Tag Archives: letter-pulse-top

Samsung Electronics Co. Ltd. announced today that it is expanding its advanced foundry process technology offerings with the fourth-generation 14-nanometer (nm) process (14LPU) and the third-generation 10nm process (10LPU) to meet the requirements of next generation products ranging from mobile and consumer electronics to data centers and automotives.

Samsung presented these new technology offerings at the Samsung Foundry Forum to foundry customers and partners. The event was held at its Device Solutions America headquarters today, where the company elaborated on the details of new technology offerings including 14LPU and 10LPU.

Samsung’s fourth-generation 14nm process technology, 14LPU, delivers higher performance at the same power and design rules compared to its third-generation 14nm process (14LPC). 14LPU will be optimally suited for high-performance and compute-intensive applications.

Samsung’s third-generation 10nm process, 10LPU, will provide area reduction compared to its previous generations (10LPE and 10LPP). Due to limitations of current lithography technologies, 10LPU is expected to be the most cost-effective cutting-edge process technology in the industry. Together with the second-generation 10nm process (10LPP) that offers an extra performance boost from 10LPE, 10LPU is positioned to meet the needs of an extended range of applications that can benefit from the advanced 10nm process.

On top of the new process offerings, Samsung also updated its 7nm EUV process development status and showcased its 7nm EUV wafer.

“After we announced the industry’s first 10nm mass production in mid-October, we have now also expanded our lineup with new foundry offerings, 14LPU and 10LPU,” said Ben Suh, Senior Vice President of foundry marketing at Samsung Electronics. “Samsung is very confident with our technology definitions that provide design advantages on an aggressive process with manufacturability considerations. We have received tremendous positive market feedback and are looking forward to expanding our leadership in the advanced process technology space.”

Process design kits (PDK) for 14LPU and 10LPU process technologies will be available during the second quarter of 2017.

IC Insights will release the 2017 edition of its IC Market Drivers Report later this month.  The newly updated report reviews many of the end-use system applications that are presently impacting and that are forecast to help propel the IC market through 2020. IC Market Drivers 2017 shows that the market for automotive electronic systems is expected to display the strongest cumulative average growth rate (CAGR) through 2020, at 4.9%, highest among the six main electronic system categories (Figure 1). Safety and convenience systems are essential features that consumers look for and want in their new car.  Automatic emergency braking, lane departure/blind spot detection systems, and backup cameras are among the most desired systems.  For semiconductor suppliers, this is good news as analog ICs, MCUs, and a great number of sensors will be required for these and other automotive systems throughout the forecast.

Figure 1

Figure 1

Other electronic system and IC market highlights from the 2017 IC Market Drivers Report include the following.

•    Although the automotive segment is forecast to be the fastest growing electronic system market through 2020, its share of the total IC market was only 7.9% in 2016 and is forecast to remain less than 10% throughout the forecast period.

•    Industrial/Medical/Other electronic systems are forecast to enjoy the second-fastest growth rate (4.3%) through 2020 as wearable health devices, home health diagnostics, robotics, and systems promoting the Internet of Things help drive growth in this segment.  Analog ICs are forecast to hold 49% of the industrial/medical/other IC market in 2016.

•    Communications became the largest end-use market for ICs in 2013, surpassing the computer IC market.  Asia-Pacific is forecast to represent 67% of the total communications IC market in 2016; 70% in 2020.

•    The consumer electronics system market is forecast to display 2.8% CAGR through 2020.  The logic segment is forecast to be the largest consumer IC market throughout the forecast.  In total, the consumer IC market is expected to register a 2.3% CAGR through this same time period.

•    The worldwide government/military IC market is forecast to be $2.5 billion in 2016, but represent only 0.8% of the total IC market ($290.0 billion).  The Americas region is the largest regional market for military ICs, accounting for 63% of the worldwide military IC market this year.

•    Hit by slowing demand for personal computing devices (desktops, notebooks, tablets), the market for computer systems is forecast to show the weakest growth through 2020.  The total computer IC market is forecast to decline 2% in 2016 following a 3% drop in 2015.  Asia-Pacific is forecast to hold a 66% share of the computer IC market in 2016 and a 71% share in 2020.

