Tag Archives: letter-pulse-top

CEA-Leti’s chief scientist today issued a forward-looking call to action for the microelectronics industry to create a radically new, digital-communication architecture for the Internet of Things in which “a great deal of analytics processing occurs at the edge and at the end devices instead of in the Cloud”.

Delivering a keynote presentation at the kickoff of ISSCC 2018, Barbara De Salvo said this architecture will include human-brain inspired hardware coupled to new computing paradigms and algorithms that “will allow for distributed intelligence over the whole IoT network, all-the-way down to ultralow-power end-devices.”

“We are entering a new era where artificial-intelligence systems are … shaping the future world,” said De Salvo, who also is Leti’s scientific director. “With the end of Moore’s Law in sight, transformative approaches are needed to address the enduring power-efficiency issues of traditional computing architectures.”

The potential efficiencies of processing data at the edge of networks – e.g. by small computers located near IoT-connected devices – rather than at distant data centers or the Cloud are increasingly cited as long-term goals for the Internet of Things. But the challenges to realizing this vision are formidable. For example, IoT battery-powered devices lack both processing power to analyze the data they receive and a power source that would support data processing.

To break through these barriers, De Salvo called for a “holistic research approach to the development of low-power architectures inspired by the human brain, where process development and integration, circuit design, system architecture and learning algorithms are simultaneously optimized.” She envisions a future in which optimized neuromorphic hardware will be implemented as a highly promising solution for future ultralow-power cognitive systems that extend well beyond the IoT.

“Emerging technologies such as advanced CMOS, 3D technologies, emerging resistive memories, and silicon photonics, coupled with novel brain-inspired paradigms, such as spike-coding and spike-time-dependent-plasticity, have extraordinary potential to provide intelligent features in hardware, approaching the way knowledge is created and processed in the human brain,” she said.

De Salvo’s presentation, “Brain-Inspired Technologies: Towards Chips that Think”, included summaries of key research findings in a variety of fields that will play a role in developing brain-inspired technologies for computing and data-handling requirements of a “hyperconnected” world.

ASML’s dominance in the semiconductor equipment market continued in 2017, according to the report “Sub-100nm Lithography: Market Analysis and Strategic Issues,” recently published by The Information Network (www.theinformationnet.com), a New Tripoli, PA-based market research company.

ASML’s led the semiconductor lithography equipment market for its 12th straight year, with a market share of more than 60% for system sales. The company led the market in revenue share for its 16th straight year, achieving a share of more than 85% in 2017.

information network

 

ASML is also the only supplier of EUV lithography systems, which cost over $100 million. Intel, Samsung Electronics, TSMC, and Globalfoundries are planning on introducing EUV at the 7nm technology node to reduce multi-patterning process steps required of immersion DUV lithography as dimensions approach 7nm. The replacement of immersion DUV by EUV will dramatically reduce deposition, etch, and metrology step, impacting equipment suppliers.

Two Waterloo chemists have made it easier for manufacturers to produce a new class of faster and cheaper semiconductors.

The chemists have found a way to simultaneously control the orientation and select the size of single-walled carbon nanotubes deposited on a surface. That means the developers of semiconductors can use carbon as opposed to silicon, which will reduce the size and increase the speed of the devices while improving their battery life.

“We’re reaching the limits of what’s physically possible with silicon-based devices,” said co-author Derek Schipper, Canada Research Chair Organic Material Synthesis at the University of Waterloo. “Not only would single-walled carbon nanotube-based electronics be more powerful, they would also consume less power.”

The process, called the Alignment Relay Technique, relies on liquid crystals to pass orientation information to a metal-oxide surface. Small molecules called iptycenes then bond to the surface locking the orientation pattern into place. Their structure includes a small pocket large enough to fit a certain size carbon nanotube that remains after washing.

“This is the first time chemists have been able to externally control the orientation of small molecules covalently bonded to a surface,” said Schipper, a professor of chemistry and a member of the Waterloo Institute for Nanotechnology. “We’re not the first ones to come up with potential solutions to work with carbon nanotubes. But this is the only one that tackles both orientation and purity challenges at the same time.”

