Tag Archives: letter-pulse-tech

Researchers at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) in Japan have designed a small ‘body-on-a-chip’ device that can test the side effects of drugs s on human cells. The device solves some issues with current, similar microfluidic devices and offers promise for the next generation of pre-clinical drug tests.

The Integrated Heart/Cancer on a Chip (iHCC) was used to test the toxicity of the anti-cancer drug doxorubicin on heart cells. The researchers, led by iCeMS’s Ken-ichiro Kamei, found that, while the drug itself was not toxic to heart cells, a metabolite of the drug resulting from its interaction with cancer cells was.

The device is smaller than a microscope glass slide. It contains six tiny chambers; every two are connected by microchannels with a series of port inlets and valves. A pneumatic pump controls movement of fluid through the channels. Every two chambers and their separate microchannel system constitute one test bed. Three test beds in the device allow for the introduction of minor changes in each bed to simultaneously compare results.

The team first tested doxorubicin’s effects on heart cells and liver cancer cells cultured separately in small wells. The drug had the expected anti-cancer effect on the cancer cells without causing damage to the heart cells.

They then ran the test using the iHCC device. Heart cells were placed in one chamber while liver cancer cells were placed in the other. Doxorubicin was introduced into a cell culture medium circulating through a closed-loop system of microchannels that connects the two chambers, mimicking the blood’s circulatory system. In this way, the drug flows unidirectionally in a continuous loop through both chambers.

The team found signs of toxicity in both cancer and heart cells. They hypothesized that a compound, doxorubicinol, which is a metabolic byproduct of doxorubicin interacting with cancer cells, was causing the toxic effect.

To test this, they added doxorubicinol to heart cells and liver cancer cells cultured separately in small wells. It was toxic to the heart cells but not to the cancer cells.

When doxorubicin alone is added to the liver cancer cells, the amount of doxorubicinol produced is too small to be toxic to the heart cells. The team believes this is because the amount of cell culture medium needed for the well-based tests dilutes the metabolite.

In contrast, when doxorubicin is introduced into the iHCC, the metabolite is not diluted when moving through the microchannel circulation system because a smaller volume of cell culture is needed. As a result, the drug does have a toxic effect on the heart cells via its metabolite.

The device requires further improvements, but the study demonstrates how this design concept could be used to investigate the toxic side effects of anti-cancer drugs on heart cells well before expensive clinical trials. The study was published in the journal Royal Society of Chemistry Advances.

Samsung Electronics Co., Ltd. today announced the launch of the “Q-series,” a new line-up of LED linear modules for use in premium indoor luminaire applications where an exceptionally high level of light efficacy* is required.

The Q-series features 200 lumens per watt (lm/W) of light efficacy, which is the highest efficacy level among current LED linear modules. The new modules are the first to incorporate the LM301B, Samsung’s recently announced mid-power LED package.

This allows LED lighting fixtures using the new modules to reach more than 150lm/W, enabled through an optical efficiency level of approximately 86 percent and LED driver efficiency of about 88 percent. The Q-series’ performance levels are ideally suited to meet DLC** Premium technical standards, which require higher efficacy and lumen maintenance specifications than the DLC Standard classification.

The new Q-series modules come in one-, two- and four-foot sizes, and can be combined linearly to achieve any desired length. There are two sets of modules: Q-series modules for the North American market are UL certified, while those for the European market have CE certification.

With the addition of the premium Q-series line-up, Samsung now offers five families of LED lighting modules (Q-, H-, M-, S- and V-series) to meet most indoor LED lighting needs. The Q-series has the same form factor as Samsung’s other modules for easy retrofitting with existing LED luminaires and is now available through Samsung’s worldwide LED sales network.

Samsung’s Q-series line-up includes:

(@ tp = 40 ºC, 4000K)

Region Type Model Luminous Flux Efficacy Conditions
US

4 ft.

LT-QB22A

4,000 lm

203 lm/W

450 mA, 43.8 V

2 ft. LT-Q562A

2,000 lm

450 mA, 21.9 V
1 ft. LT-Q282A

1,000 lm

450 mA, 11.0 V
Europe 2 ft. LT-Q562B 2,000 lm 180 mA, 54.8 V
1 ft. LT-Q282B 1,000 lm 180 mA, 27.4 V

ROHM has recently announced the availability of the industry’s smallest class (1608 size) of 2-color chip LEDs. In addition to their breakthrough size, the SML-D22MUW features a special design that improves reliability along with a backside electrode configuration that supports high-resolution displays.