Qualcomm’s proposed acquisition of NXP Semiconductors marks the latest deal in a wave of industry consolidation that includes increasingly expensive transactions with greater focus on expanding scope rather than economies of scale, according to Fitch Ratings. Fitch believes consolidation in the chip industry will continue through the intermediate term within the context of cheap financing and tepid demand in more mature semiconductor markets.

While the NXP deal is expensive (and the largest ever) at $47 billion, including nearly $8 billion of net debt at NXP, Qualcomm will be able to tax-efficiently use offshore cash to fund a material amount of the all-cash transaction, given NXP’s Dutch incorporation. Fitch estimates Qualcomm will use approximately $28 billion of its $31 billion of total available cash at June 26, 2016 (more than $28 billion is located outside the U.S.) of offshore cash as of June 26, 2016 (versus $31 billion of total cash) and $11 billion of new debt, resulting in a Fitch estimated total leverage (total debt to operating EBITDA) of roughly 3.2x at closing. Despite the high price tag, Fitch believes the 4.6x revenue purchase multiples is in line with averages paid in large transactions completed over the last year, which Fitch estimates was roughly 5x revenues.

The Qualcomm deal with NXP is the latest example of chip companies acquiring capabilities within growth markets, particularly automotive and internet of things (IoT), as traditional semiconductor PC and smartphone markets mature. Qualcomm expects the acquisition will increase its addressable market by 40%, driven by increasing semiconductor content per car in automotive markets, exponential growth of connected devices in IoT markets and growing adoption of credit card security technologies.

Avago Technologies’ Feb. 2, 2016 acquisition of Broadcom for $37 billion focused on leveraging Broadcom’s leading wi-fi technology for the IoT market. Qualcomm’s August 2016 $2.4 billion acquisition of CSR plc strengthened Qualcomm’s nascent automotive and IoT offerings with significant semiconductor and software capabilities. Intel’s December 2015 acquisition of Altera Inc. for $16.7 billion acquisition of Altera diversified Intel away from personal computers by combining Altera’s field-programmable gate arrays with Intel’s low power processors for IoT applications. Even NXP’s December 2015 $12 billion acquisition of Freescale Semiconductor focused on expanding already strong capabilities and share in automotive and IoT markets.

Qualcomm has been in strategic review mode over the past few years amid growth concerns reflecting intensifying competition in the maturing smart phone market from the likes of Intel and a less robust long-term outlook for licensing revenue in China, where most smartphone unit growth is expected. The acquisition of NXP meaningfully diversifies Qualcomm’s end market exposure, reducing wireless handset exposure to below 50% of mobile products sales from 61% currently, and provides a top line growth catalyst, as well as earnings growth beyond significant share repurchases.

Fitch believes deal integration may be complicated by NXP’s ongoing integration of Freescale, which was structured largely as a merger of equals, and lack of technology overlap, given Qualcomm’s system-on-a-chip for mobile devices and telecom equipment focus and NXP’s focus on mixed-signal semiconductors and microprocessors and microcontrollers.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $88.3 billion for the third quarter of 2016, marking the industry’s highest-ever quarterly sales and an increase of 11.5 percent compared to the previous quarter. Sales for the month of September 2016 were $29.4 billion, an increase of 3.6 percent over the September 2015 total of $28.4 billion and 4.2 percent more than the previous month’s total of $28.2 billion. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“The global semiconductor market has rebounded markedly in recent months, with September showing the clearest evidence yet of resurgent sales,” said John Neuffer, president and CEO, Semiconductor Industry Association. “The industry posted its highest-ever quarterly sales total, with most regional markets and semiconductor product categories contributing to the gains. Indications are positive for increased sales in the coming months, but it remains to be seen whether the global market will surpass annual sales from last year.”

Regionally, month-to-month sales increased in September across all markets: China (5.4 percent), the Americas (4.6 percent), Asia Pacific/All Other (4.2 percent), Japan (2.3 percent), and Europe (1.6 percent). Compared to the same month last year, sales in September increased in China (12.0 percent), Japan (4.2 percent), and Asia Pacific/All Other (1.7 percent), but decreased in the Americas (-2.4 percent) and Europe (-4.0 percent).

China stood out in September, leading all regional markets with growth of 5 percent month-to-month and 12 percent year-to-year,” Neuffer said. “Standouts among semiconductor product categories included NAND flash and microprocessors, both of which posted solid month-to-month growth in September.”

