Tag Archives: letter-pulse-tech

If you’re ever unlucky enough to have a car with metal tires, you might consider a set made from a new alloy engineered at Sandia National Laboratories. You could skid — not drive, skid — around the Earth’s equator 500 times before wearing out the tread.

Sandia’s materials science team has engineered a platinum-gold alloy believed to be the most wear-resistant metal in the world. It’s 100 times more durable than high-strength steel, making it the first alloy, or combination of metals, in the same class as diamond and sapphire, nature’s most wear-resistant materials. Sandia’s team recently reported their findings in Advanced Materials. “We showed there’s a fundamental change you can make to some alloys that will impart this tremendous increase in performance over a broad range of real, practical metals,” said materials scientist Nic Argibay, an author on the paper.

Although metals are typically thought of as strong, when they repeatedly rub against other metals, like in an engine, they wear down, deform and corrode unless they have a protective barrier, like additives in motor oil.

In electronics, moving metal-to-metal contacts receive similar protections with outer layers of gold or other precious metal alloys. But these coatings are expensive. And eventually they wear out, too, as connections press and slide across each other day after day, year after year, sometimes millions, even billions of times. These effects are exacerbated the smaller the connections are, because the less material you start with, the less wear and tear a connection can endure before it no longer works.

With Sandia’s platinum-gold coating, only a single layer of atoms would be lost after a mile of skidding on the hypothetical tires. The ultradurable coating could save the electronics industry more than $100 million a year in materials alone, Argibay says, and make electronics of all sizes and across many industries more cost-effective, long-lasting and dependable — from aerospace systems and wind turbines to microelectronics for cell phones and radar systems.

“These wear-resistant materials could potentially provide reliability benefits for a range of devices we have explored,” said Chris Nordquist, a Sandia engineer not involved in the study. “The opportunities for integration and improvement would be device-specific, but this material would provide another tool for addressing current reliability limitations of metal microelectronic components.”

New metal puts an old theory to rest

You might be wondering how metallurgists for thousands of years somehow missed this. In truth, the combination of 90 percent platinum with 10 percent gold isn’t new at all.

But the engineering is new. Argibay and coauthor Michael Chandross masterminded the design and the new 21st century wisdom behind it. Conventional wisdom says a metal’s ability to withstand friction is based on how hard it is. The Sandia team proposed a new theory that says wear is related to how metals react to heat, not their hardness, and they handpicked metals, proportions and a fabrication process that could prove their theory.

“Many traditional alloys were developed to increase the strength of a material by reducing grain size,” said John Curry, a postdoctoral appointee at Sandia and first author on the paper. “Even still, in the presence of extreme stresses and temperatures many alloys will coarsen or soften, especially under fatigue. We saw that with our platinum-gold alloy the mechanical and thermal stability is excellent, and we did not see much change to the microstructure over immensely long periods of cyclic stress during sliding.”

Now they have proof they can hold in their hands. It looks and feels like ordinary platinum, silver-white and a little heavier than pure gold. Most important, it’s no harder than other platinum-gold alloys, but it’s much better at resisting heat and a hundred times more wear resistant.

The team’s approach is a modern one that depended on computational tools. Argibay and Chandross’ theory arose from simulations that calculated how individual atoms were affecting the large-scale properties of a material, a connection that’s rarely obvious from observations alone. Researchers in many scientific fields use computational tools to take much of the guesswork out of research and development.

“We’re getting down to fundamental atomic mechanisms and microstructure and tying all these things together to understand why you get good performance or why you get bad performance, and then engineering an alloy that gives you good performance,” Chandross said.

A slick surprise

Still, there will always be surprises in science. In a separate paper published in Carbon, the Sandia team describes the results of a remarkable accident. One day, while measuring wear on their platinum-gold, an unexpected black film started forming on top. They recognized it: diamond-like carbon, one of the world’s best man-made coatings, slick as graphite and hard as diamond. Their creation was making its own lubricant, and a good one at that.

Diamond-like carbon usually requires special conditions to manufacture, and yet the alloy synthesized it spontaneously.

