Tag Archives: letter-pulse-top

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, this week released the following statement regarding the Trump Administration’s announcement on tariffs on products imported from China.

“While the U.S. semiconductor industry shares the Trump Administration’s concerns about China’s forced technology transfer and intellectual property (IP) practices, the proposed imposition of tariffs on semiconductors from China, most of which are actually researched, designed, and manufactured in the U.S., is counterproductive and fails to address the serious IP and industrial policy issues in China. We look forward to working with the Administration to explain why imposing tariffs on our products would be harmful to our competitiveness and does not address our challenges with China.”

SIA seeks to strengthen U.S. leadership of semiconductor manufacturing, design, and research by working with Congress, the Administration and other key industry stakeholders to encourage policies and regulations that fuel innovation, propel business and drive international competition. Learn more at www.semiconductors.org.

The global demand for automotive display systems is expected to continue a strong growth path in 2018, according to recent analysis from business information provider IHS Markit (Nasdaq: INFO).

According to the latest Automotive Display Systems Forecasts , OEM production of the three primary automotive display systems — instrument cluster, center stack and head-up display systems — is expected to reach 118.5 million units globally by the end of 2018, representing a 9 percent growth in volume over 2017. While the volume is growing significantly, the value of the market is growing even faster. In 2018, IHS Markit estimates just these three display systems to bring in $13.5 billion in tier-one supplier revenue, representing a 17 percent growth over 2017.

“In the quest for differentiation, automakers are using displays to transform vehicle interiors into a futuristic digital user experience with more pixels in front of consumers than ever before,” said Brian Rhodes, automotive user experience analyst at IHS Markit. “While high resolution, large displays previously were reserved for luxury applications only, declining average selling prices and increasing consumer demand and production volumes are enabling mass-market car brands to standardize displays that were optional only a few years ago.”

Demand for more displays in automotive applications is strong, but a major enabler to this growth comes from the supply chain. Large global display panel manufacturers in Asia have recently invested heavily in automotive display panel production in order to continue sales growth as display markets in other areas have slowed, such as smartphones and tablet PCs.

According to the latest Automotive Display Market Tracker by IHS Markit, global shipments of automotive display panels are set to increase by 11 percent reaching 164 million units in 2018, following an equally strong 9 percent growth in 2017, which had reached 148 million units.

These two IHS Markit forecasts are fundamentally linked, but also differ in that the shipment forecasts include additional volumes, applications and factors that the current OEM production-side forecasts do not.

“As vehicles adopt more technology, more new display use-cases become viable and new display applications are born,” said Hiroshi Hayase, senior director of small and medium displays at IHS Markit. “In addition to the strong growth in the primary display market, we also expect strong growth in display mirrors, rear seat entertainment and even in aftermarket systems as buyers clamor for more digital interfaces.”

As an example, global display shipments for rearview mirror applications are forecast to soar 52 percent in 2018 to 1.6 million units, beyond the 1.0-million-unit mark set just last year. While automakers are keenly aware of the growing demand in this sector, the aftermarket mirror manufacturers are responding quicker to the trend and represent a majority of today’s global production.

The IHS Markit Automotive Display Systems Forecasts provide customers with demand-side monthly updates to automotive instrument cluster, center stack display and head-up display system forecasts, tracked globally to the segment, OEM, brand, model, platform, and program. Coverage of tier-one suppliers and key technical characteristics like display system size, type, touch, orientation and more enabling a precise view of the volumes, technology and revenue market shares in the industry are also included. Meanwhile, the Automotive Display Market Tracker by IHS Markit contains supply-side quarterly updates of automotive display shipments and revenues by application, size, resolution and technology. It also provides supply chain information between tier-two display suppliers and the rest of the supply chain.

Cautious optimism


June 15, 2018

By Walt Custer

Updated global GDP forecast

The World Bank just updated its multiyear forecast for GDP growth both globally and by country (Chart 1).

It noted: “Despite recent softening, global economic growth will remain robust at 3.1 percent in 2018 before slowing gradually over the next two years, as advanced-economy growth decelerates and the recovery in major commodity-exporting emerging market and developing economies levels off.

