Tag Archives: letter-pulse-business

Accelerometers and gyroscopes are fueling the robotic revolution, especially the drones’ market segment. However, these MEMS devices are not the only ones on the market place anymore, with environmental sensors penetrating this industry too.

InvenSense, today TDK, combined it: the US-based company, IMU leader and formerly Apple’s supplier during many years, released last month the world’s 1st 7-axis motion tracking device combining accelerometer, gyroscope and pressure sensor. InvenSense announces the ICM-20789 7-axis combo sensor dedicated to mainly drones and flying toys as well as smart watches, wearables, activity monitoring, floor and stair counting etc.

The reverse costing company, System Plus Company has investigated the 7-axis component and technologies selected by InvenSense. Aim of this analysis was to identify the technologies selected by the leading company as well as to understand the impacts on the manufacturing costs.

What are the technical choices made by InvenSense? What are the benefits for the device in term of performances? What is the impact on the manufacturing process flow?

System Plus Consulting’s team proposes today a comprehensive technology and cost analysis, including as well a detailed comparison with the previous generation of combo sensors from InvenSense.

ILLUS_INVENSENSE_TDK_ReverseEngineering_SYSTEMPLUSCONSULTING_Dec2017

The drone’s market segment dedicated to consumer applications confirms its attractiveness with 23% CAGR between 2016 and 2021. According to Yole Développement, sister company of System Plus Consulting, the market should reach almost US$ 3.4 billion in 2023 (Source : Sensors for drones and robots: market opportunities and technology revolution report, Yole Développement, 2016). Under this dynamic context, System Plus Consulting’s experts are following the technical advances and the evolution of the manufacturing costs of the combo devices. InvenSense’s device is a good example of this technology breakthrough: indeed, for the 1st time, a company presents a 7-axis component combining accelerometer, gyroscope and barometric pressure sensor, integrated on the same package. Innovation clearly is not in the selection of the components, comments the reverse engineering & costing company, but more in the smart combination of the three devices in the same package.

Stéphane Elisabeth, RF and Advanced Packaging Cost Engineer from System Plus Consulting explains“Using single package integration, the US company merged a 6-axis inertial sensor already identified in iPhone 6 with a barometric pressure sensor based on a design coming from the barometric division of Sensirion. Therefore, InvenSense took benefits of Sensirion’s partial acquisition, taking place in 2016, by developing a specific approach eliminating a package and minimizing board area requirements.”

ILLUS_INVENSENSE_TDK_Combo_CostBreakdown_SYSTEMPLUSCONSULTING_Dec2017

InvenSense was able to integrate its own barometric pressure sensor thanks to the knowledge reached with the acquisition of Sensirion’s barometric division. This device is shipped in a 4 mm x 4 mm x 1.37 mm land grid array (LGA) package.

InvenSense acquired the pressure sensor business from Sensirion Holding AG and its affiliates used in the development of capacitive-type monolithic digital pressure-sensor technology platform.

InvenSense’s financial report highlights the details of this acquisition: the purchase price associated with the acquisition was approximately US$9.8 million, of which US$5.7 million was allocated to developed technology with an estimated useful life of six years and US$4.1 million was allocated to goodwill.

Faced with this simple but impressive technical innovation, what will be the answer of other MEMS & Sensors manufacturers? Will this combination of IMU with barometric pressure sensor be followed by competitors? The selling prices of IMUs have fell in recent years and adding new functions is a way to keep a profitable ASP.

ProPlus Design Solutions Inc. and MPI Corporation today announced a strategic partnership agreement and immediate availability of a characterization and modeling solution that integrates ProPlus’ SPICE modeling and noise characterization solution with MPI’s advanced probing technologies.

The integrated solution offers seamless support of the MPI probe stations to perform automated measurement of DC, CV and noise characteristics, enabling MPI users easy access to the most accurate ProPlus SPICE modeling and noise characterization offerings. The advanced probing technologies developed by MPI are optimized for the latest ProPlus 9812DX noise analyzer with improved grounding and shielding technologies critical to wafer-level noise characterization.

Under the partnership agreement, ProPlus users are able to integrate MPI’s advanced semi-automatic probe stations in their characterization and modeling flow for better noise measurement quality. The close collaboration also proved that probe card wafer-level noise characterization is possible using the 9812DX noise analyzer. Previously, these measurements were performed using manipulators and easily introducing RF interferences and oscillations. The advanced probe card technology specially developed for noise measurement provides better data quality and stability, as well as improves flexibility of wafer-level noise characterization for higher throughput.