“We believe the stability and inherent resistance to wear allows carbon-containing molecules from the environment to stick and degrade during sliding to ultimately form diamond-like carbon,” Curry said. “Industry has other methods of doing this, but they typically involve vacuum chambers with high temperature plasmas of carbon species. It can get very expensive.”

The phenomenon could be harnessed to further enhance the already impressive performance of the metal, and it could also potentially lead to a simpler, more cost-effective way to mass-produce premium lubricant.

Adesto Technologies (NASDAQ:IOTS), a provider of application-specific semiconductors for the IoT era, announced it will present new research showing the significant potential for Resistive RAM (RRAM) technology in high-reliability applications such as automotive. Adesto Fellow Dr. John Jameson, who led the research team, will share the results at the ESSCIRC-ESSDERC 48th European Solid-State Device Research Conference, being held in Germany on September 4th, 2018.

RRAM has great potential to become a widely used, low-cost and simple embedded non-volatile memory (NVM), as it utilizes simple cell structures and materials which can be integrated into existing manufacturing flows with as little as one additional mask. However, many RRAM technologies to-date have faced integration and reliability challenges. Adesto’s engineers will describe recent innovations that significantly increase the reliability of Adesto’s RRAM technology (trademarked as CBRAM®), making it a promising candidate for high-reliability applications. CBRAM consumes less power, requires fewer processing steps, and operates at lower voltages as compared to conventional embedded flash technologies.

“We’re delighted to share our latest RRAM research with the prestigious technical community at ESSCIRC-ESSDERC,” said Dr. Venkatesh Gopinath, VP of CBRAM and RRAM Technology and Production Development at Adesto. “For the first time, RRAM is being demonstrated as an ideal low-cost, one-mask embedded NVM for high-reliability applications. Adesto was the first company to bring commercial RRAM devices to market, and now our CBRAM technology is production-proven for IoT and other ultra-low power applications. Our continued innovation and advancements will bring the benefits of CBRAM to an even broader range of applications.”

Dr. Jameson will present the Adesto research on Tuesday, September 4th at 15:00 local time.

pSemi Corporation (formerly Peregrine Semiconductor), a Murata company focused on semiconductor integration, introduces the world’s first monolithic, silicon-on-insulator (SOI) Wi-Fi front-end module (FEM)—the PE561221. Ideal for Wi-Fi home gateways, routers and set-top boxes, this high-performance module uses a smart bias circuit to deliver a high linearity signal and excellent long-packet error vector magnitude (EVM) performance. The PE561221 combines the intelligent integration capabilities of pSemi’s SOI technology and Murata’s expertise in Wi-Fi connectivity solutions and advanced packaging. This 2.4 GHz Wi-Fi FEM integrates a low-noise amplifier (LNA), a power amplifier (PA) and two RF switches (SP4T, SP3T). The monolithic die uses a compact 16-pin, 2 x 2 mm LGA package ideal for either stand-alone use or in 4 x 4 MIMO and 8 x 8 MIMO modules.

“The new IEEE 802.11ax standard is utilizing high-order modulation schemes (1024 QAM) with demanding EVM requirements,” says Colin Hunt, vice president of worldwide sales at pSemi. “Traditional process technologies struggle to keep up with both performance and integration requirements, and only SOI can offer the ideal combination of integration and high performance. This new monolithic Wi-Fi module is a great example of the types of technology and product advancements pSemi and Murata can accomplish together.”

The 2.4 GHz Wi-Fi FEM is based on pSemi’s UltraCMOS® technology platform—a patented, advanced form of SOI. With its outstanding RF and microwave properties, SOI is an ideal substrate for integration. When paired with high-volume CMOS manufacturing—the most widely used semiconductor technology—the result is a reliable, repeatable technology platform that offers superior performance compared to other mixed-signal processes. UltraCMOS technology also enables intelligent integration—the unique design ability to integrate RF, digital and analog components on a single die.

