Tag Archives: letter-pulse-top

Automotive electronics are a bright light for the semiconductor industry, as smartphone growth slows, and personal computing growth continues to decline. The expectation is that automotive electronics will become the next big technology market driver. The automotive semiconductor market will exceed the overall industry growth as semiconductor content expands with added features and functionality. The desire to put self-driving vehicles on the road is creating increased interest in innovative automotive solutions as well as increased semiconductor demand. A new research report from Semico Research, Automotive Semiconductors: Accelerating in the Fast Lane, states that the automotive segment of the semiconductor industry will grow to $73 billion by 2023.

“There are a number of challenges in the automotive industry that are unique for the system developers to navigate. Autonomous driving is a critical one,” says Jim Feldhan, President of Semico Research. “Many people feel AI is the key to the success of autonomous driving. Autonomous driving includes the ability to have optical character recognition, i.e. reading signs, distinguishing a sign from a person, and determining if the brakes should be turned on. Security surveillance, computer vision, virtual reality and image processing, real-time diagnosis and corrective solutions and strategic map planning are critical to autonomous driving. Increasing levels of processing are required as these systems become more sophisticated.”

Key findings in the report include:

The TAM market for automotive IP processor royalties will grow to $2.34 billion by 2023.
A fully autonomous vehicle (L5) is expected to require 74GB DRAM and 1TB NAND memory.
Powertrain requires the highest compute function and carries the highest ASP.

Revenue generated from processors in Autonomous Driving Systems will reach $422 million in 2018.
In its recent report, Automotive Semiconductors: Accelerating in the Fast Lane (MP118-18), Semico Research provides a comprehensive review of the current market and future opportunities for the semiconductor industry in the automotive segment. Topics covered in the report include Automotive Trends, Opportunities and Challenges, Manufacturing Technology for Auto ICs, Automotive Forecast, and Semiconductor IP in Automotive. The report is 56 pages long and includes 28 tables and 34 figures.

The demise of Qualcomm’s pending $44 billion purchase of NXP Semiconductors in late July along with growing regulatory reviews of chip merger agreements, efforts by countries to protect domestic technology, and the escalation of global trade friction all suggest semiconductor acquisitions are hitting a ceiling in the size of doable deals.  It is becoming less likely that semiconductor acquisitions over $40 billion can be completed or even attempted in the current geopolitical environment and brewing battles over global trade.

IC Insights believes a combination of factors—including the growing high dollar value of major chip merger agreements, complexities in combining large businesses together, and greater scrutiny of governments protecting their domestic base of suppliers—will stifle ever-larger mega-transactions in the semiconductor industry in the foreseeable future.  Figure 1 ranks the 10 largest semiconductor merger and acquisition announcements and underscores the growth in size of these M&A transactions.  Eight of the 10 largest announcements occurred in the last three years with only the biggest deal (Qualcomm buying NXP) failing to be completed.

Figure 1

It is important to note that IC Insights’ M&A list only covers semiconductor suppliers, chipmakers, and providers of integrated circuit intellectual property (IP) and excludes acquisitions of software and system-level businesses by IC companies  (such as Intel’s $15.3 billion purchase of Mobileye, an Israeli-based developer of digital imaging technology for autonomous vehicles, in August 2017).  This M&A list also excludes transactions involving semiconductor capital equipment suppliers, material producers, chip packaging and testing companies, and design automation software firms.

Qualcomm’s $44 billion cash purchase of NXP would have been the largest semiconductor acquisition ever if it was completed, but the deal—originally announced in October 2016 at nearly $39 billion and raised to $44 billion in February 2018—was canceled in the last week of July because China had not cleared the transaction.  China was the last country needed for an approval of the merger, and it was believed to be close to clearing the purchase in 2Q18, but growing threats of tariffs in a brewing trade war with the U.S. and moves to block Chinese acquisitions of American IC companies caused China to taken no action on the $44 billion acquisition in time for a deadline set by Qualcomm and NXP.  U.S.-based Qualcomm canceled the acquisition on July 26 and quickly paid NXP in the Netherlands a $2 billion breakup fee so the two companies could move on separately.