In recent years, chip LEDs are being increasingly used for numerical displays in industrial equipment and consumer devices. Conventional numerical displays utilize a single color to indicate numbers, but there is a growing need to change the color to make it easier to recognize abnormalities. However, this typically entails utilizing two separate LEDs, which doubles the mounting area along with development costs, or opting for a standard 2-color LED that also increases board size.

In contrast, proprietary technologies and processes allowed ROHM to integrate 2 chips in the same package size as conventional single-color LEDs, making it possible to emit multiple colors in a smaller footprint. Board space is reduced by 35% over standard 1.5 x 1.3mm 2-color LEDs, contributing to thinner displays. And after taking into consideration usage conditions during reflow, countermeasures were adopted that prevents solder penetration within the resin package to ensure greater reliability.

Analog Devices, Inc. announced today a collaboration with The Cornucopia Project and ripe.io to explore the local food supply chain and use this work as a vehicle for educating students at ConVal Regional High School in Peterborough, N.H., and local farmers on 21st century agriculture skills. The initiative instructs student farmers how to use Internet of Things and blockchain technologies to track the conditions and movement of produce from “Farm to Fork” to make decisions that improve quality, yields, and profitability. Together with the Cornucopia Project, the endeavor is funded by Analog Devices and ripe.io, with both companies also providing technical training.

For the project, Analog Devices is providing a prototype version of its crop monitoring solution, which will be capable of measuring environmental factors that help farmers make sound decisions about crops related to irrigation, fertilization, pest management, and harvesting. The sensor-to-cloud, Internet of Things solution enables farmers to make better decisions based on accumulated learning from the near-real-time monitoring. These 24/7 measurements are combined with a near infrared (NIR) miniaturized spectrometer that conducts non-destructive analysis of food quality not previously possible in a farm environment.

 

 

“This project expands on our ‘Internet of Tomatoes’ program which empowers farmers to make better decisions throughout the growing cycle, improving quality, economic, and environmental outcomes,” said Kevin Carlin, vice president, Automation, Energy and Sensors, Analog Devices. “Our crop monitoring solution will provide reliable and precise information to student farmers and local farmers so they can grow healthier, fresher, better tasting produce. It demonstrates how a crop monitoring solution extends the value and possibilities of the Internet of Things in truly transformative ways.”

The Cornucopia Project, a non-profit located in Peterborough, N.H., provides garden and agricultural programs to students from elementary through high school. Student farmers in its Farm to Fork program learn how to use advanced sensor instrumentation in their greenhouse, which provide valuable data to assess the attributes of tomatoes, and how these factors affect taste and quality. The program also educates students on how crops can be tracked throughout the agricultural supply chain to support food quality, sustainability, traceability, and nutrition.

“Analog Devices is helping us explore how advances in technology can support local food systems,” said Karen Hatcher, executive director, The Cornucopia Project. “We are training next-generation farmers in 21st century agriculture to harvest tastier, more abundant and more sustainably grown tomatoes than ever before. This initiative will contribute to enhancing the economic health and vitality of local small- and medium-size farms and the communities that support them.”

ripe.io is contributing its blockchain technology to model the entire fresh produce supply chain, combining the crop growing data, transportation, and storage conditions. Blockchain – a distributed ledger, consensus data technology that is used to maintain a continuously growing list of records – will track crop lifecycle from seed to distributor to retailer to consumer, bringing transparency and accountability to the agricultural supply chain.

“This project is one of the first implementations of blockchain technology to build an open and transparent supply chain with farmers, suppliers, distributors, retailers, food service, and end consumers,” said Raja Ramachandran, CEO of ripe.io. “What is learned in the initiative not only will improve quality, economic, and environmental outcomes in the local farming community, but also can be extended to other farms and crop species around the country.”

Analog Devices (NASDAQ: ADI) is a global high-performance analog technology company dedicated to solving the toughest engineering challenges.

Transition metal silicides, a distinct class of semiconducting materials that contain silicon, demonstrate superior oxidation resistance, high temperature stability and low corrosion rates, which make them promising for a variety of future developments in electronic devices. Despite their relevance to modern technology, however, fundamental aspects of the chemical bonding between their transition metal atoms and silicon remain poorly understood. One of the most important, but poorly known, properties is the strength of these chemical bonds — the thermochemical bond dissociation energy.

