the GEN10 because of its flexibility, which allows them to configure the system based on their application. This gives customers optimal performance with any material set, including those related to III-V group elements, oxides and nitrides.

“Silanna has achieved remarkable results on its previous MBE systems and Veeco is honored to celebrate this momentous accomplishment in our company history in partnership with Dr. Atanackovic and the Silanna team,” said Gerry Blumenstock, vice president and general manager, Veeco MBE Products. “As our customers explore novel materials and new applications, they can rely on Veeco to deliver innovative MBE systems, sources and components for use in complex R&D, as well as high-volume production environments.”

MBE is a highly precise thin-film deposition method for creating crystals by building up orderly layers of molecules on top of a substrate. MBE is used in industrial production processes as well as nanotechnology research in high-growth advanced computing, optics and photonics applications, to name a few. With over 600 systems shipped worldwide, Veeco provides the industry’s broadest portfolio of proven, reliable MBE systems, sources and components to serve a wide variety of markets and applications.

Xcerra today announced that it has entered into a preferred supplier agreement with Elmos, a supplier of semiconductor and sensor devices to the automotive industry. Under the terms of the multiyear agreement Xcerra will be the exclusive supplier of semiconductor testers to Elmos, except in the rare case the test requirements cannot be supported by Xcerra.

Guido Meyer chief operating officer of Elmos, commented, “We have a strong focus on achieving the highest quality and production efficiency. Xcerra has consistently proven their ability to deliver to our requirements. With this agreement we further strengthen the relationship between the two companies and we are committing our test engineering resources to focus on Xcerra testers.”

David Tacelli, president and chief executive officer of Xcerra, commented, “Our passion is to help our customers succeed in the market place. Multiyear preferred supplier agreements like the one we have signed with Elmos serve as recognition that our focus on delivering the highest efficiency of test solutions are having a positive impact on our customers’ success. We look forward to playing a role in supporting Elmos’s growth.”

BY GUIDO GROESENEKEN, imec fellow

To be able to guarantee the reliability of transistors, we have been conducting research for some years now at imec to see what happens when transistors operate properly and when they fail. We’ve been doing this in terms of circuits, devices and materials – and sometimes right down to the level of atoms. The insights that we gather from this work help us to provide the right feedback to the process technol- ogists, who in turn are able to make the transistors more reliable. It is particularly interesting to note that in recent years the knowledge we have gained about these failure mechanisms can also be applied to other areas. These insights no longer only serve to solve problems, but are the basis for innovative and surprising solutions in very diverse domains.
Last year, imec spent a lot of time working on self- learning chips, data security codes, FinFET biosensors and computer systems that can correct themselves. These are innovations that draw on the knowledge present in imec’s reliability group.

Self-learning chips

For example, take the self-learning or neuromorphic chip that gave imec such extensive coverage in the media in 2017. The development of this chip is based, among other things, on our knowledge of “resistive RAM” or RRAM memories, which use the breakdown of an oxide to switch a memory bit on or off (0 or 1). This oxide breakdown – which was previously (and still is) a reliability problem – occurs because a conductive path is created through the oxide, known as a filament. However, the work conducted by imec’s reliability group has demonstrated that not only can you create a filament or make it disappear, but that there are intermediate levels as well, which means that the strength of the filament can be controlled. And that is precisely what happens in our brains: the connec- tions between neurons can become stronger or weaker according to the occurrence they are processing or the learning process they use, etc. This means that these RRAM filaments can be used in chips that work like our brains. It was this insight that provided us with the foundation for the development of imec’s neuromorphic chip, which – as has been demonstrated – can even compose music.

Data security

Since recently we are also working closely with COSIC, an imec research group at KU Leuven that specializes in computer security and cryptography. Also here we can draw on our knowledge of transistor breakdown mechanisms. These can be used to create and read out a fingerprint that is unique for each chip and that cannot be predicted, hence the name ‘physically unclonable functions’ (or PUFs). This unique fingerprint makes it possible to ascertain the identity of chips in data exchanges and thus to prevent hacking by means of rogue chips.

The phenomenon of ‘Random Telegraph Noise’, which has long been known in the area of transistor reliability, could also be used as a security fingerprint. Random telegraph noise is a name for sudden jumps in voltage or current levels as the result of the random trapping of charges in traps within the gate insulation of a transistor. This phenomenon is unpredictable and random, and hence it could also be perfectly usable as PUF. What was once a problem for us – the breakdown of oxides or the existence of random telegraph noise – is now at the base of major new solutions for computer security.

