Tag Archives: letter-pulse-top

IC Insights recently released its Update to its 2017 IC Market Drivers Report.  The Update includes IC Insights’ latest outlooks on the smartphone, automotive, PC/tablet and Internet of Things markets.

In the Update, IC Insights scaled back its total semiconductor sales forecast for system functions related to the Internet of Things in 2020 by about $920 million, mostly because of lower revenue projections for connected cities applications (such as smart electric meters and infrastructure supported by government budgets).  The updated forecast still shows total 2017 sales of IoT semiconductors rising about 16.2% to $21.3 billion (with final revenues in 2016 being slightly lowered to $18.3 billion from the previous estimate of $18.4 billion), but the expected compound annual growth rate between 2015 and 2020 has been reduced to 14.9% versus the CAGR of 15.6% in IC Insights’ original projection from December 2016. Total semiconductor sales for IoT system functions are now expected to reach $31.1 billion in 2020 (Figure 1) versus the previous projection of $32.0 billion in the final year of the forecast.

Figure 1

Figure 1

IC Insights’ revised outlook for IoT semiconductor sales by end-use market categories shows that semiconductor revenues for connected cities applications are projected to grow by a CAGR of 8.9% between 2015 and 2020 (down from 9.7% in IC Insights’ original forecast).  Meanwhile, the IoT semiconductor market for wearable systems is expected to show a CAGR of 17.1% (versus 18.8% in the previous projection).  The lower growth projection in chip sales for connected cities systems is a result of anticipated belt tightening in government spending around the world and the slowing of smart meter installations now that the initial wave of deployments has ended in many countries.  Slower growth in semiconductor sales for wearable systems is primarily related to IC Insights’ reduced forecast for smartwatch shipments through 2020.

The updated outlook nudges up semiconductor growth in the industrial Internet category to a CAGR of 24.1% (compared to 24.0% in the December 2016 forecast) and slightly lowers the annual rate of increase in connected homes and connected vehicles to CAGRs of 21.3% and 32.9%, respectively (from 22.7% and 33.1% in the original 2017 report).

By Paula Doe, SEMI

The future of contamination control in the next-generation supply chain for beyond 14nm-node semiconductor processes faces stringent challenges. While Moore’s Law is driving scale reduction, the industry is also facing ever-increasing process sensitivity, integration challenges of new materials and the need for unprecedented purity at process maturity.

“The supply chain needs a paradigm shift in thinking about defect control. What was just process variation for previous technology nodes can now be an excursion!” says Dr. Archita Sengupta, Intel senior GSM Technologist, leading the filtration and related supply chain contamination control program, who will discuss these challenges and possible solutions in the session on key materials issues at SEMICON West 2017 on July 11 in San Francisco at Moscone Center.

There are new materials being used for the first time, and even familiar materials need to be treated with new and different specifications. Even if the needed parameters are correctly specified, there may not be an accurate way to measure those parameters under HVM conditions, at least that most material suppliers can afford.  Chemicals, advanced filtration and purification, chemical delivery systems and equipment manufacturing can all be sources of wafer contamination. “The interaction between the tool and the chemicals is also increasingly important,” she notes. “All this is going to add more cost for the industry supply chain for quality control, but it will cost more in the end if we don’t proactively work together throughout the supply chain to figure out what matters to control and how!”

Stability is key

The most important thing material suppliers can do to meet customer quality demands is to maintain absolute stability of everything about their material and manufacturing process, suggests Jim Mulready, VP Global Quality Assurance, JSR Micro, who will also present at SEMICON West. “Traditional quality control, where the QC data at the end of my line only has to meet the customer’s specifications, doesn’t work,” he says, noting that the material supplier doesn’t have the same process tool, the same substrate, or the same process conditions as the customer, so the testing can’t duplicate the customer’s result. Moreover, the process sensitivity is getting tighter at every generation, with the tolerance of defects often being beyond the supplier’s ability to detect them. So, no specification can ever be precise enough to capture everything the customer really needs.  “Often tightening the specs doesn’t solve the problem,” he notes. “There are plenty of examples of material that was well within spec but didn’t function properly. The problem is not inadequate specs, it’s inadequate attention to other quality tools. The spec is necessary, but not sufficient.”