“ProPlus Design Solutions continues to invest on improving the technologies that made wafer-level noise characterization possible 20 years ago,” remarks Dr. Zhihong Liu, chairman and chief executive officer of ProPlus Design Solutions. “We brought it to the next level with a specially designed probe card for a tightly integrated noise system thus delivering the fastest and most accurate noise characterization of the highest quality. We’re pleased to work with MPI on this effort.”

“The collaboration with ProPlus Design Solutions has enabled a seamlessly integrated wafer level low-frequency noise measurement capability with guaranteed system configuration and performance,” says Dr. Stojan Kanev, general manager of Advanced Semiconductor Test Division at MPI Corporation. “We now offer the most advanced high throughput noise characterization and modeling system. MPI’s exceptional shielding technology provides world class 1/f noise measurement capability. Customers may now rest assured these systems are validated to provide reliable and accurate noise measurement capability while enjoying a reduced cost of test.”

The integrated solution has been adopted by leading semiconductor companies. ProPlus and MPI Corporation will demonstrate the joint solution globally throughout 2018.

EV Group (EVG), a supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology and semiconductor markets, today announced it has received an order from the University of Tokyo for its EVG810LT plasma activation system for compound semiconductor research. Installed at the university’s Takagi & Takenaka Laboratory, the EVG810LT augments the laboratory’s research focused on developing novel MOSFET and electronic-photonic integrated circuits (EPICs) using III-V-on-insulator (III-V-OI) and germanium-on-insulator (GeOI) substrates. These advanced material substrates are designed to exceed the performance of conventional silicon semiconductors as well as silicon photonics, where III-V materials such as indium phosphide (InP), indium gallium arsenide (InGaAs) and germanium are bonded to silicon wafers. The EVG810LT activates a wafer surface using plasma for low-temperature direct wafer bonding, and has been utilized by other customers in high-volume manufacturing of silicon-on-insulator (SOI) wafers and backside illuminated CMOS image sensors.

“The miniaturization of semiconductor devices is reaching its physical limitations, and shrinking transistor (scaling) in line with Moore’s Law is not sufficient enough to address future demands for higher performance of LSI devices,” noted Dr. Mitsuru Takenaka, associate professor at the Takagi & Takenaka Laboratory with the University of Tokyo. “3D integrated circuits with III-V compound semiconductors or germanium stacked freely on silicon semiconductors are expected to be among the breakthroughs to enhance the performance of the LSIs after the end of Moore’s Law. In support of our efforts, we adopted EV Group’s plasma activation system, the EVG810LT, to help us achieve lower temperature and high-quality wafer bonds.”

Commenting on today’s announcement, Hiroshi Yamamoto, representative director of
EV Group Japan K.K., said, “It is a great honor that our system was selected to support the University of Tokyo’s leading-edge LSI device research. The innovative results at The Takagi & Takenaka Laboratory are expected to address the fundamental issues that the semiconductor industry currently faces. Based on our company’s Triple-i philosophy of ‘invent, innovate and implement’, EV Group has been working with universities and R&D facilities that are active in advanced fields. We will continue to provide the Takagi & Takenaka Laboratory with the technical support they need to succeed with their leading-edge research.”

The emergence of the Internet of Things (IoT), Big Data and artificial intelligence (AI) is fueling a new wave of demand for electronic devices with lower power consumption, higher performance, and greater functionality. To meet this demand, the semiconductor industry is evaluating the benefits of incorporating new materials with silicon-beyond pure silicon-based wafers. This shift is paving the way for future market growth of compound semiconductors, as well as more efficient manufacturing technologies to achieve maximum end-device performance. For example, metal-organic chemical vapor deposition (MOCVD) processes, where a thin film of II-VI or III-V material is deposited on a substrate by heteroepitaxial growth, can result in inconsistent wafer formation. This compromises the integrity of the wafer surface and ultimately impacts end-device performance. Direct wafer bonding with plasma activation is a promising solution to enable heterogeneous integration of different materials and to realize high-quality engineered substrates.

EVG will showcase the EVG810LT system at the SEMICON Japan exhibition being held December 13-15 at the Tokyo Bit Sight – Tokyo International Exhibition Center in Tokyo, Japan.