Schipper further pointed out that the approach is from the bottom up with the use of organic chemistry to design and build a molecule which then does the hard work.

“Once you’ve built the pieces, the process is simple. It’s a bench-top method requiring no special equipment,” Schipper explained.

In contrast to self-assembly techniques which rely on the design of a suitable molecule to fit snuggly together, this process can be controlled at every step, including the size of the iptycene “pocket”. In addition, this is the first a solution has been found to tackling the challenge of aligning and purifying carbon nanotubes at the same time.

IC industry wafer capacity, specifically in the memory segment, was inadequate to meet demand throughout 2017. However, with Samsung, SK Hynix, Micron, Intel, Toshiba/WD, and XMC/Yangtze River Storage Technology planning to significantly ramp up 3D NAND flash capacity over the next few years, and Samsung and SK Hynix boosting DRAM capacity this year and next, what does this mean for total industry capacity growth?  In its 2018-2022 Global Wafer Capacity report, IC Insights shows that new manufacturing lines are expected to boost industry capacity 8% in both 2018 and 2019 (Figure 1). From 2017-2022, annual growth in IC industry capacity is forecast to average 6.0% compared to 4.8% average growth from 2012-2017.

annual wafer trends

Figure 1

Large swings in the addition or contraction of wafer capacity by the industry, as a whole, appear to be moderating. Since 2010, annual changes in wafer capacity volume have been in the relatively narrow range of 2-8%, with the largest year-to-year difference being just three percentage points.  This suggests that IC manufacturers are better today than in years past about trying to match supply with demand.  It’s still an incredibly difficult task for companies to gauge how much capacity will be needed to meet demand from customers, especially given the time it takes a company to move from the decision to build a new fab to that fab being ready for mass production.

Many companies, DRAM and NAND flash suppliers in particular, have become much more active with new fab construction and expansion projects at existing fabs.  This surge in activity comes after four years (2014-2017) when capacity growth lagged wafer start volume increases.  During the past few years, IC producers have worked to increase utilization rates from the low levels in 2012-2013.

If all the new fab capacity expected to be brought on-line in 2019 happens as planned, the volume of capacity added that year will approach the record set in 2007.  Figure 2 shows more that 18 million wafers per year of new capacity is expected to be added in 2019, and this number even assumes some of the massive DRAM and NAND fabs being built by Chinese companies will not be carried out quite as aggressively as has been advertised.  IC Insights believes that construction of these China-owned fabs is progressing slower than planned.

Figure 2

Figure 2

By Jamie Girard and Jay Chittooran, SEMI Public Policy

With much pride, President Donald Trump, in his State of the Union address last week, touted the signature legislative achievement of his first year in office – passage of the Tax Cuts and Jobs Act.  As companies doing business globally, SEMI members have long stressed their concern that the US business tax code was putting them at a disadvantage.  SEMI has worked for many years to voice its position that the US code needed to be reformed to lower the overall tax rate on businesses while also retaining incentives for innovation, like the research and development (R&D) and tax credits.  SEMI also pushed for the US to move to a territorial tax system to bring the US into alignment with the rest of the world.

President Donald Trump, State of the Union speech. Photo credit: CNN

President Donald Trump, State of the Union speech. Photo credit: CNN

The Tax Cuts and Jobs Act implements all the of principle that SEMI members have advocated for, and included other industry priorities like repatriation of foreign held assets at a lower rate.  The new structure promises to allow for a more competitive business environment for companies doing business from the US, and greater growth for them globally.

“As tax cuts create new jobs, let us invest in workforce development and job training,” Trump noted in his State of the Union speech, addressing another major industry priority. “Let us open great vocational schools so our future workers can learn a craft and realize their full potential.”

Workforce development (Talent) is a critical issue for the industry, and SEMI recognizes the pressing need on multiple fronts to find the workers, both technical and highly-educated, to continue the work of driving innovation in the semiconductor industry.  While SEMI works with industry partners to boost the industry talent pool, we also recognize that the federal government has a role to play in ensuring that the US is doing its share to help address the problem. That’s why SEMI supports legislation like H.R. 4023, the Developing Tomorrow’s Engineering and Technical Workforce Act, aimed at providing federal dollars to promote engineering education at all levels of learning. The bill has bipartisan support in Congress, and SEMI will continue to work to see the bill travel to President Trump’s desk for his signature.