Features, Packaging and Availability 

The PE561221 leverages the intelligent integration capabilities of UltraCMOS technology to deliver exceptional performance, low power consumption and high reliability with 2 kV HBM ESD rating. Through advanced analog and digital design techniques, the Wi-Fi FEM delivers excellent long-packet EVM performance with less than 0.1 dB of gain droop while operating across the entire -40°C to 85°C temperature range. At -40 dB EVM (MCS9), the output power is +19 dBm with less than 0.05 dBm droop in power output after a 4 milliseconds packet. The IC delivers best-in-class dynamic error vector magnitude (DEVM) and current consumption without requiring digital pre-distortion (DPD), and it has excellent MCS11 performance for 802.11ax applications.

Volume-production parts and samples of the PE561221 are available from pSemi. For sales information, please contact [email protected].

The PE561221 is the first product in the pSemi Wi-Fi FEM portfolio; the product roadmap includes 5 GHz Wi-Fi FEM solutions.

The American Institute for Manufacturing Integrated Photonics (AIM Photonics), a public-private partnership headquartered in New York State to advance the nation’s photonics manufacturing capabilities, today announced that three National Science Foundation (NSF) funded grants totaling $1.2 million will enable collaborative photonics-centered R&D with the Rochester Institute of Technology (RIT), University of California-San Diego (UCSD), and University of Delaware (UD), respectively.

“AIM Photonics is thrilled to work with leading academic institutions including RIT, UCSD, and UD on these three separate, NSF-funded projects to collaboratively enable photonics-focused devices and capabilities that can allow for the more efficient identification of materials, as well as enhanced processes for manufacturing complex photonic devices and next-generation computing capabilities. We are proud to be the central driver of photonics-based advances that can significantly improve the technologies our society depends on,” said Dr. Michael Liehr, CEO of AIM Photonics.

“Partnering with AIM Photonics provides NSF-funded researchers unique access to world-class manufacturing facilities, stimulating innovation and enabling faculty to span the spectrum from fundamental research breakthroughs to translational advances in integrated photonics devices and circuits that directly impact society,” said Dr. Filbert Bartoli, Director of the Division of Electrical, Communications and Cyber Systems in NSF’s Directorate for Engineering.

Rochester Institute of Technology – AIM Photonics Project

The NSF awarded RIT $423,000 as part of the research project, “PIC: Hybrid Silicon Electronic-Photonic Integrated Neuromorphic Networks,” which will focus on realizing high-performance neural networks that will be integrated onto photonic chips for scalable and efficient architectures that, in tandem with integrated electronics, overcome challenges related to photonic memory and amplification—offering a hybrid, high-bandwidth computing approach for applications to autonomous systems, information networks, cybersecurity, and robotics. To develop these architectures, RIT will work with AIM Photonics to use its leading-edge PIC toolset, located at SUNY Polytechnic Institute in Albany, NY, and the AIM Photonics TAP facility in Rochester, NY—the world’s first 300mm open access PIC Test, Assembly, and Packaging (TAP) facility. The project will take place within RIT’s Future Photon Initiative (FPI) and Center for Human-Aware AI (CHAI).

This research effort will also provide educational opportunities for elementary through high school, undergraduate, and graduate students, and the AIM Photonics Academy will be able to disseminate the project’s findings to further increase understanding of this fast-growing area of research.

“We are excited to partner with AIM Photonics on this research project. The hybrid electronic-photonic neuromorphic chips my Co-PI (Professor Dhireesha Kudithipudi) and I are developing are directly enabled by the state-of-the-art PIC and TAP capabilities of AIM Photonics,” said Project Principal Investigator, Professor Stefan Preble at Rochester Institute of Technology’s Kate Gleason College of Engineering.

University of California-San Diego – AIM Photonics Project 

The NSF awarded UCSD $405,000 for research entitled, “PIC: Mobile in Situ Fourier Transform Spectrometer on a Chip,” which will enable UCSD to rapidly prototype and test miniaturized and mobile platform-embedded optical spectrometers that will excel at chemical identification. The initial design, fabrication, and validation of such a spectrometer on a Si chip have been recently reported in Nature Communications 9:665 (2018). This effort will continue and culminate with full-scale manufacturing runs at AIM Photonics’ foundry at the Albany Nanotech Complex. The integrated chip-scale Fourier transform spectrometer is to be fully CMOS compatible for use in mobile phones and other mobile platforms with potential impacts in areas ranging from environmental management, medicine, and security.