“This outlook is subject to considerable downside risks. The possibility of disorderly financial market volatility has increased, and the vulnerability of some emerging market and developing economies to such disruption has risen. Trade protectionist sentiment has also mounted, while policy uncertainty and geopolitical risks remain elevated.”

Chart 1

Semiconductor growth outlook strong (Chart 2)

The WSTS updated its world semiconductor shipment forecast. This new forecast (endorsed by SIA) projects worldwide semiconductor sales will be a record $463 billion in 2018, a 12.4 percent increase from 2017. WSTS projects year-to-year increases across all regional markets for 2018.

Chart 2

This revised semiconductor forecast coupled with very robust global semiconductor capital equipment sales (Chart 3) paint a positive outlook for 2018.

Chart 3

Very strong end market growth in first quarter (Chart 4)

Based upon the combined 1Q’18 financial reports of 213 large, global OEMs, electronic equipment sales (consolidated into U.S. dollars) increased globally an estimated (and very robust) 10.6 percent in 1Q’18 vs. 1Q’17. While this world growth result is very heartening it was significantly inflated by exchange rate effects as stronger non-dollar currencies were converted into weaker dollars.

Chart 4

Looking at world electronic equipment sales consolidated into both dollars and euros, 1Q’18 growth rates are MUCH different (Chart 5). 1Q’18 vs.1Q’17 electronic equipment sales grew 10.6 percent in dollars but declined 4.3 percent in euros!

Chart 5

Certainly the first quarter was strong globally but the currency chosen for analysis can have a BIG effect.

U.S. supply chain expansion continues

Looking at the U.S. market (in dollars – therefore not distorted by exchange rates) domestic electronic equipment orders rose 6.7 percent in February-April 2018 versus the same three-month period in 2017. The U.S. electronic industry is doing reasonably well at present.

www.census.gov/manufacturing/m3/

Expect the recent exchange rate based amplification of dollar denominated global growth to taper off quickly.

Keep a careful watch on the geopolitical situation.

Walt Custer of Custer Consulting Group is an analyst focused on the global electronics industry.

Originally published on the SEMI blog.

IC Insights recently released its Update to its 2018 IC Market Drivers Report.  The Update includes IC Insights’ latest outlooks on the smartphone, automotive, PC/tablet and Internet of Things (IoT) markets.

The $93.9 billion top-line projection for total IoT systems sales in 2018 remains unchanged from the original MD18 forecast released in November 2017, but dollar volumes in end-use categories were adjusted due to slight changes in expected growth rates and also because $2.5 billion in revenues were reclassified and moved from the large connected cities segment to the broad-ranging Industrial Internet group, which covers most commercial applications, including medical.  IoT systems revenues for industrial Internet applications are now forecast to grow 17.7% in 2018 to $35.9 billion, while the connected cities segment—covering government-funded infrastructure, “smart” roadways and bridges, streetlights, power grids and other utilities, public-safety video security networks, environmental and weather monitors, and other systems—is expected to increase 7.0% this year to $38.8 billion.

The strongest growth in 2018 is still expected to occur in the IoT-connected vehicle category, which is forecast to rise 21.6% this year to $4.5 billion.  IoT sales generated by connected home systems are forecast to grow 16.0% in 2018 to $2.9 billion, while the wearable category (including Internet-enabled smartwatches and medical units) is expected to rise 12.4% to $11.8 billion this year.

The report’s update lowers the projected 2016-2021 sales growth rate in three IoT end-use market categories with wearable systems going from a CAGR of 12.8% to 11.9%; connected homes applications dropping from a CAGR of 16.8% to 14.8%; and the industrial Internet segment being eased back from a CAGR of 18.7% to 17.8% in the five-year period.  The sales growth forecast in connected vehicle systems remains unchanged at a strong CAGR of 22.9% between 2016 and 2021. Automotive Internet applications are accelerating as carmakers race each other to add more automated controls and driver-assist features for greater safety and create vehicles that are aware of their locations, road conditions, and changes in weather as well as communicate with each other.   The five-year growth forecast in the connected cities category has been raised slightly, going from a CAGR of 6.3% to a 6.5% annual rate of increase in the MD18 update (Figure 1).

