Tag Archives: letter-pulse-top

By Debra Vogler, SEMI

A forum of industry experts at SEMICON West 2016 will discuss the challenges associated with getting from node 10 — which seems set for HVM — to nodes 7 and 5. Confirmed speakers at the “Node 10 to Node 5 ─ Dealing with the Slower Pace of Traditional Scaling (Track 2)” session on Tuesday, July 12, 2:00pm-4:00pm, are Lode Lauwers (imec), Guy Blalock (IM Flash), Kelvin Low (Samsung), Mike Chudzik (Applied Materials), Kevin Heidrich (Nanometrics), and David Dutton (Silvaco). SEMI interviewed Lauwers and Chudzik to see what challenges they see ahead as the industry progresses from node 7 to node 5.

According to Mike Chudzik, senior director, Cross-Business Unit Modules Team at Applied Materials, “The top tw or three process development challenges facing the industry at node 7 are RC reduction, RC reduction, and RC reduction,” Chudzik told SEMI. “At the 7nm node, parasitic resistance and parasitic capacitance delays are predicted to be greater than the inherent transistor delay.” Among the solutions he cites are new materials such as cobalt for the contact fill, lower-k spacers, and integration solutions, such as air-gap and replacement contact schemes. “While FinFETs are expected to scale to the 7nm node, their days are numbered. If you want to scale to the true historical 0.7X 7nm node, it’s a challenge for FinFETs because continuing to scale the gate length requires scaling the fin width.” He also explained that the variability in patterned fins will cause serious device performance challenges at near 5nm fin width on account of quantum confinement. “Something new like gate-all-around (GAA) devices are needed to fuel the next-generation of device scaling.”

Figure 1: At the 7nm node (CD of 13nm), the resistance of the TiN/W fill materials for the contact plug is expected to become higher than the interfacial contact resistance. SOURCE: Applied Materials

Figure 1: At the 7nm node (CD of 13nm), the resistance of the TiN/W fill materials for the contact plug is expected to become higher than the interfacial contact resistance. SOURCE: Applied Materials

Among the materials challenges in getting to nodes 7 and 5 are cobalt implementation for the contact, and Si/SiGe superlattices for the 5nm node, explained Chudzik. “The former challenge concerns replacing tungsten in the contact plug, and the latter is needed to form horizontal GAA structures.” Figure 1 shows that at the 7nm node (CD of 13nm) the resistance of the TiN/W fill material for the contact plug is expected to become higher than the interfacial contact resistance. “A TiN/Co solution provides relief.”

In addition to improving the performance of the interconnect, Lode Lauwers, VP, business development for CMOS technology at imec, told SEMI that getting to node 7 will require very advanced fin technology combined with a patterning solution. Looking ahead to node 5, he said it is expected that the fin will still be the reference technology, along with the introduction of new materials such as SiGe, and a high concentration of Ge in the channel as a mobility improvement, and possibly even the consideration of III-V materials (particularly at N5) (see Figures 2 and 3).

Figure 2: Performance and energy efficiency roadmap: devices architectures. SOURCE: imec

Figure 2: Performance and energy efficiency roadmap: devices architectures. SOURCE: imec

Figure 3: Performance and energy efficiency roadmap: transistor features that are driving the logic roadmap. SOURCE: imec

Figure 3: Performance and energy efficiency roadmap: transistor features that are driving the logic roadmap. SOURCE: imec

In looking out towards the horizon, Lauwers pointed out that the industry has to consider alternatives to the fin because there is an engineering limit to how small the fin dimensions can be made. “There is the possibility that at node 5 the industry will consider alternatives to the traditional fin, said Lauwers. “For example, the GAA structure (also referred to as a lateral or horizontal nanowire, HGAA) is superior in terms of gate control and will have better leakage control. That means you will be able to have better performance over a lower supply voltage with a lower threshold voltage.”

Beyond HGAA structures, Lauwers observed that the industry could move to a vertical nanowire structure (VGAA). But there are several contenders (see Figure 2). “It’s not up to imec to choose and it’s too early to say what will be the right option,” Lauwers told SEMI. “Maybe for certain applications or a certain technology positioning, a device maker might make a different compromise.”