Undergraduate and graduate students at the institution will also be able to gain hands-on training as the research project simultaneously serves as a community outreach tool to inspire students attending middle and high schools.

Moreover, we are also developing an educational silicon photonics kit through the NSF’s ERC-CIAN (Engineering Research Center for Integrated Access Networks) and in collaboration with Tyndall National Institute at University College Cork (Ireland). The kit will initially be implemented in an undergraduate lab curriculum with the goal to prepare the future task force through hands-on experience in this evolving field,” said Project Principal Investigator, Professor Yeshaiahu Fainman, Cymer Chair in Advanced Optical Technologies and Distinguished Professor at the University of California-San Diego.

University of Delaware – AIM Photonics Project

The NSF awarded UD $360,000 as part of the research project, “PIC: Hybrid Integration of Electro-Optic and Semiconductor Photonic Devices and Circuits with the AIM Photonics Institute.” This effort will allow UD to work with AIM Photonics to leverage the initiative’s expertise and state-of-the-art foundry for the development of new heterogeneous manufacturing processes for photonic devices, using new materials such as Lithium Niobate (LiNbO3), which can then be directly integrated with silicon CMOS systems for photonic devices and chip scale systems.

More specifically, the effort aims to realize high performance RF-photonic devices such as ultra-high frequency modulators (> 100 GHz) that are used in data networks; high-efficiency chip-scale routers for advanced data centers; and high-power phased array antenna photonic feed networks that are compatible with older and next-generation wireless communications; in addition to enabling a number of other wide-ranging commercial applications.

“The heterogeneous integration of LiNbO3 with Silicon Photonics allows for the use of the best properties of both material systems, thereby enabling truly innovative systems for countless emerging applications,” said Project Principal Investigator, Dr. Dennis Prather, Engineering Alumni Professor at the University of Delaware.

AIM Photonics features research, development, and commercialization nodes in Albany, NY, at SUNY Polytechnic Institute, as well as in Rochester, NY, where state-of-the-art equipment and tools are being installed at AIM Photonics’ TAP facility. The initiative also includes an outreach and referral network with the University of Rochester, Rochester Institute for Technology, Columbia University, Massachusetts Institute of Technology, University of California – Santa Barbara, University of Arizona, as well as New York State community colleges. In total AIM Photonics includes more than 100 signed members, partners, and additional interested collaborators.

By stacking and connecting layers of stretchable circuits on top of one another, engineers have developed an approach to build soft, pliable “3D stretchable electronics” that can pack a lot of functions while staying thin and small in size. The work is published in the Aug. 13 issue of Nature Electronics.

This is the device compared to a US dollar coin. Credit: Zhenlong Huang

As a proof of concept, a team led by the University of California San Diego has built a stretchable electronic patch that can be worn on the skin like a bandage and used to wirelessly monitor a variety of physical and electrical signals, from respiration, to body motion, to temperature, to eye movement, to heart and brain activity. The device, which is as small and thick as a U.S. dollar coin, can also be used to wirelessly control a robotic arm.

“Our vision is to make 3D stretchable electronics that are as multifunctional and high-performing as today’s rigid electronics,” said senior author Sheng Xu, a professor in the Department of NanoEngineering and the Center for Wearable Sensors, both at the UC San Diego Jacobs School of Engineering.

Xu was named among MIT Technology Review’s 35 Innovators Under 35 list in 2018 for his work in this area.

To take stretchable electronics to the next level, Xu and his colleagues are building upwards rather than outwards. “Rigid electronics can offer a lot of functionality on a small footprint–they can easily be manufactured with as many as 50 layers of circuits that are all intricately connected, with a lot of chips and components packed densely inside. Our goal is to achieve that with stretchable electronics,” said Xu.