Facilitating trade and lowering barriers for good and services to move across borders is key to SEMI’s mission to support its members. The semiconductor industry has catalyzed growth across the global economy – growth that relies heavily on trade.

“America has also finally turned the page on decades of unfair trade deals that sacrificed our prosperity and shipped away our companies, our jobs, and our nation’s wealth,” Trump noted last Tuesday. “The era of economic surrender is over. From now on, we expect trading relationships to be fair and to be reciprocal. We will work to fix bad trade deals and negotiate new ones.”

Unfortunately, trade has been turned into a hot-button political issue, raising many new trade challenges to companies throughout the semiconductor industry. The Trump Administration has levied intense criticism of China, launched a number of trade investigations citing foreign overproduction, and has threatened to withdraw from the Korea-U.S. Free Trade Agreement (KORUS). The United States has also levied tariffs on a number of products, including solar cells. This is all on top of the North American Free Trade Agreement (NAFTA) modernization talks, which have seen slow and shallow progress.

While the United States “reexamines” and stands still, other countries are filling the leadership void. China, Canada, Korea, and the European Union, among others, are negotiating or have concluded trade deals in the last year. Indeed, the updated Trans-Pacific Partnership, which now excludes the US but covers many of the fastest-growing Asian markets, is on track to be enacted by the end of the year. SEMI will continue to work on behalf of its members around the globe to open up new markets and lessen the burden of regulations on cross-border trade and commerce.

Additionally, although President Trump devoted much his address to immigration, he overlooked the opportunity to address the need for immigration reform for high-skilled workers.  This important aspect of the immigration debate, which also has major implications for economic growth, will fall to Congress to sort out in any immigration package it considers in the coming weeks.

Fortunately, Sen. Orrin Hatch (R-UT) recently reintroduced his Immigration Innovation Act, also known as “I-Squared,” which would implement a number of reforms to the H1-B visa and green card system for highly-skilled workers.  The bill would raise the cap for H1-B visas from the current 65,000 to allow for as many as 190,000 in good economic times, while also lifting the cap on greed card holders with STEM degrees from US institutions.  SEMI has long supported these efforts and will continue to work with policymakers to see reforms implemented to improve the system.

While partisanship in Washington remains high, SEMI continues to work on behalf of its members to advance crucial public policy matters for its members with policymakers in Washington, DC. In particular, SEMI focuses on how these issues impact the four 4T’s – Trade, Taxes, Technology and Talent. The path forward on many of these issues will be complicated by midterm election year politics, but the opportunity remains to see real positive changes enacted, even in such a challenging environment.

If you’d like more information on SEMI’s public policy work, or how you can be involved, please contact Jamie Girard at [email protected].

Market shares of top semiconductor equipment manufacturers for the full year 2017 indicate large gains by Tokyo Electron and Lam Research while top supplier Applied Materials dropped, according to the report “Global Semiconductor Equipment: Markets, Market Shares, Market Forecasts,” recently published by The Information Network, a New Tripoli-based market research company.

The chart below shows shares for the entire years of 2016 and 2017. Market shares are for equipment only, excluding service and spare parts, and have been converted for revenues of foreign companies to U.S. dollars on a quarterly exchange rate.

market shares

Market leader Applied Materials lost 1.8 share points among the top seven companies, dropping from 28.8% in 2016 to 27.0% in 2017. Gaining share are Tokyo Electron Ltd., which gained 2.1 share points while rising from 17.4% in 2016 to 19.1% in 2017, and Lam Research, which gained 1.5 share points and grew from a 19.4% share in 2016 to a 20.9% share in 2017.

In third place ASML gained 0.6 share points, growing from an 18.8% share in 2016 to a 19.4% share in 2017.

