Tag Archives: letter-pulse-top

Worldwide semiconductor manufacturing equipment billings reached US$16.7 billion in the second quarter of 2018, 1 percent lower than the previous record quarter and 19 percent higher than the same quarter a year ago, SEMI, the global industry association representing the electronics manufacturing supply chain, reported today.

The data are gathered jointly with the Semiconductor Equipment Association of Japan (SEAJ) from more than 95 global equipment companies that provide monthly data. The quarterly billings data by region in billions of U.S. dollars, quarter-over-quarter growth and year-over-year rates by region are as follows:

2Q2018
1Q2018
2Q2017
2Q18/1Q18
(Qtr-over-Qtr)
2Q18/2Q17
(Year-over-Year)
Korea
4.86
6.26
4.79
-22%
2%
China
3.79
2.64
2.51
44%
51%
Japan
2.28
2.13
1.55
7%
47%
Taiwan
2.19
2.27
2.76
-4%
-21%
North America
1.47
1.14
1.23
29%
20%
Europe
1.18
1.28
0.66
-7%
80%
Rest of World
0.96
1.27
0.62
-24%
56%
Total
16.74
16.99
14.11
-1%
19%

Source: SEMI (www.semi.org) and SEAJ, September 2018

The Equipment Market Data Subscription (EMDS) from SEMI provides comprehensive market data for the global semiconductor equipment market.

By Michael Droeger

Over the past three decades, most of the world’s innovations have centered largely on business models and involved iterative advances of existing technologies, with none matching the global impact of the top 10 semiconductor industry discoveries and advances, Dr. Morris Chang, founder of TSMC and the IC foundry model, said at SEMICON Taiwan 2018 this week.

Few have as clear a perspective on the transformative power of semiconductors as Dr. Chang, founder of TSMC and father of the IC foundry model. Keynoting the IC60 Master Forum celebrating the 60th anniversary of the invention of the integrated circuit (IC), Dr. Chang listed what he considers the 10 key semiconductor industry innovation milestones since 1948:

1. Invention of the transistor by Shockley, Bardeen, and Brattain – 1948

2. Silicon transistor – 1954

3. Integrated circuit – 1958

4. Moore’s Law – 1965

5. MOS technology

  1. MOS FET – 1964
  2. Silicon gate – 1967
  3. CMOS  – 1970

6. Memory

  1. DRAM – 1966
  2. Flash – 1967

7. Outsourced assembly and test (OSAT) – 1960s

8. Microprocessor – 1970

9. VLSI systems design – 1970-1980

  1. IP and design tools – 1980-present

10. Foundry model – 1985

Among the most consequential semiconductor advances may be yet to come, Dr. Chang said, citing innovations including artificial intelligence (AI) and machine learning, new device architectures, Extreme Ultraviolet lithography (EUV), 2.5D/3D packaging, and new materials such as graphene and carbon nanotubes.

Dr. Chang argued that because bringing an innovation into production is immensely more expensive than proving a theory in a lab, innovators are not always the ones to implement and benefit from their novel ideas. Today, innovation costs are skyrocketing, driving more consolidation across the supply chain.

Michael Droeger is director of marketing at SEMI.

Originally published on the SEMI blog.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $39.5 billion for the month of July 2018, an increase of 17.4 percent compared to the July 2017 total of $33.6 billion. Global sales in July 2018were 0.4 percent higher than the June 2018 total of $39.3 billion. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“The global semiconductor industry posted its highest-ever monthly sales in July, easily outpacing last July and narrowly ahead of last month’s total,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Sales were up year-to-year across every major semiconductor product category and regional market, with the China and Americas markets leading the way with growth of greater than 20 percent.”

Regionally, sales increased compared to July 2017 in China (29.4 percent), the Americas (20.7 percent), Europe (11.7 percent), Japan (11.5 percent), and Asia Pacific/All Other (5.7 percent). Sales were up compared to last month in China (1.7 percent) and the Americas (0.4 percent), held flat in Asia Pacific/All Other, and decreased slightly in Japan (-0.1 percent), and Europe (-2.4 percent).

For comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, consider purchasing the WSTS Subscription Package. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2018 SIA Databook.