Figure 1

 

The semiconductor industry is nearing a third consecutive year of record equipment spending with projected growth of 14 percent (YOY) in 2018 and 9 percent in 2019, a mark that would extend the streak to a historic fourth consecutive growth year, according to the latest update of the World Fab Forecast report published by SEMI. Over the semiconductor industry’s 71-year history, only once before – in the mid 1990s – has the industry logged four consecutive years of equipment spending growth.

Korea and China are leading the growth, with Samsung dominating global spending and ascendant China on a fast, steep rise, surging ahead of all other markets. See Figure 1.

Figure 1 equipment spending by region (includes new and refurbished)

While Samsung is expected to reduce equipment investments in 2018, the company still accounts for a dominant 70 percent of all investment in Korea. At the same time, SK Hynix is increasing its equipment spending in Korea.

China’s equipment spending is forecast to increase 65 percent in 2018 and 57 percent in 2019.  Notably, 58 percent of investments in China in 2018 and 56 percent in 2019 stem from companies with headquarters in other regions such as Intel, SK Hynix, TSMC, Samsung, and GLOBALFOUNDRIES. Domestic, Chinese-owned companies – backed by large government initiatives – are building a considerable number of new fabs that will start equipping in 2018. The companies are expected to double their equipment investments in 2018 and again in 2019.

Other regions are also ramping up investments. Japan is increasing equipment spending by 60 percent in 2018, with the largest increases by Toshiba, Sony, Renesas and Micron.

The Europe and Mideastern region will boost investments by 12 percent in 2018, with Intel, GLOBALFOUNDRIES, Infineon and STMicroelectronics the largest contributors.

Southeast Asia will boost investments by more than 30 percent in 2018, although total spending is proportionately smaller than in other regions owing to its size. The main contributors are Micron, Infineon and GLOBALFOUNDRIES, though companies including OSRAM and ams are also increasing investments.

The SEMI World Fab Forecast, which also includes information on other companies, covers data and predictions through the end of 2019, including milestones, detailed investments by quarter, product types, technology nodes and capacities down to fab and project level.

Learn more about the SEMI fab databases at:

www.semi.org/en/MarketInfo/FabDatabase and www.youtube.com/user/SEMImktstats.

Yole releases today its annual MEMS technology & market analysis: Status of the MEMS Industry. This 2018 edition presents the MEMS device market along with key industry changes and trends. The market research and strategy consulting company is following the MEMS industry for a while, tracking more than 200 applications and 300 MEMS companies. This report is a significant combination all of these applications into more than 15 major MEMS devices. This 15th version includes: global macro economical megatrends and their impact on MEMS and sensors business – MEMS and sensors market forecast – manufacturers rankings – analysis by device and application.

“MEMS market will experience a 17.5% growth in value between 2018 and 2023, to reach US$ 31 billion at the end of the period,” reported Dr. Eric Mounier, Principal Analyst, MEMS & Photonics, at Yole Développement (Yole). “The consumer market segment is showing the biggest share, with more than 50% . The good news is that almost all MEMS devices will contribute to this growth.”

 

However, the RF industry is still playing a key role in the MEMS industry development. Excluding RF, the MEMS market will grow at 9% over 2018 – 2023. With RF MEMS devices, CAGR reaches 17.5% during the same period. Driven by the complexities associated with the move to 5G and the higher number of bands it brings, there is an increasing demand for RF filters in 4G/5G, making RF MEMS (mainly BAW filters) the largest-growing MEMS segment.

Amongst the numerous existing MEMS devices, inkjet heads will grow, with the consumer market representing more than 70% of printhead market demand. This market recorded its first signs of recovery in the first half of 2017, a trend confirmed in the second half of the year. This recovery was noticed both in disposable and fixed printheads. Most consumer players show discernable growth: for example, HP has recorded a 2% growth in consumer printer revenue since 2016, and Canon has confirmed a progression in sales for inkjet printers, with strong demand in Asia.