Prior to Qualcomm’s failed $44 billion offer for NXP, the largest semiconductor acquisition was Avago Technologies’ $37 billion cash and stock purchase of Broadcom in early 2016.  Avago renamed itself Broadcom Limited after the purchase and launched a failed $121 billion hostile takeover bid for Qualcomm at the end of 2017.  It lowered the unsolicited bid to $117 billion in February 2018 after Qualcomm raised its offer for NXP to $44 billion.  In March 2018, U.S. President Donald Trump blocked Broadcom’s $117 billion takeover bid for Qualcomm after concerns were raised in the U.S. government about the potential loss of cellular technology leadership to Chinese companies, if the hostile acquisition was completed. After the presidential order, Broadcom executives said the company was considering other acquisition targets, with cash, that would be smaller and more focused.

The global semiconductor industry has been reshaped by a historic wave of mergers and acquisitions during the past three years, with about 100 M&A agreements being reached between 2015 and the middle of 2018 with the combined value of these transactions being more than $245 billion, based on data collected by IC Insights and contained within its Strategic Reviews database subscription service and in The 2018 McClean Report on the IC Industry.  A record-high $107.3 billion in semiconductor acquisition agreements were announced in 2015.  The second highest total for semiconductor M&A agreements was then reached in 2016 at $99.8 billion.   Semiconductor acquisition announcements reached a total value of $28.3 billion in 2017, which was twice the industry’s annual average of about $12.6 billion in the first half of this decade but significantly less than 2015 and 2016, when M&A was sweeping through the chip industry at historic levels.  In the first six months of 2018, semiconductor acquisition announcements had a total value of about $9.6 billion, based on IC Insights’ running tally of announced M&A deals.

By Walt Custer

2Q’18 Electronic Supply Chain Growth Update

  • Chart 1 is a preliminary estimate of global growth of the electronic supply chain by sector for 2Q’18 vs 2Q’17. Note the strong performance of semiconductors, SEMI capital equipment and passive components.
  • Chart 2 gives preliminary 2Q’18 world electronic equipment growth by type. Global electronic equipment sales rose an estimated 9%+ when consolidated into US dollars in the second quarter of this year compared to the same quarter in 2017.
  • Based on this, data global electronic equipment sales growth appears to have now peaked on a 3/12 growth basis for this present business cycle (Chart 3).

As a caution these charts are based on a combination of actual company financial reports and estimates for companies that have not yet reported their calendar second quarter financial results. A number of large companies have yet to report but these early estimates have historically been close to final growth values.  We will update Chart 1 next month.

Semiconductor Capital Equipment Business Cycle

  • Semiconductor capital equipment sales are historically very volatile, with their growth fluctuating MUCH MORE than electronic equipment (Chart 4). However, both series appear to have peaked on a 3/12 basis for this current cycle.

  • Semiconductors, SEMI capital equipment and Taiwan chip foundry sales all are seeing slower growth. 3/12 values >1 still indicate an expansion but slower growth is indicated.

Supply chain performance in the second half of this year bears careful watching!

Walt Custer of Custer Consulting Group is an analyst focused on the global electronics industry.

Originally published on the SEMI blog.

Amid growing demand for active matrix organic light-emitting diode (AMOLED) panels for smartphones, shipments of flexible AMOLED panels are expected to account for more than 50 percent of total AMOLED panel shipments by 2020.

According to IHS Markit (Nasdaq: INFO), a world leader in critical information, analytics and solutions, shipments of flexible AMOLED panels are expected to reach 335.7 million units by 2020, topping those of rigid AMOLED panels at 315.9 million units. Flexible AMOLED panels are predicted to make up 52.0 percent of total AMOLED panel shipments, up from 38.9 percent in 2018.

“Growth in demand for smartphones with flexible AMOLED panels has accelerated since 2016 as demand increased for curved form or full screen displays,” said Jerry Kang, senior principal analyst of display research at IHS Markit. “Major smartphone brands have been promoting flexible AMOLED screens for their premium products, which allow a differentiated form factor from ones with rigid AMOLED and low-temperature polycrystalline silicon (LTPS) liquid crystal display (LCD) panels.”

Apple has applied flexible AMOLED panels first in 2017 to the iPhone X. It is expected to launch its second phone with a flexible AMOLED panel, slightly larger than the first one, in 2018. Demand for the new iPhone is expected to contribute to boost the shipments of flexible AMOLED panels.

“Another factor is that high-end smartphone brands are now planning to launch foldable applications using flexible AMOLED panels, which is not possible using rigid AMOLED or LTPS LCD panels. Foldable AMOLED panels will be key in changing the demand situation from mobile devices in the foreseeable future,” Kang said.