By Dr. Eric Mounier

2017 was a good year for the MEMS and sensors business, and that upward trend should continue. We forecast extended strong growth for the sensors and actuators market, reaching more than $100 billion in 2023 for a total of 185 billion units. Optical sensors, especially CMOS image sensors, will have the lion’s share with almost 40 percent of market value. MEMS will also play an important role in that growth: During 2018–2023, the MEMS market will experience 17.5 percent growth in value and 26.7 percent growth in units, with the consumer market accounting for more than 50 percent(1)share overall.

Evolution of sensors

Sensors were first developed and used for physical sensing: shock, pressure, then acceleration and rotation. Greater investment in R&D spurred MEMS’ expansion from physical sensing to light management (e.g., micromirrors) and then to uncooled infrared sensing (e.g., microbolometers). From sensing light to sensing sound, MEMS microphones formed the next wave of MEMS development. MEMS and sensors are entering a new and exciting phase of evolution as they transcend human perception, progressing toward ultrasonic, infrared and hyperspectral sensing.

Sensors can help us to compensate when our physical or emotional sensing is limited in some way. Higher-performance MEMS microphones are already helping the hearing-impaired. Researchers at Arizona State University are among those developing cochlear implants — featuring piezoelectric MEMS sensors — which may one day restore hearing to those with significant hearing loss.

The visually impaired may take heart in knowing that researchers at Stanford University are collaborating on silicon retinal implants. Pixium Vision began clinical trials in humans in 2017 with its silicon retinal implants.

It’s not science fiction to think that we will use future generations of sensors for emotion/empathy sensing. Augmenting our reality, such sensing could have many uses, perhaps even aiding the ability of people on the autism spectrum to more easily interpret the emotions of others.

Through my years in the MEMS industry, I have identified three distinct eras in MEMS’ evolution:

  1. The “detection era” in the very first years, when we used simple sensors to detect a shock.
  2. The “measuring era” when sensors could not only sense and detect but also measure (e.g., a rotation).
  3. The “global-perception awareness era” when we increasingly use sensors to map the environment. We conduct 3D imaging with Lidar for autonomous vehicles. We monitor air quality using environmental sensors. We recognize gestures using accelerometers and/or ultrasonics. We implement biometry with fingerprint and facial recognition sensors. This is possible thanks to sensor fusion of multiple parameters, together with artificial intelligence.

Numerous technological breakthroughs are responsible for this steady stream of advancements: new sensor design, new processes and materials, new integration approaches, new packaging, sensor fusion, and new detection principles.

Global Awareness Sensing

The era of global awareness sensing is upon us. We can either view global awareness as an extension of human sensing capabilities (e.g., adding infrared imaging to visible) or as beyond-human sensing capabilities (e.g., machines with superior environmental perception, such as Lidar in a robotic vehicle). Think about Professor X in Marvel’s universe, and you can imagine how human perception could evolve in the future!

Some companies envisioned global awareness from the start. Movea (now part of TDK InvenSense), for example, began their development with inertial MEMS. Others implemented global awareness by combining optical sensors such as Lidar and night-vision sensors for robotic cars. A third contingent grouped environmental sensors (gas, particle, pressure, temperature) to check air quality. The newest entrant in this group, the particle sensor, could play an especially important role in air-quality sensing, particularly in wearable devices.

Driven by increasing societal concern over mounting evidence of global air-quality deterioration, air pollution has become a major topic in our society. Studies show that there is no safe level of particulates. Instead, for every increase in concentration of PM10 or PM2.5 inhalable particles in the air, the lung cancer rate is rising proportionately. Combining a particle sensor with a mapping application in a wearable could allow us to identify the locations of the most polluted urban zones.

The Need for Artificial Intelligence

To realize global awareness, we also need artificial intelligence (AI), but first, we have challenges to solve. Activity tracking, for example, requires accurate live classification of AI data. Relegating all AI processing to a main processor, however, would consume significant CPU resources, reducing available processing power. Likewise, storing all AI data on the device would push up storage costs. To marry AI with MEMS, we must do the following:

  1. Decouple feature processing from the execution of the classification engine to a more powerful external processor.
  2. Reduce storage and processing demands by deploying only the features required for accurate activity recognition.
  3. Install low-power MEMS sensors that can incorporate data from multiple sensors (sensor fusion) and enable pre-processing for always-on execution.
  4. Retrain the model with system-supported data that can accurately identify the user’s activities.