“The systematic (as opposed to technical) root cause of the material problems I faced as fab materials quality manager at Intel almost always came down to a problem in stability,” says Mulready, where there was a change to the material the supplier didn’t think was important, a change in the processing that they didn’t catch, or a change in the incoming raw material that they didn’t detect. “Material suppliers have to accept that the customers’ definition of quality becomes their definition of quality, and the main rule is to make sure that a material that’s working does not change at all. Consistency is the key for the end user, so it must be for us as well.  A spec alone will not measure or ensure that.  It takes robust change control, process control, and incoming raw material control.”

Semiconductor makers meanwhile, need to start paying attention not just to their immediate suppliers, but also to their suppliers’ supply chain; for example, not just the resist but also the resin and even the monomers used to make it. While the material suppliers need to qualify the incoming material, and serve as a kind of safety valve between the chemical industry and the IC makers, it can be difficult for them to control the supply quality when they are a very minor customer for the commodity chemical suppliers.  Those suppliers in turn may have no interest in investing in the tools needed to measure the particular properties of concern, and there may be a need for the IC customer to help inflict some pressure.

For more details on the SEMICON West 2017 Materials program, “Material Supply Challenges for Current and Future Leading-edge Devices,” organized by SEMI’s Chemical & Gas Manufacturers Group (CGMG), see www.semiconwest.org/programs-catalog/material-supply-leading-edge-devices. To see the full SEMICON West agenda, visit www.semiconwest.org/agenda-glance.

The latest update to the World Fab Forecast report, published on May 31, 2017 by SEMI, reveals record spending for fab construction and fab equipment. Korea, Taiwan, and China all see large investments, and spending in Europe will also increase significantly. In 2017, over US$49 billion will be spent on equipment alone, a record for the semiconductor industry.  Spending on new fab construction is projected to reach over $8 billion, the second largest year on record.  Records will shatter again in 2018, when equipment spending will pass $54 billion, and new fab construction spending is forecast at an all-time high of $10 billion. See Figure.

Figure 1

Figure 1

SEMI reports that these unprecedented high numbers are not only driven by a handful of well-known, established companies, but also by several new Chinese companies entering the scene with large budgets. An increase in overall fab spending (construction and equipment together) of 54 percent year-over-year (YoY) in China is expected.  Total spending rises from $3.5 billion in 2016 to $5.4 billion in 2017, and then to $8.6 billion in 2018, another 60 percent year-over-year (YoY).

Some of these China-based companies are well known, such as Hua Li Microelectronics or SMIC (top investors in 2017 and 2018), though newcomers in the arena, including Yangtze Memory Technology, Fujian Jin Hua Semiconductor, Tsinghua Unigroup, Tacoma Semiconductor, and Hefei Chang Xin Memory, add to the spending surge.

The SEMI World Fab Forecast breaks down fab equipment spending by region. Korea leads both years of our forecast period, with spending of $14.6 billion in 2017 and $15.1 billion in 2018.  In 2017, Taiwan is projected to be the second largest spending region on equipment, but China will take over second place in 2018 as it equips the many new fabs being built in 2016 and 2017.  Americas is in fourth place, projected to spend $5.2 billion in 2017 and $5.5 billion in 2018.  Japan will come in fifth, spending $5.1 billion in 2017 and $5.3 billion in 2018.  Although the Europe/Mideast region is in sixth place with relatively modest investments of $3.8 billion in 2017, this represents remarkable growth for the region, 71 percent more than in 2016; and the region will bump spending another 20 percent in 2018 (to $4.6 billion).

This exciting growth cycle could continue well beyond 2018.  Record fab construction spending of $10 billion for 2018 means new fabs will need to be equipped at least a year down the road, leading to high expectations for good business beyond the current two-year forecast period.