Advanced Micro-Fabrication Equipment Inc. (AMEC) today announced that the Fujian High Court in China has granted AMEC’s motion for an injunction against Veeco Instruments (Shanghai) Co. Ltd. (Veeco Shanghai). The injunction prohibits Veeco Shanghai from importing, manufacturing, selling or offering for sale to any third party any MOCVD systems and wafer carriers used in the MOCVD systems that would infringe AMEC’s patent CN 202492576 in China. The patent covers AMEC’s proprietary wafer carrier and spindle-locking and synchronization technology. The injunction covers Veeco’s TurboDisk EPIK 700 system, EPIK 700 C2 system, and EPIK 700 C4 system, as well as the related wafer carriers used in the MOCVD systems. AMEC believes that the ruling should also cover Veeco’s EPIK 868 system and related wafer carriers, since AMEC believes that the EPIK 868 system also uses AMEC’s patented technology involved in the action.

The ruling, which is unappealable, takes effect immediately. The stringent injunction terms expose the nature of Veeco Shanghai’s flagrant violation of AMEC’s intellectual property (IP) and confirms that Veeco Shanghai does not respect AMEC’s IP rights.

AMEC filed the patent infringement claim against Veeco Shanghai in the Fujian High Court on July 13th 2017. The motion requested a permanent injunction against Veeco Shanghai, as well as compensation for monetary damages of more than 100 million RMB Yuan (approx. US$15 million).

The injunction follows a previous victory for AMEC relating to the same action. When AMEC filed its claim in July, Veeco Shanghai responded by filing a patent invalidation request with the Patent Re-examination Board (PRB) of the State Intellectual Property Office (SIPO) in China. A second request to invalidate the same AMEC patent was filed concurrently by an individual. The PRB held separate hearings for the two requests. On Nov. 24th2017, the PRB dismissed both requests,thereby upholding the validity of the patent.

AMEC invested heavily in R&D and IP protection for this key technology. AMEC first developed the technology, filed a series of patents to protect the innovations, and installed equipment containing the technology at a number of LED production fabs in China. Veeco later followed by using the same locking approach in its MOCVD system to improve the tool’s performance. After AMEC filed the patent disputed by Veeco Shanghai, Veeco Instruments Inc. (Veeco US) submitted a similar patent application, and subsequently used this technology in its MOCVD system, thus infringing AMEC’s patent.

“The court’s ruling and the PRB’s decisions together confirm in no uncertain terms that AMEC’s technology contains unique innovations, and that our patent portfolio is comprehensive, robust and highly valuable,” said Dr. Zhiyou Du, Senior Vice President, COO & General Manager of AMEC’s MOCVD Product Division. “We are very pleased with the court’s decision. We take IP enforcement seriously, and we will not tolerate any violation of our IP rights. Indeed, we will aggressively pursue instances of infringement, and vigorously protect our IP portfolio.”

Dr. Du continued: “As a supplier of high-end micro-fabrication equipment to leading global manufacturers of ICs, LEDs and power devices, AMEC attaches great importance to IP protection. Since our founding in 2004, we have independently developed unique technologies to enable our customers worldwide. Therefore, for more than a decade, we have defended our IP in domestic and international jurisdictions when challenged, and prevailed in every case. We respect the IP of our customers and competitors, and we expect the same regard for our IP.”

In a separate development, AMEC filed a motion on Dec. 8th 2017 to invalidate a Veeco patent with the Patent Trial and Appeal Board (PTAB) of the US Patent & Trademark Office (USPTO). The patent, US 6,726,769 filed in 2001, covers a detachable wafer carrier technology. It was asserted in an infringement action initiated in the US by Veeco US against AMEC’s supplier of wafer carriers for MOCVD systems. AMEC believes that the Veeco patent is invalid because the technology was definitively and clearly disclosed in many prior patents and publications as far back as the early 1960s. Therefore, the Veeco patent does not meet standard patent law requirements. Besides filing to invalidate the patent in the US, AMEC has already filed motions to invalidate counterpart patent families in China and South Korea.

AMEC intends to also challenge a second Veeco US patent (US 6,506,252) involved in the same US infringement action. A motion to that effect will soon be filed with the PTAB.