There are two ways to add AI and software in mobile and automotive applications. The first is a centralized approach, where sensor data is processed in the auxiliary power unit (APU) that contains the software. The second is a decentralized approach, where the sensor chip is localized in the same package, close to the software and the AI (in the DSP for a CMOS image sensor, for example). Whatever the approach, MEMS and sensors manufacturers need to understand AI, although they are unlikely to gain much value at the sensor-chip level.

Heading to an Augmented World

We have achieved massive progress in sensor development over the years and are now reaching the point when sensors can mimic or augment most of our perception: vision, hearing, touch, smell and even emotion/empathy as well as some aesthetic senses. We should realize that humans are not the only ones to benefit from these developments. Enhanced perception will also allow robots to help us in our daily lives (through smart transportation, better medical care, contextually aware environments and more). We need to couple smart sensors’ development with AI to further enhance our experiences with the people, places and things in our lives.

About the author

With almost 20 years’ experience in MEMS, sensors and photonics applications, markets, and technology analyses, Dr. Eric Mounier provides in-depth industry insight into current and future trends. As a Principal Analyst, Technology & Markets, MEMS & Photonics, in the Photonics, Sensing & Display Division, he contributes daily to the development of MEMS and photonics activities at Yole Développement (Yole). He is involved with a large collection of market and technology reports, as well as multiple custom consulting projects: business strategy, identification of investment or acquisition targets, due diligence (buy/sell side), market and technology analyses, cost modeling, and technology scouting, etc.

Previously, Mounier held R&D and marketing positions at CEA Leti (France). He has spoken in numerous international conferences and has authored or co-authored more than 100 papers. Mounier has a Semiconductor Engineering Degree and a PhD in Optoelectronics from the National Polytechnic Institute of Grenoble (France).

Mounier is a featured speaker at SEMI-MSIG European MEMS & Sensors Summit, September 20, 2018 in Grenoble, France.

Originally published on the SEMI blog.

By Richard Allen

The arrival of Fan-Out Panel Level Packaging (FO-PLP) appears to be at a perfect time: This technology will leverage processes developed for Three Dimensional Stacked Integrated Circuits (3DS-IC) as well as panel processing technologies developed for industries such as solar panels and large-screen TVs.  In this combination, FO-PLP promised the improved performance of 3DS-IC, without the expense. There was just one problem…

That problem is the size of the panels to be processed. As different companies developed FO-PLP processes, they chose panels sized to meet certain technical or business goals, or chose a size based on familiarity. So, processes were being developed for more than ten sizes, each of which had one or more companies championing them.

For people in the wider semiconductor industry, the development of many processes, each with a unique panel size brought a feeling of déjà vu, reminding them of the 1970s, when each device manufacturer created their own specification for wafer size, forcing them to manufacture their own wafer processing equipment since no external manufacturer was willing to produce tools usable only by a single customer.

SEMI responded by developing an industry consensus silicon wafer standard – which described basic parameters, including diameter and thickness – to resolve the issue. Almost overnight the landscape changed, and new tool manufacturers sprung up, enabling the incredible growth that has persisted over more than 40 years.

Recently, Cristina Chu (TEL NEXX) presented the state of FO-PLP to the North America Chapter of the SEMI Three-Dimensional Packaging and Integration (3DP&I) Technical Committee, suggesting that the Committee develop a single standard dimension that would enable the technology to move into high-volume manufacturing.

The Committee began by surveying the industry to determine the interest level in such a standard as well as its contents.  A key finding came in response to the question “Would you support a standardized panel size?” Overwhelmingly, over 70 percent of the respondents supporting the idea for the standard, with less than 2 percent opposed. The survey also asked if other parameters should be standardized and, if so, which parameters. Majority responses pointed to edge profile, flatness, and warp, prompting the 3DP&I Committee to immediately form the FO-PLP Panel Task Force (TF) to develop such a standard. Chu and Richard Allen (NIST) agreed to chair the TF and respondents to the survey were asked to participate as TF members.

The TF initially decided to follow the model of SEMI M1, Specification for Polished Single Crystal Silicon Wafers, and write the document as a purchase specification. The purchase specification would indicate a limited number of mandatory parameters, identified as those that serve as bottlenecks to the development of a FO-PLP ecosystem. Parameters that were not perceived as bottlenecks but might be useful for implementing a FO-PLP process would be included as optional.