September 2016

Billions

Month-to-Month Sales                               

Market

Last Month

Current Month

% Change

Americas

5.43

5.68

4.6%

Europe

2.71

2.76

1.6%

Japan

2.74

2.80

2.3%

China

8.99

9.47

5.4%

Asia Pacific/All Other

8.37

8.73

4.2%

Total

28.24

29.43

4.2%

Year-to-Year Sales                          

Market

Last Year

Current Month

% Change

Americas

5.82

5.68

-2.4%

Europe

2.87

2.76

-4.0%

Japan

2.69

2.80

4.2%

China

8.45

9.47

12.0%

Asia Pacific/All Other

8.58

8.73

1.7%

Total

28.41

29.43

3.6%

Three-Month-Moving Average Sales

Market

Apr/May/Jun

Jul/Aug/Sept

% Change

Americas

4.94

5.68

15.0%

Europe

2.68

2.76

3.0%

Japan

2.53

2.80

10.8%

China

8.29

9.47

14.2%

Asia Pacific/All Other

7.97

8.73

9.5%

Total

26.41

29.43

11.5%

van der Pauw measurements with a parameter analyzer are examined followed by a look at Hall effects measurements.

BY MARY ANNE TUPTA, Keithley Instruments Product Line at Tektronix, Cleveland, OH

Semiconductor material research and device testing often involves determining the resistivity and Hall mobility of a sample. The resistivity of a particular semiconductor material primarily depends on the bulk doping used. In a device, the resistivity can affect the capacitance, the series resistance, and the threshold voltage, so it’s important to perform this measurement carefully and accurately.

The resistivity of the semiconductor material is often determined using a four-point probe or Kelvin technique where two of the probes are used to source current and the other two probes are used to measure voltage. Using four probes eliminates measurement errors due to probe resistance, spreading resistance under each probe, and contact resis- tance between each metal probe and the semiconductor material. Because a high impedance voltmeter draws little current, the voltage drops are very small.

One useful Kelvin technique for determining the resistivity of a semiconductor material is the van der Pauw (vdp) method using a parameter analyzer with high input impedance and accurate low current sourcing. This article first looks at van der Pauw measurements with a parameter analyzer followed by a look at Hall effects measurements.

van der Pauw resistivity measurements

The van der Pauw method involves applying a current and measuring voltage using four small contacts on the circumference of a flat, arbitrarily shaped sample of uniform thickness. This method is particularly useful for measuring very small samples because geometric spacing of the contacts is unimportant, meaning that effects due to a sample’s size are irrelevant.

Using this method, the resistivity is derived from a total of eight measurements that are made around the periphery of the sample using the configurations shown in FIGURE 1.

FIGURE 1. van der Pauw resistivity conventions.

FIGURE 1. van der Pauw resistivity conventions.

Once all the voltage measurements are taken, two values of resistivity, ρA and ρB, are derived as follows:

Equation 1

 

where: ρA and ρB are volume resistivities in ohm-cm

ts is the sample thickness in cm

V1–V8 represents the voltages measured by the voltmeter

I is the current through the sample in amperes

fA and fB are geometrical factors based on sample symmetry. They are related to the two resistance ratios QA and QB as shown in the following equations (fA = fB = 1 for perfect symmetry).

QA and QB are calculated using the measured voltages as follows:

Equation 2

Also, Q and f are related as follows:

Equation 3

A plot of this function is shown in FIGURE 2. The value of f can be found from this plot once Q has been calculated.

FIGURE 2. Plot of f vs. Q.

FIGURE 2. Plot of f vs. Q.

Once ρA and ρB are known, the average resistivity (ρAVG) can be determined as follows:

Equation 4

The electrical measurements for determining van der Pauw resistivity require a current source and a voltmeter. To automate measurements, it’s possible to use a programmable switch to switch the current source and the voltmeter to all sides of the sample. However, a parameter analyzer offers greater efficiency.

A parameter analyzer with four source measure units (SMU) and four preamps (for high resistance measurements) is well-suited for performing van der Pauw resis- tivity measurements, and enables measurements of resistances greater than 1012Ω. A key advantage is that each SMU instrument can be configured as a current source or as a voltmeter with no external switching required. This eliminates leakage and offsets errors caused by mechanical switches as well as the need for additional instruments and programming.