Since the last publication on February 28, the SEMI Industry Research & Statistics team has made 279 changes on 244 facilities/lines. In that time frame, 24 new facilities were added and 4 fab projects were closed.

For insight into semiconductor manufacturing in 2017 and 2018 with details about capex for construction projects, fab equipping, technology levels, and products, visit the SEMI Fab Database webpage and order the SEMI World Fab Forecast Report. The report, in Excel format, tracks spending and capacities for over 1,100 facilities including over 60 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities.

IBM (NYSE: IBM), its Research Alliance partners GLOBALFOUNDRIES and Samsung, and equipment suppliers have developed an industry-first process to build silicon nanosheet transistors that will enable 5 nanometer (nm) chips. The details of the process will be presented at the 2017 Symposia on VLSI Technology and Circuits conference in Kyoto, Japan. In less than two years since developing a 7nm test node chip with 20 billion transistors, scientists have paved the way for 30 billion switches on a fingernail-sized chip.

The resulting increase in performance will help accelerate cognitive computing, the Internet of Things (IoT), and other data-intensive applications delivered in the cloud. The power savings could also mean that the batteries in smartphones and other mobile products could last two to three times longer than today’s devices, before needing to be charged.

Scientists working as part of the IBM-led Research Alliance at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering’s NanoTech Complex in Albany, NY achieved the breakthrough by using stacks of silicon nanosheets as the device structure of the transistor, instead of the standard FinFET architecture, which is the blueprint for the semiconductor industry up through 7nm node technology.

“For business and society to meet the demands of cognitive and cloud computing in the coming years, advancement in semiconductor technology is essential,” said Arvind Krishna, senior vice president, Hybrid Cloud, and director, IBM Research. “That’s why IBM aggressively pursues new and different architectures and materials that push the limits of this industry, and brings them to market in technologies like mainframes and our cognitive systems.”

The silicon nanosheet transistor demonstration, as detailed in the Research Alliance paper Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET, and published by VLSI, proves that 5nm chips are possible, more powerful, and not too far off in the future.

Compared to the leading edge 10nm technology available in the market, a nanosheet-based 5nm technology can deliver 40 percent performance enhancement at fixed power, or 75 percent power savings at matched performance. This improvement enables a significant boost to meeting the future demands of artificial intelligence (AI) systems, virtual reality and mobile devices.

Building a new switch

“This announcement is the latest example of the world-class research that continues to emerge from our groundbreaking public-private partnership in New York,” said Gary Patton, CTO and Head of Worldwide R&D at GLOBALFOUNDRIES. “As we make progress toward commercializing 7nm in 2018 at our Fab 8 manufacturing facility, we are actively pursuing next-generation technologies at 5nm and beyond to maintain technology leadership and enable our customers to produce a smaller, faster, and more cost efficient generation of semiconductors.”

IBM Research has explored nanosheet semiconductor technology for more than 10 years. This work is the first in the industry to demonstrate the feasibility to design and fabricate stacked nanosheet devices with electrical properties superior to FinFET architecture.

This same Extreme Ultraviolet (EUV) lithography approach used to produce the 7nm test node and its 20 billion transistors was applied to the nanosheet transistor architecture. Using EUV lithography, the width of the nanosheets can be adjusted continuously, all within a single manufacturing process or chip design. This adjustability permits the fine-tuning of performance and power for specific circuits – something not possible with today’s FinFET transistor architecture production, which is limited by its current-carrying fin height. Therefore, while FinFET chips can scale to 5nm, simply reducing the amount of space between fins does not provide increased current flow for additional performance.

“Today’s announcement continues the public-private model collaboration with IBM that is energizing SUNY-Polytechnic’s, Albany’s, and New York State’s leadership and innovation in developing next generation technologies,” said Dr. Bahgat Sammakia, Interim President, SUNY Polytechnic Institute. “We believe that enabling the first 5nm transistor is a significant milestone for the entire semiconductor industry as we continue to push beyond the limitations of our current capabilities. SUNY Poly’s partnership with IBM and Empire State Development is a perfect example of how Industry, Government and Academia can successfully collaborate and have a broad and positive impact on society.”