Working under the SEMI Standards umbrella allowed the TF to take advantage of work done in the development of other standards, without having to recreate it from scratch. In particular, Flatness and Shape were repurposed from SEMI M1, ensuring consistent definitions of these parameters.

The TF could not come to consensus on how the other parameters should be categorized, so the decision was made to move the ordering table to a new Appendix as optional.

The TF will be balloting its first specification for panel substrate in the upcoming cycle, which opens September 5, 2018 (Cycle 7). The voting is open to all industry experts. Based on the feedback, the task force will continue to refine and otherwise improve the specification by incorporating other parameters that are critical to making FO-PLP a reality.

SEMI Standards development activities take place throughout the year in all major manufacturing regions. To get involved, join the SEMI International Standards Program at: www.semi.org/standardsmembership.

For more information regarding FO-PLP Panel Task Force activities, please contact Laura Nguyen at [email protected].

Richard Allen is a physicist in the Nanoscale Metrology Group in the Engineering Physics Division of the Physical Measurement Laboratory (PML) at the National Institute of Standards and Technology (NIST). 

Originally published on the SEMI blog.

Products built with microelectromechanical systems (MEMS) technology are forecast to account for 73% of the $9.3 billion semiconductor sensor market in 2018 and about 47% of the projected 24.1 billion total sensor units to be shipped globally this year, according to IC Insights’ 2018 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discretes.  Revenues for MEMS-built sensors—including accelerometers, gyroscope devices, pressure sensors, and microphone chips—are expected to grow 10% in 2018 to $6.8 billion compared to nearly $6.1 billion in 2017, which was a 17% increase from $5.2 billion in 2016, the O-S-D Report says.  Shipments of MEMS-built sensors are forecast to rise about 11% in 2018 to 11.1 billion after growing 19% in 2016.

An additional $5.9 billion in sales is expected to be generated in 2018 by MEMS-built actuators, which use their microelectromechanical systems transducers to translate and initiate action—such as dispensing ink in printers or drugs in hospital patients, reflecting light on tilting micromirrors in digital projectors, or filtering radio-frequency signals by converting RF to acoustic waves across structures on chips.  Total sales of MEMS-built sensors and actuators are projected to grow 10% in 2018 to $12.7 billion after increasing nearly 18% in 2017 and 15% in 2016 (Figure 1).

Figure 1

In terms of unit volume, shipments of MEMS-built sensors and actuators are expected to grow by slightly less than 12% to 13.1 billion units worldwide after climbing 20% in 2017 and rising 11% in 2016.  Total revenues for MEMS-based sensors and actuators are projected to increase by a compound annual growth rate (CAGR) of 9.2% between 2017 and 2022 to reach $17.8 billion in the final year of the forecast, according to the 2018 O-S-D Report.  Worldwide shipments of these MEMS-built semiconductors are expected to grow by a CAGR of 11.4% in the 2017-2022 period to 20.2 billion units at the end of the forecast.

One of the biggest changes expected in the five-year forecast period will be greater stability in the average selling price for MEMS-built devices and significantly less ASP erosion than in the past 10 years. The ASP for MEMS-built sensors and actuators is projected to drop by a CAGR of -2.0% between 2017 and 2022 compared to a -4.7% annual rate of decline in the 2012-2017 period and the steep CAGR plunge of -13.6% between 2007 and 2012.  The ASP for MEMS-built devices is expected to be $0.88 in 2022 versus $0.97 in 2017, $1.24 in 2012, and $2.57 in 2007, says the 2018 report.

The spread of MEMS-based sensors and actuators into a broader range of new “autonomous and “intelligent” automated applications—such as those connected to the Internet of Things (IoT) and containing artificial intelligence (AI)—will help keep ASPs from falling as much as they did in the last 10 years.  IC Insights believes many MEMS-based semiconductors are becoming more specialized for certain applications, which will help insulate them from pricing pressures in the market.

The China IC Ecosystem Report, a comprehensive report for the IC manufacturing supply chain, reveals that front-end fab capacity in China will grow to account for 16 percent of the world’s semiconductor fab capacity this year, a share that will increase to 20 percent by the end of 2020. With the rapid growth, China will top the rest of the world in fab investment in 2020 with more than $20 billion in spending, driven by memory and foundry projects funded by both multinational and domestic companies, according to the new report released today by SEMI.