Shipments of flexible AMOLED panels are expected to reach 157.6 million units in 2018, more than triple compared to 46.5 million units in 2015, with a compound annual growth rate of 50 percent.

According to a new market research report “Optoelectronics Market for Automotive by Devices (LED, Image Sensor, Infrared, Laser Diode, Optocoupler), Application (Position Sensor, Convenience & Climate, Safety, Lighting), Vehicle (PC, CV), EV Type, Aftermarket, and Region – Global Forecast to 2025”, published by MarketsandMarkets, the market is estimated to be USD 3.88 billion in 2018 and is projected to reach a market size of USD 9.80 billion by 2025, growing at a CAGR of 14.13% during the forecast period. The major factors driving the growth of the global Automotive Optoelectronics Market are the increase in sales of luxury and ultra-luxury vehicles and high demand for LEDs lighting and safety application.

The safety application segment is estimated to be the fastest growing market in the Automotive Optoelectronics Market during the forecast period, by application.

The safety segment is estimated to witness the highest growth because of the rising demand for safety features by consumers to enhance the vehicle safety performance. Also, OEMs are offering vehicles equipped with safety features, which in turn would drive the optoelectronics market.

The LED segment is estimated to be the fastest growing market in the Automotive Optoelectronics Market during the forecast period, by devices.

The LED segment is estimated to be the fastest growing segment, by value, of the Automotive Optoelectronics Market during the forecast period. The high demand for aesthetic lighting to improve the comfort and safety inside the vehicle for the occupants is governing the growth of LED segment devices.

Asia Pacific is estimated to be the fastest growing regional market for Automotive Optoelectronics Market.

The Asia Pacific region is projected to be the fastest growing market for automotive optoelectronics during the forecast period. The market growth in the region can be attributed to the rapid growth of the automotive sector in countries such as China, Japan, India, and South Korea. Moreover, the improved lifestyle of consumers and rapid urbanization have boosted the demand for passenger cars and commercial vehicles, thus, driving growth of the Automotive Optoelectronics Market in the region.

The key players in the Automotive Optoelectronics Market are Osram (Germany), Texas (US), Vishay (US), Broadcom (US), Hella (Germany), and Magneti Marelli (Italy).

IC Insights recently released its Mid-Year Update to The McClean Report 2018.  The update includes a revised forecast of the largest and fastest-growing IC product categories this year.  Sales and unit growth rates are shown for each of the 33 IC product categories defined by the World Semiconductor Trade Statistics (WSTS) organization in the Mid-Year Update.

The five largest IC product categories in terms of sales revenue and unit shipments are shown in Figure 1.  With forecast sales of $101.6 billion, (39% growth) the DRAM market is expected to be the largest of all IC product categories in 2018, repeating the ranking it held last year.  If the sales level is achieved, it would mark the first time an individual IC product category has surpassed $100.0 billion in annual sales. The DRAM market is forecast to account for 24% of IC sales in 2018.  The NAND flash market is expected to achieve the second-largest revenue level with total sales of $62.6 billion this year. Taken together, the two memory categories are forecast to account for 38% of the total $428.0 billion IC market in 2018.

Figure 1

For many years, the standard PC/server MPU category topped the list of largest IC product segments, but with ongoing increases in memory average selling prices, the MPU category is expected to slip to the third position in 2018.  In the Mid-Year Update, IC Insights slightly raises its forecast for 2018 sales in the MPU category to show revenues increasing 5% to an all-time high of $50.8 billion, after a 6% increase in 2017 to the current record high of $48.5 billion.  Helping drive sales this year are AI-controlled systems and data-sharing applications over the Internet of Things.  Cloud computing, machine learning, and the expected tidal wave of data traffic coming from connected systems and sensors is also fueling MPU sales growth this year.

Two special purpose logic categories—computer and peripherals, and wireless communications—are forecast to round out the top five largest product categories for 2018.

Four of the five largest categories in terms of unit shipments are forecast to be some type of analog device.  Total analog units are expected to account for 54% of the total 318.1 billion IC shipments forecast to ship this year.  Power management analog devices are projected to account for 22% of total IC units and are forecast to exceed the combined unit shipment total of the next three categories on the list.  As the name implies, power management analog ICs help regulate power usage and to keep ICs and systems running cooler, to manage power usage, and ultimately to help extend battery life—essential qualities for an increasingly mobile and battery-powered world of devices.