With funding from the National Science Foundation, a team of researchers from the University of Utah has investigated this property, and in this week’s The Journal of Chemical Physics, from AIP Publishing, they present their valuable findings for a number of specific compounds. These include precise values of the bond dissociation energies of the group four and five transition metal silicide molecules: TiSi, ZrSi, HfSi, VSi, NbSi and TaSi.

“The team measured the energy at which the diatomic silicides fall apart more quickly than they can be ionized by absorption of a second photon. This amount of energy is called the predissociation threshold. It provides an upper limit to the bond dissociation energy. However, the researchers have found that for molecules with certain electron configurations, if the molecule is cold, then the observation of a sharp predissociation threshold provides an accurate value of the thermochemical bond dissociation energy, and not simply an upper limit.”

“What I’m so pleased about with this new technique that we’ve developed is that it’s not just applicable to a small set of molecules,” said Michael Morse, one of the work’s authors. “It’s based on the fact that these small transition metal molecules have a density of electronic states that increases very rapidly as you get close to the dissociation limit, and that’s key in causing the molecule to fall apart as soon as you get above that limit […] The peculiarities of the transition metals make the method broadly applicable to that entire class of molecules, which are quite difficult to investigate by other means.”

This sharp threshold observation in a dense vibronic spectrum provides a new and highly effective means of estimating the bond dissociation energy for transition metals bonded to other p-block elements. According to the researchers, the uncertainties using this new method are much smaller than those seen with previous approaches.

Along with measuring the bond dissociation values for these molecules, the researchers were also able to use the predissociation thresholds to determine other fundamental values for certain molecules using thermochemical cycles, namely enthalpies of formation and ionization energies.

The data acquired can be used by chemists to develop more accurate computational methods regarding transition metal chemical bonding, along with bettering our understanding of these bonds.

“Quantum chemists are trying to develop new, efficient and accurate means of calculating these systems, and they’ve been quite successful with main group systems, and especially organic compounds,” Morse said. “But, the transition metals are much more difficult because there are so many more ways the electrons can be arranged. Another problem is that in the past, there hasn’t been as much highly accurate data available that can be used to compare theory and experiment. Without accurate data, it’s hard to tell how good a computational method may be.”

The research team has plans to work with other diatomic molecules containing transition metals. In fact, they already have results for the bond dissociation energies of TiC, ZrC, HfC, VC, NbC, TaC, WC, WSi, WS, WSe, and WCl that are in preparation for publication. By examining series of chemically related molecules, like these studies of the metal-carbon and tungsten-halogen molecules, the team intends to develop a broad picture of chemical bonding in the transition metal molecules.

“There’s a big advantage that comes from this sort of wide-ranging, systematic study. It allows us to develop what I like to call ‘chemical intuition’ about chemical bonds,” said Morse.

A team of engineers has developed stretchable fuel cells that extract energy from sweat and are capable of powering electronics, such as LEDs and Bluetooth radios. The biofuel cells generate 10 times more power per surface area than any existing wearable biofuel cells. The devices could be used to power a range of wearable devices.

The epidermal biofuel cells are a major breakthrough in the field, which has been struggling with making the devices that are stretchable enough and powerful enough. Engineers from the University of California San Diego were able to achieve this breakthrough thanks to a combination of clever chemistry, advanced materials and electronic interfaces. This allowed them to build a stretchable electronic foundation by using lithography and by using screen-printing to make 3D carbon nanotube-based cathode and anode arrays.

The biofuel cells are equipped with an enzyme that oxidizes the lactic acid present in human sweat to generate current. This turns the sweat into a source of power.

Engineers report their results in the June issue of Energy & Environmental Science. In the paper, they describe how they connected the biofuel cells to a custom-made circuit board and demonstrated the device was able to power an LED while a person wearing it exercised on a stationary bike. Professor Joseph Wang, who directs the Center for Wearable Sensors at UC San Diego, led the research, in collaboration with electrical engineering professor and center co-director Patrick Mercier and nanoegnineering professor Sheng Xu, both also at the Jacobs School of Engineering UC San Diego.