Dr. Gerald Yin, Chairman and CEO of AMEC, said: “We are confident that AMEC will prevail in its action against Veeco Shanghai, and that Veeco Shanghai will be required to pay for the enormous cost of its infringement beginning in 2014 when Veeco US launched its EPIK 700 system. In addition, we believe that our supplier will eventually prevail in its US case.”

Dr. Yin further noted: “AMEC is an innovative company with extensive expertise in providing breakthrough technologies that enable customers with competitive advantages. Our products have earned market success for their differentiation and value. Naturally, we prefer to focus our efforts on providing such innovative products and stellar service to customers instead of wasting time and resources on litigation. That’s why we’re fully committed to reaching a positive resolution with Veeco, and working diligently to achieve that goal.”

CVD Equipment Corporation (NASDAQ: CVV), a provider of chemical vapor deposition systems and materials announced today that it has completed the purchase of the Company’s planned additional facility, located at 555 North Research Place, Central Islip, NY. This new facility will be the primary manufacturing center for the Company’s wholly owned subsidiary, CVD Materials Corporation.

Leonard A. Rosenbaum, President and Chief Executive Officer stated, “With the completion of this purchase we now have the manufacturing space to accelerate our capabilities of providing materials, coatings, and surface treatments to meet our customers’ needs. We look forward to the expansion of our carbon composites and electronic material, Tantaline®, and newly acquired MesoScribe™, product lines. We also anticipate future growth, both organically and by possible future acquisitions. With the purchase behind us, we are now focusing on bringing the new facility on-line and for additional growth opportunities enabled by this additional 180,000 square foot facility.”

CVD Equipment Corporation designs, develops, and manufactures a broad range of chemical vapor deposition, gas control, and other equipment and process solutions used to develop and manufacture materials and coatings for research and industrial applications.

IBM’s Khare on A.I.


December 7, 2017

BY PETE SINGER, Editor-in-Chief

Mukesh Khare, VP of IBM Research, talked about the impact artificial intelligence (AI) is going to have on the semiconductor industry during a recent panel session hosted by Applied Materials. He said that today most artificial intelligence is too complex. It requires, training, building models and then doing inferencing using those models. “The reason there is good in artificial intelligence is because of the exponential increase in data, and cheap compute. But, keep in mind that, the compute that we are using right now is the old compute. That compute was built to do spreadsheet, databases, the traditional compute.

“Since that compute is cheap and available, we are making use of it. Even with the cheap and available compute in cloud, it takes months to generate those models. So right now, most of the training is still being done in cloud. Whereas, inferencing, making use from that model is done at the edge. However, going forward, it is not possible because the devices at the edge are continuously generating so much data that you cannot send all the data back to the cloud, generate models, and come back on the edge.

“Eventually, a lot of training needs to move to the edge as well,” Khare said. This will require some innovation so that the compute, which is being done right now in cloud, can be transferred over to edge with low-power devices, cheap devices. Applied Materials’ CIO Jay Kerley added that innovation has to happen not only at the edge, but in the data center and at the network layer, as well as in the software frameworks. “Not only the AI frameworks, but what’s driving compression, de-duplication at the storage layer is absolutely critical as well,” he said.

Khare also weighed in on how transistors and memory will need to evolve to meet the demands of new AI computer architec- tures, “For artificial intelligence in our world, we have to think very differently. This is an inflection, but this is the kind of inflection that world has not seen for last 60 years.” He said the world has gone from tabulating system era (1900 to 1940) to the programmable system era in 1950s, which we are still using. “We are entering the era of what we call cognitive computing, which we believe started in 2011, when IBM first demonstrated artificial intelligence through our Watson System, which played Jeopardy,” he said.

Khare said “we are still using the technology of programmable systems, such as logic, memory, the traditional way of thinking, and applying it to AI, because that’s the best we’ve got.”
AI needs more innovation at all levels, Khare said. “You have to think about systems level optimization, chip design level optimization, device level optimization, and eventually materials level optimization,” he said. “The artificial workloads that are coming out are very different. They do not require the traditional way of thinking — they require the way the brain thinks. These are the brain inspired systems that will start to evolve.”

Khare believes analog compute might hold the answer. “Analog compute is where compute started many, many years ago. It was never adopted because the precision was not high enough, so there were a lot of errors. But the brain doesn’t think in 32 bits, our brain thinks analog, right? So we have to bring those technologies to the forefront,” he said. “In research at IBM we can see that there could be several orders of magnitude reduction in power, or improvement in efficiency that’s possible by intro- ducing some of those concepts, which are more brain inspired.”