Part of IBM’s $3 billion, five-year investment in chip R&D (announced in 2014), the proof of nanosheet architecture scaling to a 5nm node continues IBM’s legacy of historic contributions to silicon and semiconductor innovation. They include the invention or first implementation of the single cell DRAM, the Dennard Scaling Laws, chemically amplified photoresists, copper interconnect wiring, Silicon on Insulator, strained engineering, multi core microprocessors, immersion lithography, high speed SiGe, High-k gate dielectrics, embedded DRAM, 3D chip stacking and Air gap insulators.

By Walt Custer, Custer Consulting Group, and Dan Tracy, SEMI

SEMI’s year-to-date worldwide semiconductor equipment billings year-to-date through March show a 59.6 percent gain to the same period last year.

Understanding volatility in the electronic equipment supply chain can be valuable in forecasting future business activity.  A useful way to compare relevant electronic industry data series is by using 3/12 growth rates.  The 3/12 growth is the ratio of three months of data, compared to the same three months a year earlier.

Chart 1 compares the 3/12 growth rates of four data series:

  • World semiconductor equipment shipments (SEMI; www.semi.org)
  • Taiwan chip foundry sales (company composite maintained by Custer Consulting Group)
  • World semiconductor shipments (SIA, www.semiconductors.org & WSTS, www.wsts.org)
  • World electronic equipment sales (composite of 238 global OEMS maintained by Custer Consulting Group).

supply-chain-dynamics

Highlights

  • Semiconductor capital equipment sales are by far the most volatile of the four series in Chart 1, followed by foundry sales.
  • Foundry sales are a good leading indicator for semiconductor equipment shipments ─ leading SEMI equipment by 3-4 months on a 3/12 growth basis.
  • Foundry growth peaked in November 2016.
  • SEMI equipment growth appears to have peaked in February 2017.
  • Semiconductor shipments may have peaked in March 2017. March semiconductor revenues were up 18.5 percent in 1Q’17 vs 1Q’16 and, although still very strong, their rate of growth appears to have plateaued.

Note that 3/12 values greater than 1.0 indicate growth.  Declining 3/12 values (but greater than 1.0) indicate growth but at a slower rate.  Values below 1.0 indicate contraction.

Based upon Chart 1, semiconductor equipment 3/12 growth will likely reach zero in August or September of this year. Considering the unstable world geopolitical situation, uncertainty clearly exists.

SEMI members can access member-only market data and information at www.semi.org/en/free-market-data-semi-members.

Custer Consulting Group (www.custerconsulting.com) provides market research, business analyses and forecasts for the electronic equipment and solar/photovoltaic supply chains including semiconductors, printed circuit boards & other passive components, photovoltaic cells & modules, EMS, ODM & related assembly activities and materials & process equipment.

Electronic systems that improve vehicle performance; that add comfort and convenience; and that warn, detect, and take corrective measures to keep drivers safe and alert are being added to new cars each year. Consumer demand and government mandates for many of these new systems, along with rising prices for many IC components within them, are expected to raise the automotive IC market 22% this year to a new record high of $28.0 billion (Figure 1).

Over the past several years, the global automotive IC market has experienced some extraordinary swings in growth.  After increasing 11.5% in 2014, the automotive IC market declined 2.5% in 2015, but then rebounded with solid 10.8% growth in 2016.  It is worth noting that the sales decline experienced in 2015 was primarily the result of falling ASPs across all the key automotive IC product categories—microcontrollers, analog ICs, DRAM, flash, and general- and special-purpose logic ICs, which offset steady unit growth for automotive ICs that year.

Figure 1

Figure 1

However, in the second half of 2016, steadily rising ASPs (along with demand for the new automotive systems) helped return the automotive IC market to double-digit growth. In 2017, exceptionally strongincreases in DRAM and flash memory prices are expected to help drive the total automotive IC market to an extraordinary increase of 22.4%.