The new device developed in this study consists of four layers of interconnected stretchable, flexible circuit boards. Each layer is built on a silicone elastomer substrate patterned with what’s called an “island-bridge” design. Each “island” is a small, rigid electronic part (sensor, antenna, Bluetooth chip, amplifier, accelerometer, resistor, capacitor, inductor, etc.) that’s attached to the elastomer. The islands are connected by stretchy “bridges” made of thin, spring-shaped copper wires, allowing the circuits to stretch, bend and twist without compromising electronic function.

Making connections

This work overcomes a technological roadblock to building stretchable electronics in 3D. “The problem isn’t stacking the layers. It’s creating electrical connections between them so they can communicate with each other,” said Xu. These electrical connections, known as vertical interconnect accesses or VIAs, are essentially small conductive holes that go through different layers on a circuit. VIAs are traditionally made using lithography and etching. While these methods work fine on rigid electronic substrates, they don’t work on stretchable elastomers.

So Xu and his colleagues turned to lasers. They first mixed silicone elastomer with a black organic dye so that it could absorb energy from a laser beam. Then they fashioned circuits onto each layer of elastomer, stacked them, and then hit certain spots with a laser beam to create the VIAs. Afterward, the researchers filled in the VIAs with conductive materials to electrically connect the layers to one another. And a benefit of using lasers, notes Xu, is that they are widely used in industry, so the barrier to transfer this technology is low.

Multifunctional ‘smart bandage’

The team built a proof-of-concept 3D stretchable electronic device, which they’ve dubbed a “smart bandage.” A user can stick it on different parts of the body to wirelessly monitor different electrical signals. When worn on the chest or stomach, it records heart signals like an electrocardiogram (ECG). On the forehead, it records brain signals like a mini EEG sensor, and when placed on the side of the head, it records eyeball movements. When worn on the forearm, it records muscle activity and can also be used to remotely control a robotic arm. The smart bandage also monitors respiration, skin temperature and body motion.

“We didn’t have a specific end use for all these functions combined together, but the point is that we can integrate all these different sensing capabilities on the same small bandage,” said co-first author Zhenlong Huang, who conducted this work as a visiting Ph.D. student in Xu’s research group.

And the researchers did not sacrifice quality for quantity. “This device is like a ‘master of all trades.’ We picked high quality, robust subcomponents–the best strain sensor we could find on the market, the most sensitive accelerometer, the most reliable ECG sensor, high quality Bluetooth, etc.–and developed a clever way to integrate all these into one stretchable device,” added co-first author Yang Li, a nanoengineering graduate student at UC San Diego in Xu’s research group.

So far, the smart bandage can last for more than six months without any drop in performance, stretchability or flexibility. It can communicate wirelessly with a smartphone or laptop up to 10 meters away. The device runs on a total of about 35.6 milliwatts, which is equivalent to the power from 7 laser pointers.

The team will be working with industrial partners to optimize and refine this technology. They hope to test it in clinical settings in the future.

Pioneering engineers working with terahertz frequency technology have been researching how individual frequencies are selected when a laser is turned on, and how quickly the selection is made.

The development of specific terahertz equipment has allowed them to investigate this process for the first time. Their results, published in Nature Communications, will underpin the future development of semiconductor lasers, including those used in public and private sector-owned telecommunications systems.

For many years, it has been predicted that operating frequencies within semiconductor lasers stabilise on a timescale of a few nanoseconds (ie a few billionths of a second) and can be changed within a few hundreds of picoseconds (ie thousandths of a nanosecond).

Until now, though, no detector has been capable of measuring and proving this precisely, and the best results have only been achieved on nanosecond timescales, which are too slow to allow really efficient analysis or to be used to develop the most effective new systems.

The University of Leeds researchers, working with international colleagues at École Normal Supérieure in Paris, France and the University of Queensland in Brisbane, Australia have now used terahertz frequency quantum cascade lasers and a technique called terahertz time-domain spectroscopy to understand this laser stabilisation process.