Numerous pressure sensor applications also contribute to market expansion. Indeed, it is interesting to see that, although it is one of the oldest MEMS technologies, pressure sensor keeps growing. In automotive, pressure sensors have the highest number of applications, with many advantages such resistance to toxic exhaust gas and harsh environments, higher accuracy, and the development of intelligent tires that deliver more information on tire status (especially for future autonomous cars). For consumer, mobiles and smartphones still account for 90% of pressure sensor sales, and cost reduction is the priority vs. size reduction because size is already very small. Although there are no big “killer” applications expected in the future, new applications are emerging: smart homes, electronic cigarette, drones, and wearables, to name several. (1)

Then after, are coming the MEMS microphones. Such MEMS components have been in the spotlight for a long time and have expressed one of the highest CAGRs of any MEMS technology over the last five years. “In the range of US$105 million in 2008, the MEMS microphone market was worth US$402 million in 2012 and reached the US$1 billion milestone in 2016”, asserts Guillaume Girardin, Director of the Photonics, Sensing and Display division at Yole. “Currently, almost 4.5 billion units are shipped annually. The main application is mobile phones, which comprise 85% of shipment volumes, in a consumer market that makes up 98% of the total shipment volume. Tablets and PCs/laptops take second and third place, with 5% and 3.2% of total shipment volumes, respectively.” (2)

Step by step, the uncooled IR imager market keeps growing. This is due to a continuous price decrease over the last few years stemming from new technologies such as WLP and silicon lenses, as well as increasing acceptance from customers. As prices continue falling, we believe the market for uncooled IR imaging technology will continue finding new applications in the coming years. More results will be detailed during the 3rd Executive Infrared Imaging Forum, powered by Yole and taking place on September 7 in Shenzhen, China: Full program

All MEMS market segments including inertial, optical MEMS, microfluidics, new micro components and more … are deeply analyzed in Yole’s annual MEMS report, Status of the MEMS Industry. A full description of this technology & market analysis is available in the MEMS & Sensor reports section, on i-micronews.com.

In this new edition, Yole’s team is also analyzing the market positioning of the MEMS device manufacturers and their annual revenue. What is the status of the 2017 Top MEMS manufacturers? 
• In 2017, the biggest surprise was Broadcom becoming the #1 MEMS player. As growth continues for RF, driven by an increasing number of filters/phones and by the front-end module’s increasing value, it is likely that RF players will still dominate the top 2018 rankings. 
• In parallel, most MEMS players showed positive growth in 2016 – 2017. Established players, Robert Bosch, STMicroelectronics and HP were “shaken” by Broadcom’s growth but still performed well. For example, the German leader, Robert Bosch enjoyed growth of approximately US$100 million. Inkjet heads players also had a good overall performance compared to previous years. In addition, the company, SiTime displayed the most impressive growth, exceeding 100%. Other MEMS players posting significant growth are: FormFactor, benefiting from the semiconductor business’s excellent health; and ULIS, with uncooled IR imaging still growing annually into multiple applications including consumer – thermography, firefighting, night vision, smartphones, drones, and military.

In 2016, the top 30 MEMS players totaled more than US$9,238 million. In 2017, that number increased to US$9,881 million.

 

Researchers have demonstrated large-scale fabrication of a new type of transparent conductive electrode film based on nanopatterned silver. Smartphone touch screens and flat panel televisions use transparent electrodes to detect touch and to quickly switch the color of each pixel. Because silver is less brittle and more chemically resistant than materials currently used to make these electrodes, the new films could offer a high-performance and long-lasting option for use with flexible screens and electronics. The silver-based films could also enable flexible solar cells for installation on windows, roofs and even personal devices.