IC Insights recently revised its IC market outlook for 2017 and now shows DRAM average selling prices rising 50% in 2017, NAND flash ASPs increasing 28%, and the average selling price for automotive special-purpose logic devices increasing 34%. these strong ASPs gains, coupled with ongoing system demand, are driving the strong automotive IC market growth this year (Figure 2).

Figure 2

Figure 2

Collectively, microcontrollers, analog, standard logic, and memory ICs used in automotive applications accounted for only about 8% of total IC marketshare by system type in 2016, but that share is forecast to increase to more than 10% in 2020, when automotive is expected to become the third-largest end-use category for ICs, trailing only the communications and computer segments.   Through 2020, IC Insights anticipates that advanced driver-assistance systems (ADAS) will be the biggest user of automotive ICs.  Various ADAS systems are currently helping cars and drivers remain safe on the road and they are proving to be essential building blocks to semi autonomous and autonomous vehicles that are being proposed for the next decade.

GLOBALFOUNDRIES and the Chengdu municipality today announced an investment to spur innovation in China’s semiconductor industry. The partners plan to build a world-class FD-SOI ecosystem including multiple design centers in Chengdu and university programs across China. The investment of more than $100 million is expected to attract leading semiconductor companies to Chengdu, making it a center of excellence for designing next-generation chips in mobile, Internet-of-Things (IoT), automotive and other high-growth markets.

GF and Chengdu recently launched a joint venture to build a 300mm fab to meet accelerating global demand for GF’s 22FDX FD-SOI technology. Connected to this manufacturing partnership, Chengdu is now focusing on developing the city as a center of excellence for 22FDX design. The partners plan to establish multiple centers focused on IP development, IC design and incubating fabless companies in Chengdu, with the expectation of hiring more than 500 engineers to support semiconductor and systems companies in developing products using 22FDX for mobile, connectivity, 5G, IoT, and automotive. There will also be a focus on creating partnerships with universities across China to develop relevant FD-SOI coursework, research programs and design contests.

“China is the largest semiconductor market and is leading the way with a nationwide commitment to smart cities, IoT, smart vision and other advanced, mobile or battery-powered connected systems” said Alain Mutricy, senior vice president of product management at GF. “FDX is especially well suited for Chinese customers, and the FD-SOI ecosystem in Chengdu will provide the support system necessary to help chip designers take full advantage of the technology’s capabilities. We are committed to extend our partnership with Chengdu to accelerate adoption of FDX in China.”

“Following the ribbon cutting marking the signing of our Investment Cooperation Agreement, and to deepen our cooperation and attract more best-in-class semiconductor companies to Chengdu, the Chengdu Municipal Government is delighted to cooperate with GlobalFoundries on this FD-SOI ecosystem action plan,” said Gou Zheng Li, Vice Mayor of City of Chengdu. “Over the next six years, we aim to build a world-class ecosystem for FD-SOI and make Chengdu a Center of Excellence for the design and manufacturing of integrated circuits.”

GF’s 22FDX technology employs a 22nm Fully-Depleted Silicon-On-Insulator (FD-SOI) transistor architecture to deliver the industry’s best combination of performance, power and area for wireless, battery-powered intelligent systems. Construction of the new Chengdu fab has commenced and is on schedule with an expected completion date in early 2018. The fab will begin production of mainstream process technologies in 2018 and then focus on manufacturing 22FDX, with volume production expected to start in 2019.

After several years of low and inconsistent growth rates primarily because of intense pricing pressure, the market for semiconductor sensors and actuators finally caught fire in 2016 with several of its largest product categories—acceleration/yaw and magnetic-field sensors and actuator devices—recording strong double-digit sales increases in the year, according to IC Insights’ new 2017 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discretes.  In addition to the easing of price erosion, substantial unit-shipment growth in sensors and actuators continues to be fed by the spread of intelligent embedded control, new wearable systems, and the expansion of applications connected to the Internet of Things, says the 2017 O-S-D Report.