By Cherry Sun

Aiming to forge stronger ties between the two technology heavyweights as partners in semiconductor industry innovation, SEMI and CASPA (Chinese American Semiconductor Professional Association) in mid July signed a strategic cooperation agreement to promote industry innovation between Silicon Valley and China. Under the agreement, SEMI and CASPA will work to connect Silicon Valley and China industry resources and encourage greater collaboration.

The agreement, signed at the “SIIP China Innovation and Investment Forum: Innovation at Scale: from IoT, Cloud to AI & ADAS” in Silicon Valley, supports key SEMI principles including free trade, open markets, intellectual property protection, global cooperation and innovation, said SEMI China president Lung Chu.

Brandon Wang, president and chairman of CASPA, and Lung Chu, SEMI China president, sign strategic cooperation agreement.

Speaking at the event attended by more 200 industry executives and visionaries, Chu noted that with 2019 expected to be another record year for fab and equipment investment and the semiconductor on track to reach $500 billion by next year, the time is ripe for greater cooperation between Silicon Valley and China. China and South Korea (Samsung) are driving sharp growth in global semiconductor equipment sales.

The global artificial intelligence (AI) industry is taking shape with companies ranging from startups and multinationals to semiconductor and Internet providers investing in AI research and development as China and the United States make the heaviest AI investments of all regions. A plethora of AI applications enabled by 5G will spur even greater IC demand.

Opening the event, SEMI president and CEO Ajit Manocha noted that technologies such as AI, Internet of Things (IoT) will transform our lives and that semiconductor industry leaders must cultivate a new generation of innovators to ensure continued industry growth.

Mark Ding, CEO of Shanghai Industrial Technology Research Institute (SITRI), said China is well-positioned to help goose semiconductor industry growth with its ample capital, lower capital expenditures and strong local market. He also noted that three keys to innovation are platforms, talent and capital.

Dr. Naveed Shervani, CEO of SiFive, the first fabless semiconductor company to build customized silicon based on the free and open RISC-V instruction set architecture, proposed goals for future semiconductor industry growth including reducing IC and IP costs and cutting design time.

Stuart Ching, VP of KULR Technology, a provider of thermal management technologies, pointed to the importance of lithium batteries. Those with higher energy density and lower cost would promote a range of power applications for mobile electronic equipment and lead to the mass production of solid-state batteries between 2023 and 2025.

Originally published on the SEMI blog.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $117.9 billion during the second quarter of 2018, an increase of 6.0 percent over the previous quarter and 20.5 percent more than the second quarter of 2017. Global sales for the month of June 2018 reached $39.3 billion, an uptick of 1.5 percent over last month’s total of $38.7 billion, and a surge of 20.5 percent compared to the June 2017 total of $32.6 billion. Cumulatively, year-to-date sales during the first half of 2018 were 20.4 percent higher than they were at the same point in 2017. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Halfway through 2018, the global semiconductor industry continues to post impressive sales totals, notching its highest-ever quarterly sales in Q2 and record monthly sales in June,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Global sales have increased year-to-year by more than 20 percent for 15 consecutive months, and sales of every major product category increased year-to-year in June. Sales into the Americas market continue to be strong, with year-to-date totals more than 30 percent higher than at the same point last year.”

Regionally, sales increased compared to June 2017 in China (30.7 percent), the Americas (26.7 percent), Europe (15.9 percent), Japan (14.0 percent), and Asia Pacific/All Other (8.6 percent). Sales also were up compared to last month in China (3.2 percent), Japan (1.3 percent), the Americas (1.2 percent), and Asia Pacific/All Other (0.5 percent), but down slightly in Europe (-0.8 percent).

For comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, consider purchasing the WSTS Subscription Package. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2018 SIA Databook.

Entegris, Inc. (NASDAQ: ENTG) today released the next generation EUV 1010 Reticle Pod for high-volume IC manufacturing using extreme ultraviolet (EUV) lithography. Developed in close collaboration with ASML, one of the world’s largest manufacturers of chip-making equipment, Entegris’s EUV 1010 is the first to be qualified by ASML for use in the NXE:3400B and beyond.

As the semiconductor industry begins ramping EUV lithography for the high-volume manufacturing (HVM) of advanced technology nodes, keeping EUV reticles defect-free is more demanding than ever.  Entegris’s EUV 1010 Reticle Pod is now fully qualified by ASML for their latest generation scanner having demonstrated outstanding protection of the EUV reticles, including against the most critical particle challenges.  As a result, Entegris’s EUV 1010 enables customers to safely transition to smaller and smaller line widths, as needed for the most advanced lithography processes.