Biosensors

A third example of discipline-overlapping innovation brings us to the world of life sciences. FinFET transistors are essential for the current and future generations of computer chips. As a result of the research carried out in our group, we have now found out a great deal about the way the work, including their failure mechanisms, etc. So much so that we can now explore the possibility to use them as biosensors. What happens is that biomolecules have a certain charge and when that charge comes into the vicinity of a FinFET, the current in the FinFET will be influ- enced. As a result, there is the potential that the presence of a single biomolecule can be detected by such a FinFET.

Self-healing chips

And, finally, we are also working with system architects to produce reliable chips, even with transistors that are no longer reliable. Extremely small transistors with dimen- sions smaller than 5 nanometers can be very variable and the way they behave is unpredictable. For that reason we are working with system architects on solutions such as self- healing chips, based among other things on the existing models of the failure mechanisms that we provide them with. These self-healing chips will contain monitors that detect local errors. A smart controller then interprets this information and decides how to solve the problem, after which actuators are directed by the controller to carry out the task required.

What about scaling?

Numerous methods are currently being investigated to ensure that transistors can still be miniaturized and improved for as long as possible, as propounded in Moore’s Law. To do so, the classic transistor architecture has already been replaced by a FinFET architecture and in the future this will evolve even to nanosheets or nanowires. Materials other than silicon, with greater mobility, are also being looked at, such as III-V materials (germanium for pMOS and InGaAs for nMOS).

In the choice made for these future architecture, it is extremely important to also look right from the start to the failure mechanisms and reliability of the new solutions.

As an example, last year, our reliability team focused extensively on III-V transistors. Although these transistors score well in terms of mobility, their stability is still one of the main challenges remaining before we are able to take the next step and start manufacturing. The insulation layers in III-V transistors contain a lot of traps that cause this insta- bility in transistor characteristics. Understanding this phenomenon is essential if we are to find a solution for it. So, a breakthrough in this area is needed urgently and our results, which were published in a recent IEDM paper, are certainly a step in the right direction. In the invited paper by Jacopo Franco these instabilities are first analyzed in detail. Then, based on this analysis, practical guidelines are given for the development of III-V gate stacks that offer sufficient reliability.

It’s very difficult to look ahead even further into the future, because as the end of Moore’s Law approaches, increasing numbers of different technologies and concepts are already on the radar (quantum computers, 2D materials, neuro- morphic computers, spinwave logic, etc.). However, none of these concepts has yet made a real breakthrough. But in my view 2017 was the year in which the industry began to take a strong interest in quantum computers, with major investments from important players such as Google and Intel. Imec also plans to play a major role in this field, with the launch of a new program on quantum computing, gathering the extensive expertise available. In the past, quantum computing has been considered more as a purely academic field of research – something of value for physi- cists at universities, but not for engineers and companies. So perhaps the breakthrough of industrial quantum computing will be the next milestone in the history of electronics. Or perhaps this milestone will come from a totally unexpected angle – by combining knowledge and people from entirely different disciplines, creating totally new ideas and concepts. Only the future will tell us!

The Semiconductor Industry Association (SIA) today released the following statement from President & CEO John Neuffer in response to the Section 301 action taken by the Trump Administration to address China’s trade practices.

“The U.S. semiconductor industry shares the Trump Administration’s concerns regarding unfair and discriminatory trade practices that put at risk American intellectual property in China.

“We are reviewing the Administration’s Section 301 findings and proposed actions, and encourage an outcome that protects U.S. intellectual property in a manner that avoids a costly trade conflict. We welcome the opportunity to provide input on proposed tariffs, and hope to work with the Administration to avoid tariffs that would harm competitive U.S. industries and their consumers.

“Intellectual property is the lifeblood of the semiconductor industry. Semiconductors are America’s fourth-largest export and are fundamental to the strength of our economy. U.S. semiconductor companies invest nearly one-fifth of their revenue in research and development to stay at the forefront of innovation. They should be able to compete in foreign markets without putting their critical IP at risk.

“At the same time, we welcome China’s participation in the global semiconductor value chain as long as it conforms with its international obligations and is consistent with market-based principles. In the end, strong protections for intellectual property serve the long-term interests of both the United States and China.”