In addition to imec and Applied Materials, speakers from IM Flash, Nanometrics, Samsung, and Silvaco will present at the “Scaling: Node 10 to Node 5” session of the three-day Advanced Manufacturing Forum (see Schedule-at-a-Glance) at SEMICON West 2016 which takes place July 12-14 in San Francisco, Calif.

Today, SEMI announced that 19 new fabs and lines are forecasted to begin construction in 2016 and 2017, according to the latest update of the SEMI World Fab Forecast report. While semiconductor fab equipment spending is off to a slow start in 2016, it is expected to gain momentum through the end of the year. For 2016, 1.5 percent growth over 2015 is expected while 13 percent growth is forecast in 2017.

Fab equipment spending ─ including new, secondary, and in-house ─ was down 2 percent in 2015. However, activity in the 3D NAND, 10nm Logic, and Foundry segments is expected to push equipment spending up to US$36 billion in 2016, 1.5 percent over 2015, and to $40.7 billion in 2017, up 13 percent. Equipment will be purchased for existing fabs, lines that are being converted to leading-edge technology, as well as equipment going into new fabs and lines that began construction in the prior year.

Table 1 shows the regions where new fabs and lines are expected to be built in 2016 and 2017. These projects have a probability of 60 percent or higher, according to SEMI’s data. While some projects are already underway, others may be subject to delays or pushed into the following year. The SEMI World Fab Forecast report, published May 31, 2016, provides more details about the construction boom.

new fab lines

Breaking down the 19 projects by wafer size, 12 of the fabs and lines are for 300mm (12-inch), four for 200mm, and three LED fabs (150mm, 100mm, and 50mm). Not including LEDs, the potential installed capacity of all these fabs and lines is estimated at almost 210,000 wafer starts per month (in 300mm equivalents) for fabs beginning construction in 2016 and 330,000 wafer starts per month (in 300mm equivalents) for fabs beginning construction in 2017.

In addition to announced and planned new fabs and lines, SEMI’s World Fab Forecast provides information about existing fabs and lines with associated construction spending, e.g. when a cleanroom is converted to a larger wafer size or a different product type.

In addition, the transition to leading-edge technologies (as we can see in planar technologies, but also in 3D technologies) creates a reduction in installed capacity within an existing fab. To compensate for this reduction, more conversions of older fabs may take place, but also additional new fabs and lines may begin construction.

For insight into semiconductor manufacturing in 2016 and 2017 with details about capex for construction projects, fab equipping, technology levels, and products, visit the SEMI Fab Database webpage and order the SEMI World Fab Forecast Report. The report, in Excel format, tracks spending and capacities for over 1,100 facilities including over 60 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities.

IC Insights has just released the Update to its 2016 IC Market Drivers Report that examines and evaluates key existing and emerging end-use applications that will support and propel the IC industry through 2019.

In 2015 and early 2016, there were numerous reports of slowing in the Chinese smartphone market. Since most of the Chinese smartphone producer’s sales are to Chinese customers, this slowdown became evident in some of their 2015 and 1Q16 smartphone sales figures.  For example, China-based Coolpad’s smartphone sales dropped by 44% in 2015 to only 25.5 million units.  Moreover, Xiaomi, a real “high-flyer” in smartphone sales in 2013 and 2014 saw its growth slow to 16% last year.  While a 16% growth rate is still very commendable, its sales of about 71 million smartphones last year was well below the company’s earlier stated goal of shipping 100 million smartphones in 2015.

Figure 1 depicts actual 1Q16 smartphone unit sales by the top 12 companies with a forecast for their full-year 2016 unit volume shipments.  As shown, eight of the top 12 companies are headquartered in China with an Indian company (Micromax) making the list for the first time.   Gionee, a China-based smartphone supplier, just missed making the 1Q16 top 12 ranking after shipping 4.8 million handsets in the quarter.