The report also shows that IC Design remained the largest semiconductor sector in China for the second year in a row with $31.9 billion in revenue in 2017, widening its lead over the long-dominant IC Packaging and Test sector. The ascent of China’s IC Design sector comes as the region’s equipment market is expected to claim the top spot in 2020 for the first time on the strength of the continuing development of its domestic manufacturing capability. China’s maturing domestic fab sector is also benefiting domestic equipment and materials suppliers. Both groups continue to see gains in their product offerings and capabilities, particularly in silicon wafer production. The China IC Ecosystem Report is produced by SEMI, the global industry association and provider of independent electronics market research.

The more than RMB140 billion (US$21.5 billion) accumulated by the National IC Fund, a critical component of the 2014 National Guideline to address China’s semiconductor trade deficit, has spurred rapid gains throughout the region’s IC supply chain. Semiconductors are China’s largest import by revenue. Phase 2 of funding aims to raise another RMB150-200 billion ($23.0-$30.0 billion).

Encouraged by the National Guideline and favorable policies, skilled overseas talent is returning to China, triggering an explosion of domestic IC Design start-ups that are benefiting from access to investment and favorable policies, the report shows.

Other highlights from The China IC Ecosystem Report include:

  • Currently 25 new fab construction projects are underway or planned in China. 17 – 300 mm fabs are being tracked as part of this investment and expansion activity. Foundry, DRAM and 3D NAND are the leading segments for fab investment and new capacity in China.
  • China’s IC Packaging and Test industry is also moving up the value chain by enhancing its technology offerings through mergers and acquisitions and building advanced capabilities to entice international integrated device manufacturers.
  • China’s IC materials market, currently dominated by Packaging materials, became the second largest regional market for materials in 2016, a position it solidified in 2017. China’s materials market is expected to grow at a 10 percent CAGR from 2015 to 2019, driven primarily by the region’s new fab capacity ramp in the coming years. Fab capacity will expand at a 14 percent CAGR during that period.

The China IC Ecosystem Report covers the latest semiconductor supply chain and market developments including the rise of China’s IC industry, national and local government policies, public and private funding, and their implications for China’s IC supply chain. The report also compares key domestic companies and their international peers segment by segment. To learn more and get a sample of the report, visit http://www.semi.org/en/china-ic-ecosystem-report.

Eugenia is a Senior Product Marketing Manager at SEMI. 

Originally published on the SEMI blog.

Large thin-film transistor liquid crystal display (TFT LCD) panel shipments hit a record monthly high in July 2018 in terms of unit and area shipment. Unit shipments increased by 10 percent in July compared to a year ago to reach 64.3 million units, while area shipments jumped 19 percent during the same period to 17 million square meters, according to IHS Markit (Nasdaq: INFO).

“New facilities from China, such as BOE’s Gen 10.5, CHOT’s Gen 8.6 and CEC-Panda’s Gen 8.6, started mass production in the first half of this year. The production at the fabs has increased since the second quarter of 2018 as their glass inputs and production yield rates have improved,” said Robin Wu, principal analyst at IHS Markit. “Despite the growing production, panel makers have maintained the utilization rate and instead tried to push out panel shipments by lowering panel prices in the first half of 2018. That’s one of the reasons that panel shipments are continuously growing.”

The LCD TV panel contributed to the record high shipments of larger-than-9-inch LCD panels in July. Unit shipments of LCD TV panels increased by 15 percent in July year on year to 24.6 million units and area shipments jumped 21 percent to 13.3 million square meters, according to the Large Area Display Market Tracker by IHS Markit.

Panel makers suffered from high TV panel inventories in the first half of 2018 due to growing production capacities. Panel prices have been weak for a year and panel makers’ profit margins have plunged. “Therefore, panel makers wanted to clear up the inventory before the third quarter, high-demand season, when they aim to raise the panel price back again,” Wu said. “That has led to the fast growth in TV panel shipments lately, which as a result pulled the total large panel shipments to a historical high in July.” As the panel makers hoped, LCD TV panel prices rebounded in July 2018.