For high resistance materials, a current source that can output very small current with a high output impedance is necessary. A differential electrometer with high input impedance is required to minimize loading effects on the sample.

Each terminal of the sample is connected to one SMU instrument, so a parameter analyzer with four SMU instruments is required. A diagram of how the four SMUs are configured for each of the tests is shown in FIGURE 3. For each test, three of the SMU instruments are configured as a current bias and a voltmeter. One of the SMUs applies the test current and the other two SMUs are used as high impedance voltmeters with a test current of zero amps on a low current range (typically 1nA range). The fourth SMU instrument is set to common. The voltage difference is calculated between the two SMU instruments set up as high impedance voltmeters. This measurement setup is duplicated around the sample, with each of the four SMU instruments changing functions in each of the four tests. The test current and voltage differences between the terminals from the four tests are used to calculate resistivity.

FIGURE 3. SMU Instrument Configurations for van der Pauw Measurements.

FIGURE 3. SMU Instrument Configurations for van der Pauw Measurements.

For high resistance samples, it’s necessary to determine the settling time of the measurement. This is done by sourcing current into two terminals of the sample and measuring the voltage difference between the other two terminals. The settling time can be determined by graphing the voltage difference versus the time of the measurement. A timing graph of a very high resistance material is shown in FIGURE 4. Note that settling time needs to be determined every time for different materials; however, it’s not necessary for low resistance materials since they have a short settling time.

FIGURE 4. Voltage vs. time graph of a very high resistance sample.

FIGURE 4. Voltage vs. time graph of a very high resistance sample.

Hall voltage measurements

Hall effect measurements are important to semiconductor material characterization because from the Hall voltage, the conductivity type, carrier density, and mobility can be derived. With an applied magnetic field, the Hall voltage can be measured using the configurations shown in FIGURE 5.

FIGURE 5. Hall voltage measurement configurations.

FIGURE 5. Hall voltage measurement configurations.

With a positive magnetic field, B, current is applied between terminals 1 and 3, and the voltage drop (V2–4+) is measured between terminals 2 and 4. When the current is reversed, the voltage drop (V4–2+) is measured. Next, current is applied between terminals 2 and 4, and the voltage drop (V1–3+) between terminals 1 and 3 is measured. Then the current is reversed and the voltage (V3–1+) is measured again.

Then the magnetic field, B, is reversed and the procedure is repeated again, measuring the four voltages: (V2–4–), (V4–2–), (V1–3–), and (V3–1–).

From the eight Hall voltage measurements, the average Hall coefficient can be calculated as follows:

Equation 5

where: RHC and RHD are Hall coefficients in cm3/C

ts is the sample thickness in cm

V represents the voltages measured by the voltmeter

I is the current through the sample in amperes

B is the magnetic flux in Vs/cm2 (1 Vs/cm2 = 108 gauss)

Once RHC and RHD have been calculated, the average Hall coefficient (RHAVG) can be determined as follows:

Equation 6

From the resistivity (ρAVG) and the Hall coefficient (RHAVG), the mobility (μH) can be calculated:

Equation 7

For successful resistivity measurements, potential sources of errors need to be considered. Here are the errors sources you are most likely to encounter.

Electrostatic Interference — Electrostatic interference occurs when an electrically charged object is brought near an uncharged object. Usually, the effects of the interference are not noticeable because the charge dissi- pates rapidly at low resistance levels. However, high resis- tance materials do not allow the charge to decay quickly and unstable measurements may result. The erroneous readings may be due to either DC or AC electrostatic fields.

To minimize the effects of these fields, an electrostatic shield can be built to enclose the sensitive circuitry. The shield should be made from a conductive material and connected to the low impedance (FORCE LO) terminal of the test instrument. The cabling in the circuit must also be shielded.

Leakage Current — For high resistance samples, leakage current may degrade measurements. The leakage current is due to the insulation resistance of the cables, probes, and test fixturing.

Leakage current may be minimized by using good quality insulators, by reducing humidity, and by using guarding.

A guard is a conductor connected to a low impedance point in the circuit that is nearly at the same potential as the high impedance lead being guarded. Using triax cabling and fixturing will ensure that the high impedance terminal of the sample is guarded. The guard connection will also reduce measurement time since the cable capacitance will no longer affect the time constant of the measurement.