The new 360-page report shows worldwide sensor sales grew 14% in 2016 to a record-high $7.3 billion, surpassing the previous annual peak of $6.4 billion set in 2015, when revenues increased 3.7%. Actuator sales climbed 19% in 2016 to an all-time high of $4.5 billion from the previous record of $3.8 billion in 2015.  The 2017 O-S-D Report forecasts total sensor sales rising by a compound annual growth rate (CAGR) of 7.5% in the next five years, reaching $10.5 billion in 2021, while actuator dollar volumes are expected to increase by a CAGR of 8.4% to nearly $6.8 billion in the same timeframe.  Figure 1 shows the relative market sizes of the five main product categories in the sensors/actuator segment, along with the projected five-year growth rates for the 2016-2021 forecast period.

The sensor/actuator market ended four straight years of severe price erosion in 2016 and finally benefitted from strong unit growth.  The average selling price (ASP) of sensors and actuators declined by -0.9% in 2016 versus an annual average of -9.3% during the four previous years (2012-2015), says IC Insights’ new O-S-D Report.  All sensor product categories and the large actuator segment registered double-digit sales growth in 2016.  It was the first time in five years that sales growth was recorded in all sensor/actuator product categories, partly due to the easing of price erosion but also because of continued strong unit demand worldwide.  Sensor/actuator shipments grew 17% in 2016 to a record-high of 20.3 billion units from 17.4 billion in 2015, when the volume also increased 17%.

Figure 1

Figure 1

Strong 2016 sales recoveries occurred in acceleration/yaw-rate motion sensors (+15%), magnetic-field sensors and electronic compass chips (+18%), and the miscellaneous other sensor category (+20%) after market declines were registered in 2015. Sales growth also strengthened in pressure sensors, including MEMS microphone chips, (+10%) and actuators (+19%) in 2016.  The new O-S-D Report forecasts sales of acceleration/yaw sensors growing 9% in 2017 to about $3.0 billion, magnetic-field sensors (and compass chips) rising 8% to nearly $2.0 billion, and pressure sensors increasing 8% to $2.7 billion this year.  Actuator sales are projected to grow 8% in 2017 to about $4.9 billion.

About 82% of the sensors/actuators market’s revenues in 2016 came from semiconductors built with microelectromechanical systems (MEMS) technology—meaning pressure sensors, microphone chips, acceleration/yaw motion sensors, and actuators that use MEMS-built transducer structures to initiate physical action in a wide range of devices, including inkjet printer nozzles, microfluidic chips, micro-mirrors, and surface-wave filters for RF signals.  MEMS-built products represented 48% of total sensor/actuator shipments in 2016, or about 9.8 billion units last year.

MEMS-based product sales climbed 15.4% in 2016 to a record-high $9.7 billion after rising 5.1% in 2015 and 5.8% in 2014.   Some inventory corrections and steep ASP erosion in MEMS-built devices have suppressed revenue growth in recent years, but this group of products—like the entire sensors/actuator market—is benefitting from increased demand in new wearable systems, IoT, and the rapid spread of intelligent embedded control, such as autonomous automotive features rolling into cars.  MEMS-based sensors and actuator sales are forecast to rise 7.9% in 2017 to $10.5 billion and grow by a CAGR of 8.0% in the 2016-2021 period to $14.3 billion, says the new O-S-D Report.

By Lung Chu, President of SEMI China

Lung250As China embarks on the Made in China 2025 plan with electronics and semiconductor technology as one of the Top 10 focus areas, China’s semiconductor industry has an unprecedented growth opportunity.  However, besides the huge investment required, China IC industry is faced with strong competition in terms of technology, products, talent, and supply chain access from many leading global layers in an increasingly interconnected world and a highly global semiconductor market.

To be successful, it is critical that China’s semiconductor industry speed up its integration into the global industry supply chain. The goal is to achieve sustainable growth through “win-win” collaboration with global partners and leveraging industry platforms to become a significant player and partner in the international semiconductor manufacturing industry ecosystem.