The terahertz-powered technology can measure the wavelength of light in periods of femtoseconds (ie millionths of a nanosecond) giving unprecedented levels of detail. By knowing the speed at which wavelengths change within lasers, and what happens during that process within miniscule time frames, more efficient devices and systems can be built.

The Leeds elements of the study were carried out in the University’s Terahertz Photonics Laboratory, part of the University’s Bragg Centre for Materials Research.

Dr Iman Kundu, principal author of the research paper explaining the group’s findings, said: “We’ve exploited the ultrafast detection capabilities of terahertz technology to watch laser emissions evolve from multiple colours to a single wavelength over less than a billionth of a second.

“Now that we can see the detailed emission of the lasers over such incredibly small time frames, we can see how the wavelength of light changes as one moves from one steady state to a new steady state.

“The benefits for commercial systems designers are potentially significant. Terahertz technology isn’t available to many sectors, but we believe its value lies in being able to highlight trends and explain the detailed operation of integrated photonic devices, which are used in complex imaging systems which might be found in the pharmaceutical or electronics sectors.

“Designers can then apply these findings to lasers operating at different parts of the electromagnetic spectrum, as the underlying physics will be very similar.”

Professor Edmund Linfield, Chair of Terahertz Electronics at the University of Leeds, who was also involved in the study said: “We’re using the highly advanced capabilities of terahertz technology to shine a light on the operation of lasers.

“Our research is aimed at showing engineers and developers where to look to drive increased performance in their own systems. By doing this, we will increase the global competitiveness of the UK’s science and engineering base.”

The general public might think of the 21st century as an era of revolutionary technological platforms, such as smartphones or social media. But for many scientists, this century is the era of another type of platform: two-dimensional materials, and their unexpected secrets.

When two monolayers of WTe2 are stacked into a bilayer, a spontaneous electrical polarization appears, one layer becoming positively charged and the other negatively charged. This polarization can be flipped by applying an electric field. Credit: Joshua Kahn

These 2-D materials can be prepared in crystalline sheets as thin as a single monolayer, only one or a few atoms thick. Within a monolayer, electrons are restricted in how they can move: Like pieces on a board game, they can move front to back, side to side or diagonally — but not up or down. This constraint makes monolayers functionally two-dimensional.

The 2-D realm exposes properties predicted by quantum mechanics — the probability-wave-based rules that underlie the behavior of all matter. Since graphene — the first monolayer — debuted in 2004, scientists have isolated many other 2-D materials and shown that they harbor unique physical and chemical properties that could revolutionize computing and telecommunications, among other fields.

For a team led by scientists at the University of Washington, the 2-D form of one metallic compound — tungsten ditelluride, or WTe2 — is a bevy of quantum revelations. In a paper published online July 23 in the journal Nature, researchers report their latest discovery about WTe2: Its 2-D form can undergo “ferroelectric switching.” They found that when two monolayers are combined, the resulting “bilayer” develops a spontaneous electrical polarization. This polarization can be flipped between two opposite states by an applied electric field.

“Finding ferroelectric switching in this 2-D material was a complete surprise,” said senior author David Cobden, a UW professor of physics. “We weren’t looking for it, but we saw odd behavior, and after making a hypothesis about its nature we designed some experiments that confirmed it nicely.”

Materials with ferroelectric properties can have applications in memory storage, capacitors, RFID card technologies and even medical sensors.

“Think of ferroelectrics as nature’s switch,” said Cobden. “The polarized state of the ferroelectric material means that you have an uneven distribution of charges within the material — and when the ferroelectric switching occurs, the charges move collectively, rather as they would in an artificial electronic switch based on transistors.”

The UW team created WTe2 monolayers from its the 3-D crystalline form, which was grown by co-authors Jiaqiang Yan at Oak Ridge National Laboratory and Zhiying Zhao at the University of Tennessee, Knoxville. Then the UW team, working in an oxygen-free isolation box to prevent WTe2 from degrading, used Scotch Tape to exfoliate thin sheets of WTe2 from the crystal — a technique widely used to isolate graphene and other 2-D materials. With these sheets isolated, they could measure their physical and chemical properties, which led to the discovery of the ferroelectric characteristics.