Light — Currents generated by photoconductive effects can degrade measurements, especially on high resistance samples. To prevent this, the sample should be placed in a dark chamber.

Temperature — Thermoelectric voltages may also affect measurement accuracy. Temperature gradients may result if the sample temperature is not uniform. Thermoelectric voltages may also be generated from sample heating caused by the source current. Heating from the source current will more likely affect low resistance samples, because a higher test current is needed to make the voltage measure- ments easier. Temperature fluctuations in the laboratory environment may also affect measurements. Because semiconductors have a relatively large temperature coeffi- cient, temperature variations in the laboratory may need to be compensated for by using correction factors.

Carrier Injection — To prevent minority/majority carrier injection from influencing resistivity measurements, the voltage difference between the two voltage sensing terminals should be kept at less than 100mV, ideally 25mV, since the thermal voltage, kt/q, is approximately 26mV. The test current should be kept as low as possible without affecting the measurement precision.

Conclusion

The van der Pauw technique in conjunction with a parameter analyzer is a proven method for determining the resistivity of very small samples because geometric spacing of the contacts is unimportant. Hall effect measurements are important to semiconductor material characterization for determining conductivity type, carrier density, and mobility. Some parameter analyzers may include built-in configurable tests that include the necessary calculations.

For successful measurements, it’s important to consider potential sources of error including electronics interference, leakage current and environmental factor such as light and temperature. Resistivity can impact the characteristics of a device, serving as reminder of the importance of making accurate and repeatable measurements.

Qualcomm to acquire NXP


October 27, 2016

Qualcomm Incorporated (NASDAQ:  QCOM) and NXP Semiconductors N.V. (NASDAQ:  NXPI) today announced a definitive agreement, unanimously approved by the boards of directors of both companies, under which Qualcomm will acquire NXP.  According to Qualcomm’s official press release, a subsidiary of Qualcomm will commence a tender offer to acquire all of the issued and outstanding common shares of NXP for $110.00 per share in cash, representing a total enterprise value of approximately $47 billion.

NXP is a developer of high-performance, mixed-signal semiconductor electronics, with products and solutions and leadership positions in automotive, broad-based microcontrollers, secure identification, network processing and RF power.  As a semiconductor solutions supplier to the automotive industry, NXP also has leading positions in automotive infotainment, networking and safety systems, with solutions designed into 14 of the top 15 infotainment customers in 2016.  NXP has a broad customer base, serving more than 25,000 customers through its direct sales channel and global network of distribution channel partners.

“With innovation and invention at our core, Qualcomm has played a critical role in driving the evolution of the mobile industry.  The NXP acquisition accelerates our strategy to extend our leading mobile technology into robust new opportunities, where we will be well positioned to lead by delivering integrated semiconductor solutions at scale,” said Steve Mollenkopf, CEO of Qualcomm Incorporated.  “By joining Qualcomm’s leading SoC capabilities and technology roadmap with NXP’s leading industry sales channels and positions in automotive, security and IoT, we will be even better positioned to empower customers and consumers to realize all the benefits of the intelligently connected world.”

The combined company is expected to have annual revenues of more than $30 billion, serviceable addressable markets of $138 billionin 2020 and leadership positions across mobile, automotive, IoT, security, RF and networking.  The transaction has substantial strategic and financial benefits:

  • Complementary technology leadership in strategically important areas: The transaction combines leadership in general purpose and automotive grade processing, security, automotive safety sensors and RF; enabling more complete system solutions.
    • Mobile: A leader in mobile SoCs, 3G/4G modems and security.
    • Automotive: A leader in global automotive semiconductors, including ADAS, infotainment, safety systems, body and networking, powertrain and chassis, secure access, telematics and connectivity.
    • IoT and Security: A leader in broad-based microcontrollers, secure identification, mobile transactions, payment cards and transit; strength in application processors and connectivity systems.
    • Networking: A leader in network processors for wired and wireless communications and RF sub-segments, Wave-2 11ac/11ad, RF power and BTS systems.
  • Enhanced go-to-market capabilities to serve our customers:  The combination of Qualcomm’s and NXP’s deep customer and ecosystem relationships and distribution channels enables the ability to deliver leading products and platforms at scale in mobile, automotive, IoT, industrial, security and networking.
  • Shared track record of innovation and commitment to operational discipline: Both companies have demonstrated a strong commitment to technology leadership and best-in-class product portfolios with focused investments in R&D.  Qualcomm and NXP have both taken action to position themselves for profitable growth, while maintaining financial and operational discipline.  
  • Substantial financial benefits: Qualcomm expects the transaction to be significantly accretive to non-GAAP EPS immediately upon close.  Qualcomm expects to generate $500 million of annualized run-rate cost synergies within two years after the transaction closes.  The transaction utilizes Qualcomm’s strong balance sheet and will be efficiently financed with offshore cash and new debt. The transaction structure allows tax efficient use of offshore cash flow and enables Qualcomm to reduce leverage rapidly.