China semiconductor industry growth

In recent years, many new 12-inch fab projects have been announced, started construction, or in ramp-up stage in China, including UMC in Xiamen, PSC in Hefei, TSMC in Nanjing, YMTC in Wuhan and Nanjing, as well as GLOBALFOUNDRIES in Chengdu.  Many China-based foundries are adding 12-inch capacity including SMIC fabs in Shanghai, Beijing and Shenzhen, and HLMC in Shanghai area. The production capacity of these ~20 new fabs is expected to come online in the next three to five years.

SEMI has seen active interest in several local cities in attracting global and China-based companies to set up semiconductor fabrication facilities.  The strong trend for expansion and investment shows no signs of slowdown in China. The current investment fever in semiconductors in China is a balancing act ─ it will lead both to the development of a regional industry supply chain and the demand for capital investment in China. However, as with any expansion bubble, new production capacity in some mature nodes might create overcapacity and raises questions of sustainability paired with the severe shortage of skilled workers/engineers and uncertainty of future fund availability for continuing operations and investment.

Rise of China

China’s expansion in semiconductor manufacturing should be viewed through a global context.  SEMI advocates for free trade and open markets, international cooperation for intellectual property (IP) rights protection, industry Standards, and environmental protection. SEMI promotes the global electronics manufacturing supply chain and works to positively influence the growth and prosperity of its members.

In 2016, before stepping down, the U.S. Obama administration delivered a report from the Council of Advisors on Science and Technology. Part of the report addressed the rise of China’s semiconductor industry and recommended the United States should improve its environment for development of the semiconductor and high-tech industry and continue to invest in advanced technologies.

Each country will evaluate their own course as the China market expands. However, the rise of the semiconductor industry in China need not be viewed simply as a threat to the world; instead, it is a significant growth driver and business opportunity for global suppliers.  IC chips top the list of all Chinese bulk imports in terms of dollar value. China desires to develop its IC chip industry to better fulfill its inherent demand. China currently has low market share and limited technical capability in four major areas identified in the China National IC Development Guideline: IC design, manufacturing, package/testing, and equipment/material.

China is clear about its intentions with regard to growing its own semiconductor supply chain. In the short term, heavy dependency on foreign suppliers (especially equipment and material) is inevitable.  Going forward, cooperation with foreign semiconductor suppliers/partners with an open-minded and “win-win” attitude is an imperative strategy in solving the development bottleneck issues concerning equipment/materials and other key areas in China’s semiconductor industry.

SEMI China focuses on member value

China is the world’s largest manufacturing base for electronics products, as well as the world’s largest market for demand of IC chips. Now, as China’s semiconductor industry experiences a transformation in development, SEMI China is working to provide more value to its local and global members as the industry is rapidly changing. SEMI China promotes Chinese enterprises for industry growth and prosperity, and helps outstanding local companies advance in the international market. SEMI China is also using its global, specialized, and localized industry association platform to promote the development of the semiconductor industry in China.

SEMI China has 11 industry committees and is committed to SEMI global values and the China region. All the SEMI China committees have the strong connections needed to communicate and collaborate not only with China’s semiconductor industry, but with the global ecosystem.

SEMI, the global trade association that advances the growth and prosperity of electronics manufacturing, was the world’s first semiconductor industry group, established in 1970. It has witnessed the flourishing development of the semiconductor industry over the last 47 years and continues to be devoted to promoting the healthy development of the industry. SEMI is keeping pace with the industry and offering specialized and global platform services to the entire industry ecosystem. In the last two years, SEMI became a strategic partner with both FlexTech Alliance and the MEMS & Sensors Industry Group (MSIG). In the future, SEMI is also providing association services for the Fab Owner Association (FOA) to continue expanding collaboration along the electronics manufacturing supply chain. The intent is to include a wider span of the interdependent electronics manufacturing supply chain and the key adjacent opportunities that drive global growth opportunities.