WTe2 is the first exfoliated 2-D material known to undergo ferroelectric switching. Before this discovery, scientists had only seen ferroelectric switching in electrical insulators. But WTe2 isn’t an electrical insulator; it is actually a metal, albeit not a very good one. WTe2 also maintains the ferroelectric switching at room temperature, and its switching is reliable and doesn’t degrade over time, unlike many conventional 3-D ferroelectric materials, according to Cobden. These characteristics may make WTe2 a promising material for smaller, more robust technological applications than other ferroelectric compounds.

“The unique combination of physical characteristics we saw in WTe2 is a reminder that all sorts of new phenomena can be observed in 2-D materials,” said Cobden.

Ferroelectric switching is the second major discovery Cobden and his team have made about monolayer WTe2. In a 2017 paper in Nature Physics, the team reported that this material is also a “topological insulator,” the first 2-D material with this exotic property.

In a topological insulator, the electrons’ wave functions — mathematical summaries of their quantum mechanical states — have a kind of built-in twist. Thanks to the difficulty of removing this twist, topological insulators could have applications in quantum computing — a field that seeks to exploit the quantum-mechanical properties of electrons, atoms or crystals to generate computing power that is exponentially faster than today’s technology. The UW team’s discovery also stemmed from theories developed by David J. Thouless, a UW professor emeritus of physics who shared the 2016 Nobel Prize in Physics in part for his work on topology in the 2-D realm.

Cobden and his colleagues plan to keep exploring monolayer WTe2 to see what else they can learn.

“Everything we have measured so far about WTe2 has some surprise in it,” said Cobden. “It’s exciting to think what we might find next.”

Yale-NUS Associate Professor of Science (Physics) Shaffique Adam is the lead author for a recent work that describes a model for electron interaction in Dirac materials, a class of materials that includes graphene and topological insulators, solving a 65-year-old open theoretical problem in the process. The discovery will help scientists better understand electron interaction in new materials, paving the way for developing advanced electronics such as faster processors. The work was published in the peer-reviewed academic journal Science on 10 August 2018.

The open problem was what controlled the velocity of the electron liquid (shown as a wavy waterfront). The findings show that it is the frozen antiferromagnetism on the honeycomb lattice that sets this velocity by slowing it down as the two interact. Credit: Yale-NUS College

Electron behaviour is governed by two major theories – the Coulomb’s law and the Fermi liquid theory. According to Fermi liquid theory, electrons in a conductive material behave like a liquid – their “flow” through a material is what causes electricity. For Dirac fermions, the Fermi liquid theory breaks down if the Coulomb force between the electrons crosses a certain threshold: the electrons “freeze” into a more rigid pattern which inhibits the “flow” of electrons, causing the material to become non-conductive.

For more than 65 years, this problem was relegated to a mathematical curiosity, because Dirac materials where the Coulomb threshold was reached had never been made. Today, however, we routinely make use of quantum materials for applications in technology, such as transistors in processors, where the electrons are engineered to have desired properties, including those which push the Coulomb force past this threshold. But the effects of strong electron-electron interaction can only be seen in very clean samples.

In the work immediately following his PhD, Assoc Prof Adam proposed a model to describe experimentally available Dirac materials that were “very dirty” (contains a lot of impurities). However, in the years that followed, newer and cleaner materials have been made, and this previous theory no longer worked.

In this latest work titled, “The role of electron-electron interactions in two-dimensional Dirac fermions”, Assoc Prof Adam and his research team have developed a model which explains electron interactions past the Coulomb threshold in all Dirac materials by using a combination of numerical and analytical techniques.

In this research, the team designed a method to study the evolution of physical observables in a controllable manner and used it to address the competing effects of short-range and long-range parts in models of the Coulomb interaction. The researchers discovered that the velocity of electrons (the “flow” speed) in a material could decrease if the short-range interaction that favoured the insulating, “frozen” state dominated. However, the velocity of electrons could be enhanced by the long-range component that favoured the conducting, “liquid” state. With this discovery, scientists can better understand long-range interactions of electrons non-perturbatively – something that previous theories were not able to explain – and serves as useful predictors for experiments exploring the long-range-interaction divergence in Dirac electrons when they transition between conducting to insulating phases.