To achieve these levels of performance within the NXE:3400B scanner, Entegris developed new technologies for contacting the reticles and controlling the environment. “The Entegris EUV 1010 represents a significant breakthrough in improving defectivity so customers implementing HVM for advance technology nodes can focus on increasing efficiency and throughput,” said Paul Magoon, vice president of wafer and reticle handing for Entegris. “Development and testing with ASML ensures that EUV 1010 has been qualified for the most advanced EUV scanner available.”

Entegris is ISO 9001 certified and has manufacturing, customer service and/or research facilities in the United States, China, France, Germany, Israel, Japan, Malaysia, Singapore, South Korea and Taiwan.

By Ajit Manocha

At a Glance

“Software is eating the world … and AI is eating software.” Amir Husain, author of The Sentient Machine, at SEMICON West 2018

We’re living in a digital world where semiconductors have been taken for granted. But, Artificial Intelligence (AI) is changing everything – and bringing semiconductors back into the deserved spotlight. AI’s potential market of hundreds of zettabytes and trillions of dollars relies on new semiconductor architectures and compute platforms. Making these AI semiconductor engines will require a wildly innovative range of new materials, equipment, and design methodologies.

Moore’s Law carried us the past 50-plus years and as we’re now stepping into the dawn of AI’s potential, we can see that the coming Cognitive Era will drive its own exponential growth curve. This is great for the world – virtually every industry will be transformed, and people’s lives will get better – and it’s fantastic for our industry. This truly is the very best time to be working in our industry. I’m excited to be at SEMI in this inflection period and at the center of the collaborative platforms that bring the electronics manufacturing supply chain together to Connect, Collaborate, and Innovate to realize the new Cognitive Era. I invite you to partner with SEMI in building the foundation for the Cognitive Era to increase the growth and prosperity of our industry.

The World Wakes Up

Our lives have become digital. An Amazon Echo wakes us up and answers questions about the weather and traffic. Google Maps tells us the best way to get to a meeting. Yelp finds the best nearby restaurant. A Tweet now even informs us of the latest change in government policy. It’s a digital world that we live in – and the world already takes it for granted.

We in the industry know that the digital world only works because of the semiconductors we make and because of our integrated electronics manufacturing supply chain. We make the materials and equipment that, in turn, make the chips that become the beating hearts of the digital economy.

But, semiconductors have been largely invisible – hidden away under and inside a smart speaker, locked deep within a phone, buried in data centers and out of view. Meanwhile, the internet companies like Google, Amazon, Alibaba, Tencent, and Facebook stole the meaning of “Tech” and were given most of the credit for our digital world.

But, finally, things are changing – it’s all coming back to semiconductors!

AI Changing Everything

Over $400B in semiconductors were sold in 2017 – those unseen chips like hearts beating away in Apple computers, in mobile phones for online shopping and social media, and in televisions showing Netflix. Now internet companies Alphabet, Alibaba, Amazon, Facebook, Microsoft and others are rushing to develop their own chips. Silicon is back in the Silicon Valley! Hardware is, once again, the place to be. Why? We are now entering the epoch of Artificial Intelligence (AI) – and semiconductors, and new compute architectures, are the key to AI. At this moment, hardware, not software, is the AI enabler to make leaps in performance and to usher in new architectures to become brain-like with neural networks.

Beyond major AI chip investments like Google’s (Alphabet) $300M+ program to develop its Tensor Processing Unit (TPU) chip, there’s been a surge in new chip startups and VC funding. Last year, VCs (with corporate investors) invested more than $1.5B in new AI chip startups – doubling the rate from the prior year.

After years of consolidation, there is, as some have described, a “Cambrian Explosion” of semiconductor startups with names like Cerebras, Graphcore, Wave Computing, Horizon Robotics, Cambricon Technologies, and DeePhi from the US, Europe, and China. Cambricon (China) has already become the first AI chip “Unicorn” (startup valued $1B+) with a valuation of more than $2.5B after their recent Round B financing. It’s a new silicon world and a new race, as Cade Metz (The New York Times, 1/14/2018) said, “… everyone is starting from the same place: the beginning of a new market.”