In the journal Optical Materials Express, the researchers report fabrication of a transparent conducting thin-film on glass discs 10 centimeters in diameter. Based on theoretical estimations that matched closely with experimental measurements, they calculate that the thin-film electrodes could perform significantly better than those used for existing flexible displays and touch screens.

“The approach we used for fabrication is highly reproducible and creates a chemically stable configuration with a tunable tradeoff between transparency and conductive properties,” said the paper’s first author, Jes Linnet from the University of Southern Denmark. “This means that if a device needs higher transparency but less conductivity, the film can be made to accommodate by changing the thickness of the film.”

The researchers used an approach called colloidal lithography to create a silver nanopattern that conducts electricity while letting light through the holes. The new transparent electrode films could be useful for solar cells as well as flexible displays and touch screens. Credit: Jes Linnet, University of Southern Denmark

Finding a flexible alternative

Most of today’s transparent electrodes are made of indium tin oxide (ITO), which can exhibit up to 92 percent transparency — comparable to glass. Although highly transparent, ITO thin films must be processed carefully to achieve reproducible performance and are too brittle to use with flexible electronics or displays. Researchers are seeking alternatives to ITO because of these drawbacks.

The anti-corrosive nature of noble metals such as gold, silver and platinum makes them promising ITO alternatives for creating long-lasting, chemically resistant electrodes that could be used with flexible substrates. However, until now, noble metal transparent conductive films have suffered from high surface roughness, which can degrade performance because the interface between the film and other layers isn’t flat. Transparent conductive films can also be made using carbon nanotubes, but these films don’t currently exhibit high enough conductance for all applications and tend to also suffer from surface roughness due to the nanotubes stacking on top of each other.

In the new study, the researchers used an approach called colloidal lithography to create transparent conductive silver thin films. They first created a masking layer, or template, by coating a 10-centimeter wafer with a single layer of evenly sized, close-packed plastic nanoparticles. The researchers placed these coated wafers into a plasma oven to shrink the size of all the particles evenly. When they deposited a thin film of silver onto the masking layer, the silver entered the spaces between the particles. They then dissolved the particles, leaving a precise pattern of honeycomb-like holes that allow light to pass through, producing an electrically conductive and optically transparent film.

Balancing transparency and conductivity

The researchers demonstrated that their large-scale fabrication method can be used to create silver transparent electrodes with as much as 80 percent transmittance while keeping electrical sheet resistance below 10 ohms per square – about a tenth of what has been reported for carbon-nanotube-based films with the equivalent transparency. The lower the electrical resistance, the better the electrodes are at conducting an electrical charge.

“The most novel aspect of our work is that we accounted for both the transmission properties and the conductance properties of this thin film using theoretical analysis that correlated well with measured results,” said Linnet. “Fabrication problems typically make it hard to get the best theoretical performance from a new material. We decided to report what we encountered experimentally and postulate remedies so that this information could be used in the future to avoid or minimize problems that may affect performance.”

The researchers say that their findings show that colloidal lithography can be used to fabricate transparent conductive thin films that are chemically stable and could be useful for a variety of applications.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $37.6 billion for the month of April 2018, an increase of 20.2 percent from the April 2017 total of $31.3 billion and 1.4 percent more than last month’s total of $37.1 billion. Monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average. Additionally, a newly released WSTS industry forecast projects annual global market growth of 12.4 percent in 2018 and 4.4 percent in 2019.

“The global semiconductor industry has posted consistently strong sales so far in 2018, and the global market has now experienced year-to-year growth of greater than 20 percent for 13 consecutive months,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Although boosted in part by impressive growth in the memory market, sales of non-memory products also grew by double digits in April on a year-to-year basis, and all major regional markets posted double-digit year-to-year gains. The global market is projected to experience significant annual growth this year, with more modest growth expected next year.”

Regionally, year-to-year sales increased in the Americas (34.1 percent), China (22.1 percent), Europe(21.4 percent), Japan (14.6 percent), and Asia Pacific/All Other (10.2 percent). Compared with last month, sales were up in China (3.2 percent), Japan (2.7 percent), Europe (1.4 percent), and the Americas (0.8 percent), but down slightly in Asia Pacific/All Other (-0.8 percent).