Mollenkopf continued, “We have taken significant action to build a foundation for profitable growth and the acquisition of NXP is strongly aligned with our strategy.  Our companies both have substantial expertise in delivering industry-leading solutions to our global customers, built upon a shared commitment to technology innovation, focused R&D investments and strong financial and operational discipline.”

“The combination of Qualcomm and NXP will bring together all technologies required to realize our vision of secure connections for the smarter world, combining advanced computing and ubiquitous connectivity with security and high performance mixed-signal solutions including microcontrollers. Jointly we will be able to provide more complete solutions which will allow us to further enhance our leadership positions, and expand the already strong partnerships with our broad customer base, especially in automotive, consumer and industrial IoT and device level security,” said Rick Clemmer, NXP Chief Executive Officer. “United in a common strategy, the complementary nature of our technologies and the scale of our portfolios will give us the ability to drive an accelerated level of innovation and value for the whole ecosystem. Such a strong fit will bring opportunities for our employees and customers, as well as provide immediate attractive value for our shareholders, in creating the semiconductor industry powerhouse.”

Sir Peter Bonfield, Chairman of NXP’s Board of Directors, said, “This is a major step in my ten years’ Chairmanship of NXP, and I am very pleased to see that the board of NXP has unanimously approved the proposed transaction and fully supports and recommends the offer for acceptance to NXP shareholders.”

Glass fibres do everything from connecting us to the internet to enabling keyhole surgery by delivering light through medical devices such as endoscopes. But as versatile as today’s fiber optics are, scientists around the world have been working to expand their capabilities by adding semiconductor core materials to the glass fibers.

Ursula Gibson, a professor of physics at the Norwegian University of Science and Technology, holds a glass fiber with a semiconductor core. Rapid heating and cooling of this kind of fiber allows the researchers to make functional materials with applications beyond traditional fiber optics. Credit: Nancy Bazilchuk

Ursula Gibson, a professor of physics at the Norwegian University of Science and Technology, holds a glass fiber with a semiconductor core. Rapid heating and cooling of this kind of fiber allows the researchers to make functional materials with applications beyond traditional fiber optics. Credit: Nancy Bazilchuk

Now, a team of researchers has created glass fibers with single-crystal silicon-germanium cores. The process used to make these could assist in the development of high-speed semiconductor devices and expand the capabilities of endoscopes says Ursula Gibson, a physics professor at the Norwegian University of Science and Technology and senior author of the paper.

“This paper lays the groundwork for future devices in several areas,” Gibson said, because the germanium in the silicon core allows researchers to locally alter its physical attributes.

The article, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” was published in Nature Communications on October 24.

Melting and recrystallizing

To understand what the researchers did, you need to recognize that silicon and germanium have different melting points. When the two substances are combined in a glass fiber, flecks of germanium-rich material are scattered throughout the fiber in a disorderly way because the silicon has a higher melting point and solidifies, or “freezes” first. These germanium flecks limit the fiber’s ability to transmit light or information. “When they are first made, these fibers don’t look very good,” Gibson said.

But rapidly heating the fiber by moving it through a laser beam allowed the researchers to melt the semiconductors in the core in a controlled fashion. Using the difference in the solidification behavior, the researchers were able to control the local concentration of the germanium inside the fiber depending upon where they focused the laser beam and for how long.

“If we take a fibre and melt the core without moving it, we can accumulate small germanium-rich droplets into a melt zone, which is then the last thing to crystalize when we remove the laser slowly,” Gibson said. “We can make stripes, dots… you could use this to make a series of structures that would allow you to detect and manipulate light.”