Christos Georgiopoulos (former Intel VP and professor who was also on the panel) said a new compute model is required for A.I. “It’s important to understand that the traditional workloads that we all knew and loved for the last forty years, don’t apply with A.I. They are completely new workloads that require very different type of capabilities from the machines that you build,” he said. “With these new kind of workloads, you’re going to require not only new architectures, you’re going to require new system level design. And you’re going to require new capabilities like frameworks. He said TensorFlow, which is an open-source software library for machine intelligence originally developed by researchers and engineers working on the Google Brain Team, seems to be the biggest framework right now. “Google made it public for only one very good reason. The TPU that they have created runs TensorFlow better than any other hardware around. Well, guess what? If you write something on TensorFlow, you want to go to the Google backend to run it, because you know you’re going to get great results. These kind of architectures are getting created right now that we’re going to see a lot more of,” he said.

BY ANDREW CHAMBERS, Senior Product Manager, Edwards Ltd.

With the prospects of large 450mm wafers going nowhere, IC manufacturers are increasing efforts to maximize fabrication plants using 300mm and 200mm diameter silicon substrates. The number of 300mm wafer production-class fabs in operation worldwide is expected to increase each year between now and 2021 to reach 123 compared to 98 in 2016, according to the forecast in IC Insights’ Global Wafer Capacity 2017-2021 report.

Significant opportunities to improve safety, reliability and yield still remain in our industry, many of them to be found in the sub-fab, where the critical systems that supply vacuum and treat exhaust gases are to be found—out of sight and, too often, out of mind. Properly handling and removing noxious components in the exhaust flow clearly impacts the safety of fab personnel and the quality of the local environment. As for reliability, when the sub-fab fails the process is down. And yield—the yield of many tools depends directly on steady, high-quality vacuum. “Smart” management of sub-fab systems can improve safety, reliability, yield, and energy efficiency, all of which contribute directly to the bottom line.

For example, consider high-flow CVD processes, which are finding increasing application in high-volume production of 3D-NAND, DRAM and other devices. The process precursors and their decomposition products can present a flammability risk and, unless properly controlled, can condense as hazardous materials in process exhausts. Such condensation can cause a variety of operational problems, including process shut-downs when pipes become blocked, exhaust pipe fires when fluorine reacts with residual silicon compounds, and HF vapour releases when pipes are exposed to atmosphere during cleaning.

Several approaches may be used to address these concerns, alone or in combination. The entire exhaust assembly may be heated to maintain a thermal profile that eliminates conden- sation, though eliminating all cold spots can pose practical difficulties and constant monitoring is required. Exhaust gases may be diluted to mitigate flammability risks, but the cost of the additional diluting gas (N2) becomes prohibitive at high flows. The total cost of ownership for high dilution flows must
also include increased capital investment, operating cost and sub-fab space require- ments for additional abatement capacity.

A smart dilution strategy would continuously adjust the flow of dilution gas based on information from the process tool. Is flammable gas flowing? Is oxidant gas present? If the process gas is non-flammable, can dilution be eliminated entirely? When only a flammable gas is flowing, how much can dilution be relaxed while still maintaining the mixture below the lower flammability limit; or can it be allowed to exceed the LFL, since there is no concurrently flowing oxidant? When flammable gases flow concurrently with oxidizing gases, what dilution is required to keep the concentration of flammable gas below its LFL, with a sufficient safety margin to allow for fault scenarios? What is the best dilution for cleaning gases to optimize the safety and efficiency in their abatement? Answers to these questions and more can be found by analyzing information from the process tool and can be used in a smart dilution strategy to ensure safety, and maximize reliability and yield while minimizing cost.

Information from the process tool can also be used to control the operation of the abatement system. When only flammable gas is flowing with low or moderate dilution, the abatement system can be operated in a “low fire” mode, minimizing consumption of fuel, city water and process cooling water. When flammable and oxidizing gases flow concurrently and high dilution flow is used, the abatement can be switched into a “high fire” mode to ensure full destruction of the process chemicals.