Fifth place KLA-Tencor is the dominant supplier in the process control sector (inspection and metrology) and competes against Applied Materials and Hitachi High-Technologies, as well as several other companies including Nanometrics, Nova Measuring Instruments, and Rudolph Technologies. KLA-Tencor gained market share against each of its competitors in this sector in 2017.

Much of the equipment revenue growth was attributed to strong growth in the DRAM and NAND sectors, as equipment was installed in memory manufacturers Intel, Micron Technology, Samsung Electronics, SK Hynix, Toshiba, and Western Digital. The memory sector is expected to have grown 60.1% in 2017 and another 9.3% in 2018 according to industry consortium WSTS (World Semiconductor Trade Statistics).

Following the strong growth in the semiconductor equipment market, The Information Network projects another 11% growth in 2018. for semiconductor equipment.

Silicon has long been the go-to material in the world of microelectronics and semiconductor technology. But silicon still faces limitations, particularly with scalability for power applications. Pushing semiconductor technology to its full potential requires smaller designs at higher energy density.

“One of the largest shortcomings in the world of microelectronics is always good use of power: Designers are always looking to reduce excess power consumption and unnecessary heat generation,” said Gregg Jessen, principal electronics engineer at the Air Force Research Laboratory. “Usually, you would do this by scaling the devices. But the technologies in use today are already scaled close to their limits for the operating voltage desired in many applications. They are limited by their critical electric field strength.”

This is a false-color, plan-view SEM image of a lateral gallium oxide field effect transistor with an optically defined gate. From near (bottom) to far (top): the source, gate, and drain electrodes. Metal is shown in yellow and orange, dark blue represents dielectric material, and lighter blue denotes the gallium oxide substrate. Credit: AFRL Sensors Directorate at WPAFB, Ohio, US

This is a false-color, plan-view SEM image of a lateral gallium oxide field effect transistor with an optically defined gate. From near (bottom) to far (top): the source, gate, and drain electrodes. Metal is shown in yellow and orange, dark blue represents dielectric material, and lighter blue denotes the gallium oxide substrate. Credit: AFRL Sensors Directorate at WPAFB, Ohio, US

Transparent conductive oxides are a key emerging material in semiconductor technology, offering the unlikely combination of conductivity and transparency over the visual spectrum. One conductive oxide in particular has unique properties that allow it to function well in power switching: Ga2O3, or gallium oxide, a material with an incredibly large bandgap.

In their article published this week in Applied Physics Letters, from AIP Publishing, authors Masataka Higashiwaki and Jessen outline a case for producing microelectronics using gallium oxide. The authors focus on field effect transistors (FETs), devices that could greatly benefit from gallium oxide’s large critical electric field strength. a quality which Jessen said could enable the design of FETs with smaller geometries and aggressive doping profiles that would destroy any other FET material.

The material’s flexibility for various applications is due to its broad range of possible conductivities — from highly conductive to very insulating — and high-breakdown-voltage capabilities due to its electric field strength. Consequently, gallium oxide can be scaled to an extreme degree. Large-area gallium oxide wafers can also be grown from the melt, lowering manufacturing costs.

“The next application for gallium oxide will be unipolar FETs for power supplies,” Jessen said. “Critical field strength is the key metric here, and it results in superior energy density capabilities. The critical field strength of gallium oxide is more than 20 times that of silicon and more than twice that of silicon carbide and gallium nitride.”

The authors discuss manufacturing methods for Ga2O3 wafers, the ability to control electron density, and the challenges with hole transport. Their research suggests that unipolar Ga2O3 devices will dominate. Their paper also details Ga2O3 applications in different types of FETs and how the material can be of service in high-voltage, high-power and power-switching applications.

“From a research perspective, gallium oxide is really exciting,” Jessen said. “We are just beginning to understand the full potential of these devices for several applications, and it’s a great time to be involved in the field.”