An interesting structure was produced when the researchers periodically interrupted the laser beam as it moved along their silicon-germanium fibre. This created a series of germanium-rich stripes across the width of the 150-micrometer diameter core. That kind of pattern creates something called a Bragg grating, which could help expand the capability of long wavelength light-guiding devices. “That is of interest to the medical imaging industry,” Gibson said.

Rapid heating, cooling key

Another key aspect of the geometry and laser heating of the silicon-germanium fibre is that once the fibre is heated, it can also be cooled very quickly as the fibre is carried away from the laser on a moving stage.

Controlled rapid cooling allows the mixture to solidify into a single uniform crystal the length of the fibre — which makes it ideal for optical transmission.

Previously, people working with bulk silicon-germanium alloys have had problems creating a uniform crystal that is a perfect mix, because they have not had sufficient control of the temperature profile of the sample.

“When you perform overall heating and cooling, you get uneven composition through the structure, because the last part to freeze concentrates excess germanium,” Gibson said. “We have shown we can create single crystalline silicon-germanium at high production rates when we have a large temperature gradient and a controlled growth direction.”

Transistors that switch faster

Gibson says the laser heating process could also be used to simplify the incorporation of silicon-germanium alloys into transistor circuits.

“You could adapt the laser treatment to thin films of the alloy in integrated circuits,” she said.

Traditionally, Gibson said, electronics researchers have looked at other materials, such as gallium arsenide, in their quest to build ever-faster transistors. However, the mix of silicon and germanium, often called SiGe, allows electrons to move through the material more quickly than they move through pure silicon, and is compatible with standard integrated circuit processing.

“SiGe allows you to make transistors that switch faster” than today’s silicon-based transistors, she said, “and our results could impact their production.”

SEMICON Europa will open its doors tomorrow, showcasing the latest product, tools, and technologies for advanced microelectronics manufacturing. Co-located with the IoT Planet exhibition at the Alpexpo in Grenoble, France, SEMICON Europa features more than 400 international exhibitors representing all segments and sectors of the semiconductor supply chain. SEMICON Europa 2016 will run from 25-27 October.

Presenting and attending companies include Intel, STMicroelectronics, CEA-Leti, imec, GLOBALFOUNDRIES, INFINEON, EVG, Sony, among others.  The market data and technological developments and strategies presented will keep attendees informed about current industry practices and achievements and help propel them into the future of the electronics industry.

SEMICON Europa sessions and conferences, including the Fab Management ForumAdvanced Packaging Conference, Imaging ConferencePower Electronics Conference, and the new 2016FLEX Europe Conference offer attendees a real connection to the complete electronics supply chain, from silicon to system, with a strong emphasis on application-driven markets, including imaging, power electronics, automotive, MedTech, and flexible hybrid electronics (FHE).

More than 6,000 industry professionals are expected to attend this year’s event. In addition to the exhibition and conferences, dozens of start-up and early-stage companies and more than 60 speakers will participate in the Innovation Village program. Located on the SEMICON show floor, Innovation Village showcases start-up talent, incubators, and investment opportunities within Europe and abroad.

For more information visit www.semiconeuropa.org.

Knowles, Goertek and AAC ranked as the top three global suppliers of packaged MEMS microphones for 2015, according to the latest analysis from IHS Markit (NASDAQ: INFO), a world leader in critical information, analytics and solutions.

MEMS (micro-electromechanical systems) technology is utilized to produce microphones used in laptops, hearing aids, wearables and smartphones among many other products. Last year, MEMS microphones remained the healthiest sensors segment for suppliers, in terms of unit volume and revenue, said Marwan Boustany, senior analyst for IHS Technology.

“Our updated analysis of 2015 MEMS microphone supplier market share, shows that Knowles remained the dominant supplier with more than two times the units and revenue of the second-place supplier, Goertek,” Boustany said. “In addition to offering a wide range of analog and digital output microphones for many applications, Knowles has also started shipping its VoiceIQ ‘intelligent’ microphones with local processing as it seeks to address both mobile and IOT applications.”