The biofuel cell can stretch and flex, conforming to the human body. Credit: University of California San Diego

The biofuel cell can stretch and flex, conforming to the human body. Credit: University of California San Diego

Islands and bridges

To be compatible with wearable devices, the biofuel cell needs to be flexible and stretchable. So engineers decided to use what they call a “bridge and island” structure developed in Xu’s research group. Essentially, the cell is made up of rows of dots that are each connected by spring-shaped structures. Half of the dots make up the cell’s anode; the other half are the cathode. The spring-like structures can stretch and bend, making the cell flexible without deforming the anode and cathode.

The basis for the islands and bridges structure was manufactured via lithography and is made of gold. As a second step, researchers used screen printing to deposit layers of biofuel materials on top of the anode and cathode dots.

Increasing energy density

The researchers’ biggest challenge was increasing the biofuel cell’s energy density, meaning the amount of energy it can generate per surface area. Increasing energy density is key to increasing performance for the biofuel cells. The more energy the cells can generate, the more powerful they can be.

“We needed to figure out the best combination of materials to use and in what ratio to use them,” said Amay Bandodkar, one of the paper’s first authors, who was then a Ph.D. student in Wang’s research group. He is now a postdoctoral researcher at Northwestern University.

To increase power density, engineers screen printed a 3D carbon nanotube structure on top the anodes and cathodes. The structure allows engineers to load each anodic dot with more of the enzyme that reacts to lactic acid and silver oxide at the cathode dots. In addition, the tubes allow easier electron transfer, which improves biofuel cell performance.

Testing applications

The biofuel cell was connected to a custom-made circuit board manufactured in Mercier’s research group. The board is a DC/DC converter that evens out the power generated by the fuel cells, which fluctuates with the amount of sweat produced by a user, and turns it into constant power with a constant voltage.

Researchers equipped four subjects with the biofuel cell-board combination and had them exercise on a stationary bike. The subjects were able to power a blue LED for about four minutes.

Next steps

Future work is needed in two areas. First, the silver oxide used at the cathode is light sensitive and degrades over time. In the long run, researchers will need to find a more stable material.

Also, the concentration of lactic acid in a person’s sweat gets diluted over time. That is why subjects were able to light up an LED for only four minutes while biking. The team is exploring a way to store the energy produced while the concentration of lactate is high enough and then release it gradually.

SiFive, the first fabless provider of customized, open-source-enabled semiconductors, today announced it will partner with Rambus, (NASDAQ: RMBS) to make Rambus cryptography technology available for the SiFive Freedom platforms. To speed time to market and remove the barriers that traditionally have blocked smaller players from developing custom silicon, leading companies in the semiconductor ecosystem have developed a new DesignShare concept, which offers IP at a reduced cost.

The DesignShare model gives any company, inventor or maker the ability to harness the power of custom silicon, enabling an entirely new range of applications. Companies like SiFive, Rambus and other ecosystem partners provide low- or no-cost IP to emerging companies, lowering the upfront engineering costs required to bring a custom chip design based on the SiFive Freedom platform to realization.

“To fulfill our mission to democratize access to custom silicon and upend the stagnant semiconductor industry, SiFive is committed to recruiting leading-edge companies like Rambus to help us revolutionize SoC design,” said Naveed Sherwani, CEO of SiFive. “The growing ecosystem of DesignShare IP providers ensures that aspiring system designers have a catalog of IP from which to choose when designing their SoC. We’re thrilled that Rambus has joined us in enabling innovation through DesignShare, and we look forward to future success together.”

Rambus will collaborate with SiFive to provide critical security components such as cryptographic cores, hardware root-of-trust, key provisioning and high-value services that are enabled by design.

“Rambus and SiFive share a similar philosophy of easing the path to designing innovative and cost-effective SoCs,” said Martin Scott, senior vice president and general manager of Rambus Security Division. “SiFive and Rambus have agreed to partner with an intent of providing chip-to-cloud-to-crowd security solutions that easily integrate with the SiFive Freedom platform and support the open and growing RISC-V hardware ecosystem. Our security cores embedded in Freedom Platform SOCs will enable secure in-field device connection and attestation for updates and diagnostics.”

SiFive was founded by the inventors of RISC-V – Yunsup Lee, Andrew Waterman and Krste Asanovic – with a mission to democratize access to custom silicon. In its first six months of availability, more than 1,000 HiFive1 software development boards have been purchased and delivered to developers in over 40 countries. Additionally, the company has engaged with multiple customers across its IP and SoC products, started shipping the industry’s first RISC-V SoC in November 2016 and announced the availability of its Coreplex RISC-V based IP earlier this month. SiFive’s innovative “study, evaluate, buy” licensing model dramatically simplifies the IP licensing process, and removes traditional road blocks that have limited access to customized, leading edge silicon.