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced the global semiconductor industry posted sales totaling $412.2 billion in 2017, the industry’s highest-ever annual sales and an increase of 21.6 percent compared to the 2016 total. Global sales for the month of December 2017 reached $38.0 billion, an increase of 22.5 percent over the December 2016 total and 0.8 percent more than the previous month’s total. Fourth-quarter sales of $114.0 billion were 22.5 percent higher than the total from the fourth quarter of 2016 and 5.7 percent more than the third quarter of 2017. Global sales during the fourth quarter of 2017 and during December 2017 were the industry’s highest-ever quarterly and monthly sales, respectively. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

Worldwide semiconductor revenues, year-to-year percent change

Worldwide semiconductor revenues, year-to-year percent change

“As semiconductors have become more heavily embedded in an ever-increasing number of products – from cars to coffee makers – and nascent technologies like artificial intelligence, virtual reality, and the Internet of Things have emerged, global demand for semiconductors has increased, leading to landmark sales in 2017 and a bright outlook for the long term,” said John Neuffer, SIA president and CEO. “The global market experienced across-the-board growth in 2017, with double-digit sales increases in every regional market and nearly all major product categories. We expect the market to grow more modestly in 2018.”

Several semiconductor product segments stood out in 2017. Memory was the largest semiconductor category by sales with $124.0 billion in 2017, and the fastest growing, with sales increasing 61.5 percent. Within the memory category, sales of DRAM products increased 76.8 percent and sales of NAND flash products increased 47.5 percent. Logic ($102.2 billion) and micro-ICs ($63.9 billion) – a category that includes microprocessors – rounded out the top three product categories in terms of total sales. Other fast-growing product categories in 2017 included rectifiers (18.3 percent), diodes (16.4 percent), and sensors and actuators (16.2 percent). Even without sales of memory products, sales of all other products combined increased by nearly 10 percent in 2017.

Annual sales increased substantially across all regions: the Americas (35.0 percent), China (22.2 percent), Europe (17.1 percent), Asia Pacific/All Other (16.4 percent), and Japan (13.3 percent). The Americas market also led the way in growth for the month of December 2017, with sales up 41.4 percent year-to-year and 2.1 percent month-to-month. Next were Europe (20.2 percent/-1.6 percent), China (18.1 percent/1.0 percent), Asia Pacific/All Other (17.4 percent/0.2 percent), and Japan (14.0 percent/0.9 percent).

“A strong semiconductor industry is foundational to America’s economic strength, national security, and global technology leadership,” said Neuffer. “We urge Congress and the Trump Administration to enact polices in 2018 that promote U.S. innovation and allow American businesses to compete on a more level playing field with our counterparts overseas. We look forward to working with policymakers in the year ahead to further strengthen the semiconductor industry, the broader tech sector, and our economy.”

Driven by the need for intelligent connected devices in industrial and commercial applications, the number of connected Internet of Things (IoT) devices globally will grow to more than 31 billion in 2018, according to new analysis from business information provider IHS Markit (Nasdaq: INFO). The commercial and industrial sector, powered by building automation, industrial automation and lighting, is forecast to account for about half of all new connected devices between 2018 and 2030.

“The IoT is not a recent phenomenon, but what is new is it’s now working hand in hand with other transformative technologies like artificial intelligence and the cloud,” said Jenalea Howell, research director for IoT connectivity and smart cities at IHS Markit. “This is fueling the convergence of verticals such as industrial IoT, smart cities and buildings, and the connected home, and it’s increasing competitiveness.”

In its latest IoT Trend Watch report, IHS Markit identifies four key drivers and the trends that will impact the IoT this year and beyond:

Innovation and competitiveness

  • The IoT opportunity has attracted numerous duplicative and overlapping wireless solutions such as Bluetooth, Wi-Fi, 5G, NB-IoT, LoRa and Sigfox. Standards consolidation lies ahead, but confusion and fragmentation will dominate in the near term.
  • Enterprises are leveraging the location of data as a competitive advantage — and as a result, a hybrid approach to cloud and data center management is taking hold. More and more companies will employ both on-premises data centers and off-premises cloud services to manage their IT infrastructure.

Business models

  • 5G builds upon earlier investments in M2M (machine-to-machine) and traditional IoT applications, enabling significant increases in economies of scale that drive adoption and utilization across all sectors of industry. Improved low-power requirements, the ability to operate on licensed and unlicensed spectrum, and better coverage will drive significantly lower costs across the IoT.
  • Cellular IoT gateways, which facilitate WAN connectivity, will be integral to edge computing deployments. 2018 will bring increased focus on compute capabilities and enhanced security for cellular IoT gateways.