Winning at AI is very big business. John Kelly, SVP Cognitive Solutions and Research at IBM, in his SEMICON West keynote earlier this month, said, we’re in the era of Artificial Intelligence with more than a $2T opportunity for AI decision making support on top of the $1.5T IT business in 2025. McKinsey estimates deep learning could account for between $3.5T and $5.8T in annual value.

As John Kelly presented, AI will transform entire industries – not just our personal devices and lives. The $2T AI decision making support opportunity in 2025 is projected to transform the major economy industries as follows:

Moore’s Law describes the exponential increase in the number of transistors per area that has driven growth, and has been the engine for digital innovation, through first the computer era and then the mobility era and now into the dawn of the data era. While the Dennard scaling approach to Moore’s Law may be slowing, the data-centric era continues to drive demand and the industry continues to find new ways to pack more transistors into less volume. Chip sales are forecast to pass $0.5T in 2019 and I predict they will surpass $1T before 2030.

It turns out the Smart is not enough – we must reach “Beyond Smart.”

Beyond Smart – The Cognitive Era

As we move further into the data-centric age, we see it is more than Big Data and AI, it is, instead, the dawn of a wholly new cognitive era. SEMICON West’s 2018 theme was “Beyond Smart” because we are standing at the inflection from sensors triggering actions (smart) to systems that learn and make decisions (cognitive). Devices are moving “beyond smart” to being “cognitive or aware.” Gary Dickerson (CEO of Applied Materials) at SEMICON West said, “… we are in the beginning of the first inning of a major inflection.”

Even in the early dawn of the cognitive era, the volume of data is simply astonishing. In the last 24 months, we create more than 90% of all historic digital data. By 2025 we expect AI to generate 160 zettabytes – with 80% of that unstructured data. Moore’s Law is an exponential, but as John Kelly points out, AI’s deep learning is driving its own exponential with performance/watt increasing 2.5X each year.

AI was the focus of SEMICON West’s Day 1 keynotes – and a common theme through much of the events programming. There was a common language in the keynotes by John Kelly, Gary Dickerson, and William Dally (Chief Scientist and SVP of Research NVIDIA), and others. We heard how AI is based on data, algorithms, and compute. I was inspired by these talks and for the potential for AI and the cognitive era.

Looking ahead, I believe data + algorithms + compute + machine learning = knowledge and cognition. My vision is that this AI knowledge and cognition will be the catalyst to create new modes of systems transformations that will usher in the next Industrial Revolution. As the 4th Industrial Revolution becomes a reality, I look forward to working with others in SEMI Think Tanks to imagine the 5th Industrial Revolution – and its opportunities for our industry. I believe that it will make our lives better, healthier, more prosperous, and more fulfilled.

A sentiment shared by many speakers at SEMICON West was – this is the most exciting time to be in the semiconductor manufacturing industry. Many wished they were just now starting in the industry as this is the most interesting inflection and transformation ever. There is a flood of new architectures, new materials, new equipment, new processes – and a new system-based design approach to enable the Cognitive Era. We, in hardware manufacturing, are in the driver’s seat for this incredible ride.

SEMI is working to help its members speed their time to better business results – and to take full advantage of the Cognitive Era and AI opportunity. At SEMICON West 2018, SEMI provided a broad and deep slate of program education and spotlighted AI expertise across the electronics manufacturing supply. In case you missed it, SEMI also provided

  • Seven keynotes and dozens of expert panelists
  • Semiconductor venture funding program – problems and solutions for the ecosystem
  • SEMI Smart Workforce Pavilion with over 600 students registered to learn about the industry
  • Smart Pavilions including Smart Manufacturing and Smart Automotive

SEMI highlighted the five key vertical application platforms where our industry needs to collaborate across the full supply chain and streamline the supply chain for efficiency. The five are: IoT, Smart Transportation, Smart Manufacturing, Smart MedTech, and Smart Data. These verticals drive huge business potential and are just one of the reasons that SEMICON West has become the gathering place of the extended electronics manufacturing supply chain.

With SEMI, together we can realize the potential of the coming Cognitive Era. SEMI members can advance the industry with SEMI collective action in Workforce Development, Advocacy (public policy and regulatory), Standards to synchronize the industry, and in the many SEMI technology communities and special interest groups – to increase the global industry’s rate of growth and overall level of prosperity. For more information, please visit www.semi.org; to become a member, please visit http://www.semi.org/en/become-member-join-semi.

Ajit Manocha is President and CEO of SEMI

Originally published on the SEMI blog.