Coupled with smart operation, smart system design can further improve safety, reliability and cost. Consider the problem of gas leaks. Leaks from process exhaust pipes can lead to fires, equipment damage and harm to sub-fab personnel. Local gas leak detectors can protect personnel but risk process shut-down and product loss. Rigorous leak checking proce- dures can reduce the risk of leaks following maintenance, but cannot prevent progressive seal degradation or leaks that occur during normal operation. A smart design integrates pumps, abatement and all connecting piping in a single unit, engineered for performance and safety and thoroughly tested at all stages of manufacturing and installation. Integration also permits exhaust integrity checking, double-containment, accurate and consistent exhaust temperature control, and tool-connected “smart” operation and provides single-vendor responsibility for maintenance and performance.

Opportunities for improvements abound, but taking advantage of them requires a smart approach based on broad experience and thorough understanding of semiconductor manufacturing processes.

Integrated circuit sales for automotive systems and the Internet of Things are forecast to grow 70% faster than total IC revenues between 2016 and 2021, according to IC Insights’ new 2018 Integrated Circuit Market Drivers Report.  ICs used in automobiles and other vehicles are forecast to generate worldwide sales of $42.9 billion in 2021 compared to $22.9 billion in 2016, while integrated circuit revenues for Internet of Things (IoT) functionality in a wide range of systems, sensors, and objects are expected to reach $34.2 billion in four years compared to $18.4 billion last year, says the new 358-page report.

Between 2016 and 2021, automotive and IoT IC sales are projected to rise by compound annual growth rates (CAGRs) of 13.4% and 13.2%, respectively, compared to 7.9% for the entire IC market, which is projected to reach $434.5 billion in four years versus $297.7 billion last year.  As shown in Figure 1, strong five-year IC sales growth rates are also expected in medical electronics (a CAGR of 9.7% to $7.8 billion in 2021) and wearable systems (a CAGR of 9.0% to $4.9 billion).

Figure 1

Figure 1

Cellphone IC sales—the biggest end-use market application for integrated circuits, accounting for about 25% of the IC market’s total revenues—are expected to grow by a CAGR of 7.8% in the 2016-2021 period, reaching $105.6 billion in the final year of the new report’s forecast. Meanwhile, weak and negative IC sales growth rates are expected to continue in video game consoles (a CAGR of -1.9% to $9.7 billion in 2021) and tablet computers (a CAGR of -2.3% to 10.7 billion), according to the 2018 IC Market Drivers report.

Sharply higher average selling prices (ASPs) for DRAMs and NAND flash are playing a significant role in driving up dollar-sales volumes for ICs in cellphones and PCs (both desktop and notebook computers) in 2017.  Cellphone IC sales are on pace to surge 24% this year to an estimated $89.7 billion, while PC integrated circuit dollar volume is expected to climb 17.6% to $69.0 billion.   For both the cellphone and PC market segments, 2017 will be the strongest increase in IC sales since the 2010 recovery year from the 2009 downturn.  The 2018 IC Market Drivers report’s forecast shows cellphone integrated circuit sales rising 8% to $97.3 billion next year and PC IC revenues growing 5% to $72.6 billion in 2018.

The new report estimates that automotive IC sales will rise 22% in 2017 to about $28.0 billion after increasing 11% in 2016. Automotive IC sales are forecast to increase 16% in 2018 to $32.4 billion. Meanwhile, IoT-related integrated circuit sales are on pace to grow 14% in 2017 to an estimated $14.5 billion after increasing about 18% in 2016.  In 2018, integrated circuit sales for Internet of Things end-use applications are expected to rise 16% to about $16.8 billion, according to the 2018 edition of the IC Market Drivers report.

The Semiconductor Industry Association (SIA) today announced worldwide sales of semiconductors reached $37.1 billion for the month of October 2017, an increase of 21.9 percent from the October 2016 total of $30.4 billion and 3.2 percent more than last month’s total of $36.0 billion. October marked the global industry’s largest-ever monthly sales total. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average. Additionally, the latest WSTS industry forecast was revised upward and now projects annual global market growth of 20.6 percent in 2017 and 7.0 percent in 2018.

“The global semiconductor market continued to grow impressively in October, with sales surpassing the industry’s highest-ever monthly total and moving closer to topping $400 billion for 2017,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Market growth continues to be driven in part by high demand for memory products, but combined sales of all other semiconductor products were up substantially as well, showing the breadth of the market’s strength this year.”