SiFive is located in Silicon Valley and has venture backing from Sutter Hill Ventures, Spark Capital and Osage University Partners.

MRSI Systems, a manufacturer of fully automated, ultra-precision, high speed die bonding and epoxy dispensing systems, is launching a new High Speed Die Bonder, MRSI-HVM3, to support photonics customers’ high volume manufacturing requirements. The MRSI-HVM3 is in full production and MRSI Systems is shipping to customers worldwide.

Scaling imperatives

Today, high volume manufacturing of photonic, sensor, and semiconductor devices demands a die bonding system that can deliver industry leading speed without sacrificing high precision and superior flexibility. The new MRSI-HVM3, a high speed, flexible, 3 micron die bonder, has been built to address this challenge. This new system leverages a well-defined set of MRSI’s core competencies, built up over 30 years, in the areas of system design, software development, machine vision, motion control, industrial automation, and process solutions.

Customer outcomes

As Dr. Yi Qian, Vice President of Product Management, states, “The new MRSI-HVM3 incorporates the latest hardware and software innovations. Equipped with ultrafast-ramp eutectic stations, it deploys multiple levels of parallel processing utilizing dual gantries, dual heads, dual bonding stages, and “on-the-fly” tool changes. Used across all products, MRSI’s platform software makes it easy for users to change process settings on their own for new parts, new processes, and new products. These features provide our customers with best-in-class throughput for capacity expansion; high accuracy for high-density packaging; and unmatched flexibility for multi-chip multi-process production in one machine. Ultimately the system will generate great ROIs for customers. The MRSI-HVM3 high speed die bonder supports many applications including chip-on-carrier (CoC), chip-on-submount (CoS), and chip-on-baseplate or board (CoB).”

“MRSI Systems has been serving optoelectronic and microelectronic customers for the past 33 years and understands their requirement to scale efficiently in today’s fast paced marketplace. MRSI is pleased to meet these needs with the launch of our new high speed die bonder for high volume manufacturing of photonics packaging,” said Mr. Michael Chalsen, President, MRSI Systems.

Private demonstrations at CIOE

MRSI Systems is exhibiting at CIOE with their Chinese Representative CYCAD Century Science and Technology (Booth #1C66) in Shenzhen, September 6-9, 2017. There will be private demonstrations of the MRSI-HVM3 performing CoC eutectic and epoxy bonding. Please reach out to your MRSI contact to ensure you have an opportunity to see the capabilities of this new product.

MRSI Systems is a manufacturer of fully automated, high-precision, high-speed die bonding and epoxy dispensing systems.

A new, electronic skin microsystem tracks heart rate, respiration, muscle movement and other health data, and wirelessly transmits it to a smartphone. The electronic skin offers several improvements over existing trackers, including greater flexibility, smaller size, and the ability to stick the self-adhesive patch — which is a very soft silicone about four centimeters (1.5 inches) in diameter — just about anywhere on the body.

The microsystem was developed by an international team led by Kyung-In Jang, a professor of robotics engineering at South Korea’s Daegu Gyeongbuk Institute of Science and Technology, and John A. Rogers, the director of Northwestern University’s Center for Bio-Integrated Electronics. The team described the new device in the journal Nature Communications.

The electronic skin contains about 50 components connected by a network of 250 tiny wire coils embedded in protective silicone. The soft material enables it to conform to body, unlike other hard monitors. It wirelessly transmits data on movement and respiration, as well as electrical activity in the heart, muscles, eyes and brain to a smartphone application.

Unlike flat sensors, the tiny wires coils in this device are three-dimensional, which maximizes flexibility. The coils can stretch and contract like a spring without breaking. The coils and sensor components are also configured in an unusual spider web pattern that ensures “uniform and extreme levels of stretchability and bendability in any direction.” It also enables tighter packing of components, minimizing size. The researchers liken the design to a winding, curling vine, connecting sensors, circuits and radios like individual leaves on the vine.

The key to creating this novel microsystem is stretching the elastic silicone base while the tiny wire arcs, made of gold, chromium and phosphate, are laid flat onto it. The arcs are firmly connected to the base only at one end of each arc. When the base is allowed to contract, the arcs pop up, forming three-dimensional coils.