SEMICON China is an industry event platform organized in partnership with major chip manufacturers, packaging and testing companies in China, and suppliers of equipment and materials worldwide. The world’s leaders come to discuss global industry trends, cutting-edge technologies and market opportunities on the same stage, as well as the development of global and Chinese semiconductor industries. This year, the importance of SEMICON China was validated ─ with over 69,000 attendees and a record number of exhibitors ─ the largest SEMICON show ever.

Global competition in semiconductor manufacturing has long been a part of the environment with growth starting in the U.S. and spreading to Europe, Japan, Korea, Taiwan, Southeast Asia, and China. Global competition has resulted in new innovations and a global march to the demanding cadence of Moore’s Law. Compared to other countries, China’s semiconductor industry is relatively weak and the barriers to entry for leading-node production remain challenging. Despite this, China is moving forward ─ with a focus to increase domestic semiconductor chip demand. The Chinese M&A wave is another growth driver for the industry. I hope that going forward we can all embrace the industry’s growth, and not fear China’s advancement.

 

Worldwide semiconductor revenue totaled $343.5 billion in 2016, a 2.6 percent increase from 2015 revenue of $334.9 billion, according to final results by Gartner, Inc. The top 25 semiconductor vendors’ combined revenue increased 10.5 percent, a significantly better performance than the overall industry’s growth; however, most of this growth resulted from merger and acquisition (M&A) activity.

“The semiconductor industry rebounded in 2016, with a weak start to the year, characterized by inventory correction, giving way to strengthening demand and an improving pricing environment in the second half,” said James Hines research director at Gartner. “Worldwide semiconductor revenue growth was supported by increasing production in many electronic equipment segments, improving NAND flash memory pricing and relatively benign currency movements.”

Intel retained its No. 1 position as the largest semiconductor manufacturer and grew its semiconductor revenue 4.6 percent in 2016 (see Table 1). Samsung Electronics continued to maintain the No. 2 spot with 11.7 percent market share.

Table 1. Top 10 Semiconductor Vendors by Revenue, Worldwide, 2016 (Millions of Dollars)

2015 Rank

2016 Rank

Vendor

2016 Revenue

2016
Market Share (%)

2015 Revenue

2015-2016 Growth (%)

1

1

Intel

54,091

15.7

51,690

4.6

2

2

Samsung Electronics

40,104

11.7

37,852

5.9

4

3

Qualcomm

15,415

4.5

16,079

-4.1

3

4

SK hynix

14,700

4.3

16,374

-10.2

17

5

Broadcom Ltd. (formerly Avago)

13,223

3.8

4,543

191.1

5

6

Micron Technology

12,950

3.8

13,816

-6.3

6

7

Texas Instruments

11,901

3.5

11,635

2.3

7

8

Toshiba

9,918

2.9

9,162

8.3

12

9

NXP Semiconductors

9,306

2.7

6,517

42.8

10

10

Media Tek

8,725

2.5

6,704

30.1

Others

153,181

44.6

160,562

-4.6

Total Market

343,514

100.0

334,934

2.6

Source: Gartner (May 2017)

Consolidation continued to play a major role in the market share rankings, with several large companies growing through acquisitions. Merger and acquisition activity among the major vendors in 2016 included Avago Technologies’ acquisition of Broadcom Corp. to become Broadcom Ltd., On Semiconductor’s acquisition of Fairchild Semiconductor, and Western Digital’s acquisition of SanDisk. The largest mover in the top 25 was Broadcom Ltd., which moved up 12 places in the market share ranking.

“The combined revenue of the top 25 semiconductor vendors increased by 10.5 percent during 2016 and accounted for a 74.9 percent share, outperforming the rest of the market, which saw a 15.6 percent revenue decline,” said Mr. Hines. “However, these results are skewed by the large amount of M&A activity during 2015 and 2016. If we adjust for this M&A activity by adding the revenue of each acquired company to the revenue of the acquirer for both 2015 and 2016 where necessary, then the top 25 vendors would have experienced a 1.9 percent revenue increase, and the rest of the market would have increased by 4.6 percent.”