Standardization and security

  • Cybersecurity is a leading concern for IoT adopters. IoT deployments face critical cybersecurity risks because there are potentially many more IoT devices to secure compared to traditional IT infrastructure devices, presenting increased risk to traditional communications and computing systems, as well as physical health and safety.
  • Despite the promise it holds, blockchain — a technology for securely storing and transferring data — is not a panacea. Initially, IoT applications for blockchain technology will focus on asset tracking and management.

Wireless technology innovation

  • IoT platforms are becoming more integrated. Currently, there are more than 400 IoT platform providers. Many vendors are using integration to compete more effectively, providing highly integrated functionality for IoT application developers and adopters.
  • Significant innovation will occur when IoT app developers can leverage data from myriad deployed sensors, machines and data stores. A key inflection point for the IoT will be the gradual shift from the current “Intranets of Things” deployment model to one where data can be exposed, discovered, entitled and shared with third-party IoT application developers.

IHS Markit provides insight and analysis for more than 25 connectivity technologies in 34 application segments used for the IoT.

By Emmy Yi, SEMI Taiwan 

Driven by emerging technologies like Artificial Intelligence (AI), Internet of Things (IoT), machine learning and big data, the digital transformation has become an irreversible trend for the electronics manufacturing industry. The global market for smart manufacturing and smart factory technologies is expected to reach US$250 billion in 2018.

“The semiconductor manufacturing process has reached its downscaling limit, making outstanding manufacturing capabilities indispensable for corporations to stay competitive,” said Ana Li, Director of Outreach and Member Service at SEMI. “Advances in cloud computing, data processing, and system integration technologies will be key to driving the broad adoption of smart manufacturing.”

ompany representatives shared insights and successes in manufacturing digitalization.

ompany representatives shared insights and successes in manufacturing digitalization.

To help semiconductor manufacturing companies navigate the digital transformation, SEMI recently held the AI and Smart Manufacturing Forum, a gathering of industry professionals from Microsoft, Stark Technology, Advantech, ISCOM, and Tectura to examine technology trends and smart manufacturing opportunities and challenges. The nearly 100 guests at the forum also included industry veterans from TSMC, ASE, Siliconware, Micron, and AUO. Following are key takeaways from the forum:

1)    Smart manufacturing is the key for digital transformation
Industry 4.0 is all about using automation to better understand customer needs and help drive efficiency improvements that enable better strategic manufacturing decisions. For electronics manufacturers, thriving in the digital transformation should begin with research and development focused on optimizing processes, developing innovative business models, and analyzing data in ways that support their customers’ business values and objectives. Digitization is also crucial for manufacturers to target the right client base, increase productivity, optimize operations and create new revenue opportunities.

2)    Powerful data analysis capabilities will enable manufacturing digitalization

As product development focuses more on smaller production volumes, companies need a powerful data analysis software to accelerate decision-making and problem-solving processes, enhance integration across different types of equipment, and improve management efficiency across enterprise resources including business operations, marketing, and customer service.

3)    The digital transformation will fuel revenue growth
Connectivity and data analysis, the two essential concepts of smart manufacturing, are not only essential for companies to improve facility management efficiency and production line planning but also key for maintaining healthy revenue growth.

“With our more than 130 semiconductor manufacturers and long fab history, Taiwan is in a strong position to help the industry evolve manufacturing to support the explosion of new data-intensive technologies,” said Chen-Wei Chiang, the Senior Specialist at the Taichung City Government’s Economic Development Bureau. “We look forward to working with SEMI to help manufacturers realize the full potential of smart manufacturing.”

With the advent of new data-intensive technologies including AI and IoT, advanced manufacturing processes that improve product yield rates and reduce production costs will become even more important for manufacturers to remain competitive. SEMI Taiwan will continue to assemble representatives from the industry, government, academia and research to examine critical topics in smart manufacturing. To learn more, please contact Emmy Yi, SEMI Taiwan, at
[email protected] or +886.3.560.1777 #205.