This improved understanding in the evolution of the electron velocity during the phase transition paves the way to help scientists develop low heat dissipation devices for electronics. Assoc Prof Adam explains, “The higher the electron velocity, the faster transistors can be switched on and off. However, this faster processor performance comes at the price of increased power leakage, which produces extra heat, and this heat will counteract the performance increase granted by the faster switching. Our findings on electron velocity behaviour will help scientists engineer devices that are capable of faster switching but low power leakage.”

Assoc Prof Adam adds, “Because the mechanism in our new model harnesses the Coulomb force, it would cost less energy per switch compared to mechanisms available currently. Understanding and applying our new model could potentially usher in a new generation of technology.”

CyberOptics® Corporation (NASDAQ: CYBE), a global developer and manufacturer of high precision 3D sensing technology solutions, announces it will demonstrate its next generation Airborne Particle Sensor™ technology (APS3) 300mm with new ParticleSpectrum™ software at SEMICON Taiwan, September 5-7 at the Nangang Exhibition Center in Taipei in booth #L312.

CyberOptics’ WaferSense® APS3 speeds equipment set-up and long-term yields in semiconductor fabs by wirelessly detecting, identifying and monitoring airborne particles. Now in a thinner and lighter form factor to travel through semiconductor tools with ease, the APS3 offers leading accuracy and sensitivity valued by equipment and process engineers.

“Semiconductor fabs worldwide have adopted our Airborne Particle Sensors,” said Dr. Subodh Kulkarni, President and CEO, CyberOptics. “We have further advanced the technology that they rely on to significantly improve their yields and tool uptime.”

The APS3 solution incorporates ParticleSpectrum software – a completely new, touch-enabled interface with user-friendly functionality, making it simple to read, record and review small to large airborne particle data and see the effects of cleanings, adjustments and repairs in real-time.

At SEMICON Taiwan, CyberOptics will also demonstrate the proprietary 3D Ultra High-Resolution Multi-Reflection Suppression (MRS) Sensor technology that meticulously identifies and rejects reflections caused by shiny components and surfaces. Effective suppression of multiple reflections is critical for highly accurate measurements. Offering an unmatched combination of accuracy and speed, MRS sensors are widely used for inspection and measurement in the SMT, metrology and in semiconductor markets. This best in class, ultra high-resolution technology used in back-end inspection applications, is ideally suited for IC package, wafer bump inspection and mid-end semiconductor applications where the highest degree of precision is required.

TDK Corporation (TSE:6762) has developed the new MPZ0603-H series of multilayer chip beads for power lines in an IEC 0603 package (EIA 0201) that feature twice the rated current and about half the DC resistance of the existing MPZ0603-C series. Thanks to a newly developed technology for the internal electrodes, TDK was able to reduce the DC resistance to as low as 36 mΩ, thus increasing the rated current to as high as 1900 mA. The MPZ0603-H series offers high impedance values ranging from 22 Ω to 120 Ω at 100 MHz. The new chip beads measure in with a miniature footprint of 0.6 mm x 0.3 mm and a low insertion height of just 0.3 mm. With their compact dimensions and excellent electrical specifications the ferrite beads are very well suited for a wide spectrum of noise suppression measures in the IC power supply lines of smartphones, audio players, PCs, and other devices. Mass production of the new series began in August 2018.

As the multifunctionality of portable devices such as smartphones continues to grow, high current ratings are becoming an increasingly important factor for components in the IC power supply lines. Thanks to their low DC resistance the MPZ0603-H chip beads not only offer a high rated current, but they also help lower the power consumption of devices.

Main applications

  • Noise suppression in the IC power supply lines in smartphones, audio players, PCs, and other devices

Main features and benefits

  • DC resistance as low as 36 mΩ approximately half that of existing products
  • Rated current as high as 1900 mA approximately twice that of existing products