Chinese panel maker BOE led the large TFT LCD market in July 2018 in terms of unit shipments with a stake of 24 percent, followed by LG Display with 19 percent. However, in terms of area shipments, South Korea’s LG Display continued to lead with a 20 percent share, followed by BOE with 18 percent.

The Micron Foundation announced that it will commit $1 million to higher education institutions in Virginia as it invests in the next generation of technicians, scientists and engineers with a focus on women and underrepresented minorities in these fields. The investment will provide grants and funding at select community colleges and universities for several types of programs, organizations and individuals that inspire and enable future innovators.

“Today we are proud to expand our commitment with education partners across Virginia, which share our focus on developing a strong, vibrant and talented workforce,” said Micron Foundation Executive Director Dee Mooney. “These efforts reflect our company’s focus on investing in students and embracing diversity, as well as our long-term commitment to our Manassas facility and its team members. We look forward to working with community and education leaders to identify and support programs that will make a difference for decades to come.”

The $1 million fund will support programs in the area of cleanroom and nanotechnology labs, unmanned and autonomous automotive systems, robotics, big data, embedded systems and networking applications. Faculty members, program directors and student groups from universities and community colleges in the Commonwealth of Virginia will be eligible. With a focus on women and underrepresented minorities, programs that support low income and first-time college student programs will also receive special consideration.

Micron Technology, Inc., (NASDAQ:MU) today announced plans to invest $3 billion by 2030 to increase memory production at its plant in Manassas, Virginia, creating 1,100 new jobs roughly over the next decade. These investments are contemplated in Micron’s long-term model to invest capital expenditure in the low thirties as a percent of revenue. The expansion will position the Manassas site — located about 40 miles west of Washington, D.C. — to support Micron’s leadership in the rapidly growing market for high quality, high reliability memory products.

Source: Micron

“Micron’s Manassas site manufactures our long-lifecycle products that are built using our mature process technologies, and primarily sold into the automotive, networking and industrial markets,” said Micron President and CEO Sanjay Mehrotra. “These products support a diverse set of applications such as industrial automation, drones, the IoT (Internet of Things) and in-vehicle experience applications for automotive. This business delivers strong profitability and stable, growing free cash flow. Micron is grateful for the extensive engagement of state and local officials since early this year to help bring our Manassas expansion to fruition. We are excited to increase our commitment to the community through the creation of new highly skilled jobs, expanded facilities and education initiatives.”

“Micron’s expansion in the City of Manassas represents one of the largest manufacturing investments in the history of Virginia and will position the Commonwealth as a leader in unmanned systems and Internet of Things,” said Governor Northam. “This $3 billion investment will have a tremendous impact on our economy by creating 1,100 high-demand jobs, and solidifies Micron as one of the Commonwealth’s largest exporters. We thank Micron for choosing to deepen their roots in Virginia and look forward to partnering in their next chapter of major growth.”

The initial clean room expansion is expected to be completed in the fall of 2019 with production ramp in the first half of 2020. This expansion will add less than 5% to Micron’s global clean room space footprint and will primarily support enablement of DRAM and NAND technology transitions as well as modest capacity increase at the site, in-line with growing customer demand for Micron’s long-lifecycle products.

“As a leading global supplier of automotive electronics systems and components, ZF appreciates the long-standing support of Micron to our business,” said Karsten Mueller, vice president, Corporate Materials Management, Global Commodity Electronics at ZF Friedrichshafen AG. “Meeting the ever-increasing demands for automotive applications will require significantly greater memory as the dual trends of advanced safety and autonomy drive the industry forward. Micron’s decision to expand the manufacturing and R&D capabilities at this IATF-certified facility is another indication that this growth should only accelerate in the future.”

As part of this expansion, Micron will also establish a global research development center in Manassas for the development of memory and storage solutions focused mainly on the automotive, industrial and networking markets. The research and development center will include laboratories, test equipment and a staff of approximately 100 engineers.

The Virginia Economic Development Partnership (VEDP) worked with the City of Manassas and the General Assembly’s Major Employment and Investment (MEI) Project Approval Commission to secure the project for Virginia. Micron will be eligible to receive an MEI custom performance grant of $70 million for site preparation and facility costs, subject to approval by the Virginia General Assembly. Additionally, the City of Manassas and utility partners are providing a broader, comprehensive support package to enable the expansion, including substantial infrastructure upgrades and additional incentives.