Additionally, SIA today endorsed the WSTS Spring 2018 global semiconductor sales forecast, which projects the industry’s worldwide sales will be $463.4 billion in 2018. This would mark the industry’s highest-ever annual sales, a 12.4 percent increase from the 2017 sales total. WSTS projects year-to-year increases across all regional markets for 2018: the Americas (14.0 percent), Europe (13.4 percent), Asia Pacific (including China) (12.3 percent), and Japan (8.6 percent). In 2019, growth in the semiconductor market is expected to moderate, with sales increases of between 4-5 percent expected across each of the regions. WSTS tabulates its semi-annual industry forecast by convening an extensive group of global semiconductor companies that provide accurate and timely indicators of semiconductor trends.

For comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, consider purchasing the WSTS Subscription Package. For information about the global semiconductor industry and market, check out SIA’s free 2018 Factbook.

Apr 2018

Billions

Month-to-Month Sales                              

Market

Last Month

Current Month

% Change

Americas

8.10

8.16

0.8%

Europe

3.58

3.63

1.4%

Japan

3.21

3.30

2.7%

China

11.98

12.36

3.2%

Asia Pacific/All Other

10.23

10.15

-0.8%

Total

37.09

37.59

1.4%

Year-to-Year Sales

Market

Last Year

Current Month

% Change

Americas

6.08

8.16

34.1%

Europe

2.99

3.63

21.4%

Japan

2.88

3.30

14.6%

China

10.12

12.36

22.1%

Asia Pacific/All Other

9.21

10.15

10.2%

Total

31.28

37.59

20.2%

Three-Month-Moving Average Sales

Market

Nov/Dec/Jan

Feb/Mar/Apr

% Change

Americas

8.63

8.16

-5.5%

Europe

3.40

3.63

6.6%

Japan

3.21

3.30

2.8%

China

12.01

12.36

2.9%

Asia Pacific/All Other

10.35

10.15

-1.9%

Total

37.60

37.59

0.0%

Worldwide industrial semiconductor revenues grew by 11.8 percent year over year, reaching $49.1 billion in 2017, according to the latest analysis from IHS Markit (Nasdaq: INFO). Industrial electronics equipment demand was broad-based, with continued growth in commercial and military aircraft, LED lighting, digital signage, digital video surveillance, climate control, smart meters, traction, photovoltaic (PV) inverters, human machine interface and various medical electronics like cardiac equipment, hearing aids, endoscopy and imaging systems. The industry is expected to grow at a compound annual growth rate (CAGR) of 7.1 percent through 2022.

Optical semiconductors delivered excellent performance, due to the continued strength of the general LED lighting market. Power discretes demand has ramped up in industrial motor drives, EV chargers, PV inverters, traction and lighting equipment. General purpose analog has a strong five-year growth in various industrial markets, especially in factory automation, power and energy, and lighting. Microcontrollers (MCUs) are also projected to experience broad-based growth in the long term, thanks to advances in power efficiency and integration features.

“The resilient economy in the United States, and strong demand in China, carried the lion’s share of industrial equipment demand in 2017,” said Robbie Galoso, associate director and principal analyst, industrial semiconductors, for IHS Markit. “A European resurgence also provided a strong tailwind for semiconductor growth.”

Global industrial semiconductor market share rankings

Strategic acquisitions continued to play a major role in shaping the overall semiconductor market rankings in key industrial semiconductor segments. All the following top 10 industrial semiconductor suppliers achieved revenue growth in 2017:

  1. Texas Instruments (TI) maintained its position as the largest industrial semiconductor supplier in 2017.
  2. The acquisition of Linear Technology catapulted Analog Devices into second position.  The combined Analog Devices and Linear Technology company generated $2.8 billion in industrial revenue in 2017. This acquisition boosted ADI’s industrial market shares in diversified segments within factory automation, military aerospace, video surveillance, test and measurement, medical, and power and energy applications.
  3. Intel ranked third, as the company’s Internet of Things (IoT) division continued to generate double-digit revenue growth attributed to innovation and strength in its factory automation, video surveillance and medical segments. Growth was also aided by the proliferation of smart and connected devices and a tremendous uplift in data analytics.
  4. Ranking fourth, Infineon’s strong revenue growth continued to be led by industrial applications, especially in factory automation, traction and various power and energy segments like PV, electric vehicle chargers and power supplies, where its leading discrete and power management devices are used.
  5. In fifth position, STMicroelectronics solid industrial revenue stream stems from a variety of applications, including factory and building automation, where its MCU, analog and discrete components are used.
  6. Micron’s organic revenue from industrial businesses continued to flourish in 2017, pushing the company into sixth place, driven by dynamic random-access memory (DRAM) growth in industrial IoT (IIoT) markets, spanning factory automation, video surveillance and transportation.
  7. Toshiba ranked seventh, with industrial electronics revenue growing to $1.5 billion in 2017. Growth was driven by power transistor discretes, MCU, optical and logic integrated circuit (IC) solutions in manufacturing and process automation, power and energy, and building and home control.
  8. Microchip Technology ranked eighth, and its revenue growth was primarily supported by MCU solutions in manufacturing and process automation, power and energy, and building and home control.
  9. ON Semiconductor was ranked ninth in 2017, driven by manufacturing and process automation, including machine vision, power and energy, building automation and hearing aids and other medical devices.
  10. NXP ranked tenth in the industrial market, with its strong presence in manufacturing and process automation, building and home control, medical electronics and other industrial applications.

Although not part of the top 10 ranking, China’s massive investments in LED manufacturing were especially noteworthy. Chinese firm MLS rose from 18th to 13th place, after posting 50 percent revenue growth and reaching $1 billion in 2017. MLS beat out other leading general lighting LEDs suppliers Nichia, Osram and Cree.

Applied Materials, Inc. today announced a breakthrough in materials engineering that accelerates chip performance in the big data and AI era.

In the past, classic Moore’s Law scaling of a small number of easy-to-integrate materials simultaneously improved chip performance, power and area/cost (PPAC). Today, materials such as tungsten and copper are no longer scalable beyond the 10nm foundry node because their electrical performance has reached physical limits for transistor contacts and local interconnects. This has created a major bottleneck in achieving the full performance potential of FinFET transistors. Cobalt removes this bottleneck but also requires a change in process system strategy. As the industry scales structures to extreme dimensions, the materials behave differently and must be systematically engineered at the atomic scale, often under vacuum.

To enable the use of cobalt as a new conducting material in the transistor contact and interconnect, Applied has combined several materials engineering steps – pre-clean, PVD, ALD and CVD – on the Endura® platform. Moreover, Applied has defined an integrated cobalt suite that includes anneal on the Producer® platform, planarization on the Reflexion® LK Prime CMP platform and e-beam inspection on the PROVision platform. Customers can use this proven, Integrated Materials Solution to speed time-to-market and increase chip performance at the 7nm foundry node and beyond.

“Five years ago, Applied anticipated an inflection in the transistor contact and interconnect, and we began developing an alternative materials solution that could take us beyond the 10nm node,” said Dr. Prabu Raja, senior vice president of Applied’s Semiconductor Products Group. “Applied brought together its experts in chemistry, physics, engineering and data science to explore the broad portfolio of Applied’s technologies and create a breakthrough Integrated Materials Solution for the industry. As we enter the big data and AI era, there will be more of these inflections, and we are excited to be having earlier and deeper collaborations with our customers to accelerate their roadmaps and enable devices we never dreamed possible.”

While challenging to integrate, cobalt brings significant benefits to chips and chip making: lower resistance and variability at small dimensions; improved gapfill at very fine dimensions; and improved reliability. Applied’s integrated cobalt suite is now shipping to foundry/logic customers worldwide.

Applied Materials, Inc. (Nasdaq:AMAT) is a leader in materials engineering solutions used to produce virtually every new chip and advanced display in the world.