2016 mems mic growth

Strong growth for MEMS’ runner-ups

Goertek MEMS microphone units grew by an impressive 104 percent CAGR between 2011 and 2015, thanks in large part to its design wins in Apple, the IHS Markit analysis shows. Apple accounts for approximately 70 percent (in units) of Goertek’s MEMS microphone business in 2015. Goertek entered in large volume in the iPhone in 2014 and has since continued to increase its share; this has had the impact of reducing the share of AAC and Knowles in subsequent years.

While still solidly in third position among packaged MEMS suppliers after Goertek, AAC has faced challenges from Goertek in both Apple and in Chinese OEMs. This has resulted in a reduction in unit volume shipped by AAC in 2015 of almost 9 percent, IHS Markit says. However, AAC invested in a new technology for MEMS microphones in 2016 when it officially partnered with Vesper MEMS, a piezoelectric MEMS microphone start-up.

Boosting audio performance in handsets

The general adoption trend for microphones in smartphones has been towards higher performance, IHS Markit says. Driving this trend: OEMs want better quality audio for calls and hand-free communication, noise cancellation, voice recognition such as Siri and Google Now, as well as the availability of lower-cost microphones due to the erosion of ASP (average selling price).

“These types of use cases also drive high-performance microphone adoption in smart watches, tablets, noise cancelling earphones, hearing aids and increasingly in automotive cabins,” Boustany said.

Beyond performance, the average number of microphones per handset increased in 2015 due to Apple adopting four microphones in its iPhone 6S, with most other OEMs using two or three microphones in their mid- to high-end smartphones, the IHS Markit analysis shows. In tablets, smart watches and hearing aids, the number of microphones is between one and two. Adoption of microphones in automotive cabins can potentially exceed eight, depending on use cases and implementation choices in the future.

Knowles tops list for die makers, too

According to the IHS Technology analysis, Knowles – which produces its own microphone dies – holds the number one spot for market share in MEMS microphone production, with a dominant 43 percent market share.

Infineon acts as the major supplier of MEMS microphone dies to Goertek, AAC and BSE among others and stands solidly in second place with a 31 percent market share. In third place is Omron, which has supplied into STMicroelectronics, ACC and Goertek among others and has a 13 percent market share, the analysis shows. Neither Infineon nor Omron supply fully packaged MEMS microphone die.

Gigaphoton Inc., a manufacturer of light sources used in lithography, has announced success in achieving a world record 5% conversion efficiency with 100W of average output in stable operation and a high duty rate of 95%. This comes as a result of perfecting a pilot light source1 designed for operation in semiconductor mass production lines that utilize Laser-Produced Plasma (LPP) light sources for EUV scanners, which the company is currently engaged in developing.

To date, Gigaphoton has developed a number of innovative technologies and improvements, which include sub 20 μm micro droplet supply technology; a high luminous-quality main pulse beam that combines an improved solid-state pre-pulse laser with a newly introduced Mitsubishi Electric product designated as a high frequency discharge excitation-type three-axis orthogonal CO2 laser amplifier; improvements in energy control technology; and a debris removal technology developed by Gigaphoton that operates via magnetic fields. These advancements have all contributed to accomplishing 130W or better continuous operation on a prototype machine, an achievement announced earlier this year in July. This latest pilot light source incorporates these new technologies in a system designed based on the assumption of integrating an EUV scanner.

The pilot light source has successfully achieved 5% conversion efficiency with 105W of average output in stable operation and a high duty rate of 95% (a rate that measures light emission time versus operating time), which is a more demanding workload than the prototype underwent. This is in line with the 100W average output that governs throughput in semiconductor production, and is considered a performance level that exceeds the requirements of users today. The success achieved in this operational demonstration confirms that the realization of cutting edge semiconductor production lines is just around the corner.

Hakaru Mizoguchi, Vice President & CTO of Gigaphoton says, ”Our success in achieving a world record 5% conversion efficiency while attaining a 100W average output in stable operation and high duty rate of 95% with our pilot light source―which is designed to operate in state-of-the-art semiconductor mass production lines―shows that we are very close to the market introduction stage for EUV light sources that will be capable of delivering stable operation, high output, and low running costs. We are confident that Gigaphoton’s advanced technological capabilities and development efforts will not only accelerate the development of EUV scanners for mass production, which is the next generation of technology in lithography, but will also support overall development in the semiconductor industry and contribute to the realization of an IoT based society.”