The entire system is powered wirelessly rather than being charged by a battery. The researchers also considered key electrical and mechanical issues to optimize the system’s physical layout, such as sensor placement or wire length, to minimize signal interference and noise.

The electronic skin could be used in a variety of applications, including continuous health monitoring and disease treatment. Professor Jang states “Combining big data and artificial intelligence technologies, the wireless biosensors can be developed into an entire medical system which allows portable access to collection, storage, and analysis of health signals and information.” He added “We will continue further studies to develop electronic skins which can support interactive telemedicine and treatment systems for patients in blind areas for medical services such as rural houses in mountain village.” The microsystem could also be used in other areas of emerging interest, such as soft robotics or autonomous navigation, which the team is now investigating.

University of Groningen scientists led by physics professor Bart van Wees have created a graphene-based device, in which electron spins can be injected and detected with unprecedented efficiency. The result is a hundredfold increase of the spin signal, big enough to be used in real life applications, such as new spin transistors and spin-based logic. The research is part of the European Union’s EUR 1 billion Graphene Flagship, and the results were published in Nature Communications on 15 August.

‘Spin’ is a magnetic property of electrons, which can take the values ‘up’ or ‘down’. It could be used to store, transport and manipulate information, but is difficult to handle. For example, it loses direction over time, and thus far no one has managed to create more than a few percent of spin polarization – in other words, the difference between the number of ‘up’ versus ‘down’ spins is small.

Spin injection

Much of the research in Van Wees’s lab is directed towards gaining a better understanding of spin behaviour in different materials. His lab has already managed to transport spin signals over record distances at room temperature. The latest experiments focused on spin injection and detection. Injection means getting electrons with polarized spins into a device. In a normal electron current, the number of up and down spins are the same. ‘Spin polarization is achieved by sending the electrons through a ferromagnetic material’, Van Wees explains. This creates an excess of one type of spin.

The device used in the latest experiments was a sandwich of different materials. At the core was a layer of graphene, just one atom thick. ‘Graphene is a very good material for spin transport, but it doesn’t allow you to manipulate the spins’, says Van Wees. The graphene rests on an insulator layer of boron nitride, which rests on a silicon semiconductor. On top of the graphene is a very thin layer, just a few atoms thick, of boron nitride, which protects the electrons in the graphene from outside influences.

Unexpected

‘To inject spins into the graphene, you have to make them pass through the upper layer of the boron nitride insulator. This can be achieved with quantum tunnelling’, says Van Wees. The initial construction was one atom thick, but it proved too thin and failed to shield the electrons in the graphene from outside influences. A three-atom layer provided enough protection and allowed normal spin injection. But a two-atom layer caused something totally unexpected to happen. ‘We observed a very strong spin polarization of up to 70 percent, ten times what we usually get.’

It was always assumed that polarization was the result of the electrons’ passage through a ferromagnet. But in that case, the polarization should have had a fixed value. In Van Wees’s devices, the polarization increased with the voltage. ‘We have no idea why this happens’, says Van Wees. He also found a similar tenfold increase in spin detection in the same device. ‘So overall, the signal increased by a factor of 100.’

Flagship Project

This creates many possibilities. ‘We can now inject a spin into the graphene and measure it easily after it has travelled some distance. One application would be as a detector for magnetic fields, which will affect the spin signal.’ Another possibility would be to build a spin logic gate or a spin transistor. As the experiments with the new device were conducted at room temperature, such applications are quite close. ‘However’, Van Wees warns, ‘we use graphene which we obtained by exfoliation, using Scotch tape to peel monolayers off a piece of graphite. This is not suitable for large scale production.’ Techniques to make the right quality of graphene on an industrial scale are still under development.

The work on spin in graphene is part of the European Union’s ten-year Flagship Project that started in 2013 with a budget of EUR 1 billion. Van Wees is leader of the Spintronics Work Package, which has met all its goals so far and is set to continue for another two years at least. Working with industrial partners to translate the lab results into applications is an important aim at this stage.

Van Wees has already managed to increase spin transport in graphene and manipulate the direction of transport. Now he has dramatically increased the signal. ‘We now have to work on both understanding the physics and developing the technology to integrate these devices into bigger systems. But we also have to think about entirely new applications which may become possible.’