Regionally, year-to-year sales increased in the Americas (40.9 percent), Europe (19.5 percent), China (19.1 percent), Asia Pacific/All Other (16.3 percent), and Japan (10.7 percent). Compared with last month, sales were up more modestly across all regions: the Americas (6.8 percent), China (2.6 percent), Europe (2.6 percent), Japan (1.8 percent), and Asia Pacific/All Other (1.5 percent).

Additionally, SIA today endorsed the WSTS Autumn 2017 global semiconductor sales forecast, which projects the industry’s worldwide sales will be $408.7 billion in 2017. This would mark the industry’s highest-ever annual sales, its first time topping $400 billion, and a 20.6 percent increase from the 2016 sales total. WSTS projects double-digit year-to-year increases across all regional markets for 2017: the Americas (31.9 percent), Asia Pacific (18.9 percent), Europe (16.3 percent), and Japan (12.6 percent). Beyond 2017, growth in the semiconductor market is expected to moderate across all regions. WSTS tabulates its semi-annual industry forecast by convening an extensive group of global semiconductor companies that provide accurate and timely indicators of semiconductor trends.

To find out how to purchase the WSTS Subscription Package, which includes comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, please visit http://www.semiconductors.org/industry_statistics/wsts_subscription_package/. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2017 SIA Databook: https://www.semiconductors.org/forms/sia_databook/.

Oct 2017

Billions

Month-to-Month Sales                              

Market

Last Month

Current Month

% Change

Americas

7.99

8.54

6.8%

Europe

3.28

3.37

2.6%

Japan

3.14

3.20

1.8%

China

11.36

11.65

2.6%

Asia Pacific/All Other

10.18

10.33

1.5%

Total

35.95

37.09

3.2%

Year-to-Year Sales                         

Market

Last Year

Current Month

% Change

Americas

6.06

8.54

40.9%

Europe

2.82

3.37

19.5%

Japan

2.89

3.20

10.7%

China

9.78

11.65

19.1%

Asia Pacific/All Other

8.88

10.33

16.3%

Total

30.43

37.09

21.9%

Three-Month-Moving Average Sales

Market

May/Jun/Jul

Aug/Sep/Oct

% Change

Americas

6.94

8.54

23.0%

Europe

3.20

3.37

5.1%

Japan

3.04

3.20

5.2%

China

10.68

11.65

9.1%

Asia Pacific/All Other

9.77

10.33

5.8%

Total

33.63

37.09

10.3%

SEMI, the global industry association representing the electronics manufacturing supply chain, today reported that worldwide semiconductor manufacturing equipment billings reached US$14.3 billion for the third quarter of 2017.

Quarterly billings of US$14.3 billion set an all-time record for quarterly billings, exceeding the record level set in the second quarter of this year. Billings for the most recent quarter are 2 percent higher than the second quarter of 2017 and 30 percent higher than the same quarter a year ago. Sequential regional growth was mixed for the most recent quarter with the strongest growth in Europe. Korea maintained the largest market for semiconductor equipment for the year, followed by Taiwan and China. The data are gathered jointly with the Semiconductor Equipment Association of Japan (SEAJ) from over 95 global equipment companies that provide data on a monthly basis.

Quarterly Billings Data by Region in Billions of U.S. Dollars
Quarter-Over-Quarter Growth and Year-Over-Year Rates by Region
3Q2017
2Q2017
3Q2016
3Q2017/2Q2017
3Q2017/3Q2016
Korea
4.99
4.79
2.09
4%
139%
Taiwan
2.37
2.76
3.46
-14%
-32%
China
1.93
2.51
1.43
-23%
35%
Japan
1.73
1.55
1.29
11%
34%
North America
1.50
1.23
1.05
22%
43%
Europe
1.06
0.66
0.53
61%
100%
Rest of World
0.74
0.62
1.13
20%
-34%
Total
14.33
14.11
10.98
2%
30%

Source: SEMI (www.semi.org) and SEAJ (http://www.seaj.or.jp)

The Equipment Market Data Subscription (EMDS) from SEMI provides comprehensive market data for the global semiconductor equipment market. A subscription includes three reports: the monthly SEMI Billings Report, which offers a perspective of the trends in the equipment market; the monthly Worldwide Semiconductor Equipment Market Statistics (WWSEMS), a detailed report of semiconductor equipment billings for seven regions and 24 market segments; and the SEMI Semiconductor Equipment Forecast, which provides an outlook for the semiconductor equipment market. More information is also available online: www.semi.org/en/MarketInfo/EquipmentMarket.