IC Insights believes that there will be very little middle ground with regard to smartphone shipment growth rates among the top 12 suppliers this year.  As shown, seven of the top twelve companies are forecast to register 2016 growth rates of 6% or less while the other five companies are expected to each log 29% or better increases.  Further illustrating the maturing of the smartphone market, the top two suppliers, Samsung and Apple, are each forecast to show a slight decline in smartphone shipments this year.

Three companies are expected to drop out of the top 12 ranking this year as compared to 2015—Japan-based Sony, U.S.-based Microsoft, and China-based Coolpad.  These three companies saw their 1Q16 sales of smartphones drop to 3.4, 2.3, and 4.0 million, respectively.  Although Microsoft announced it intends to sell its non-smartphone business later this year, its early 2016 Lumia smartphones shipments put it on a path to sell less than 15 million units in 2016.

chinese ic suppliers fig 1

Figure 1

Additional details on the cellphone IC market are included in the 2016 Update of IC Insights’ IC Market Drivers—A Study of Emerging and Major End-Use Applications Fueling Demand for Integrated Circuits. This report examines the largest, existing system opportunities for ICs and evaluates the potential for new applications that are expected to help fuel the market for ICs through the end of this decade.

By Dr. Phil Garrou, Contributing Editor

Dongkai ShangguanDr. Dongkai Shangguan is currently the Chief Marketing Officer of STATS ChipPAC. Previously, Dongkai served as the founding CEO of the National Center for Advanced Packaging Co., Ltd. (“NCAP China”), worked for 10 years at Ford Motor Company in various technical and management functions, and for 11 years at Flextronics as Corporate Vice President of Global Advanced Technology.

SST: In 2015, STATS ChipPAC was acquired by JCET (Jiangsu Changjiang Electronics Technology Co., Ltd.) and organized as a business unit. Can you describe some of the personnel changes that have taken place?

DS: Following the acquisition, STATS ChipPAC became a business unit under the JCET Group with the same organizational structure as what we had prior to the completion of the deal. Dr. Han Byung Joon (BJ) was appointed to be Co-President and Chief Executive Officer with Tan Lay Koon. Dr. Han had served as our Chief Technology Officer since 1999. He and Lay Koon had worked very closely over the years and together led the company through the first three months following the acquisition. After the initial transition period, Dr. Han became the President and CEO for the company. Reporting directly to JCET Group Chairman Wang XinChao, Dr. Han has full responsibility for the business results of STATS ChipPAC. He also serves as Chairman of the Technology Strategy Council for the JCET Group.

In August of last year, there were two additional executive appointments. Woo Kwek Kiong (KK) was appointed Senior Vice President and Chief Financial Officer for the Company. Prior to joining us, KK was Chief Financial Officer at Advanpack Solutions Pte Ltd and ASTI Holdings Limited. Il Kwon (IK) Shim was promoted to Senior Vice President and Chief Technology Officer. IK has been with STATS ChipPAC since 2000 and prior to his promotion served as Head of Research and Development.

In December, Cindy Palar was appointed as Managing Director of STATS ChipPAC Singapore (SCS), where our FlexLineTM manufacturing is located. Cindy has been with the Company since 1999 and has held a number of senior management positions in Strategic Marketing, Pricing, Product Line Management and Demand/Capacity Planning.

JCET chose a light integration strategy for the acquisition in order to keep the focus on our customers and minimize any disruptions with our service and support. The organizational structure and operating systems for STATS ChipPAC have remained the same as before the acquisition, providing a smooth transition following the deal completion. 

SST: We know that JCET is the largest semiconductor packaging and test provider in China through JCAP (Jiangyin Changdian Advanced Packaging Co., Ltd. ) a subsidiary of JCET which provides wafer bump (solder bump, gold bump, pillar bump), Wafer Level Chip Scale Packaging, assembly and test. Can you differentiate between what JCET SCP and JCET JCAP will offer the customer as divisions of JCET?

DS: JCET has extremely solid credentials in turnkey wirebond packaging, servicing a broad range of applications with very good relationship with a large number of customers, particularly in China. JCET focuses primarily on leaded wirebond and flip chip packaging including assembly of discrete packages.

JCAP provides turnkey services including wafer bump, probe and assembly. JCAP is a leader in advanced wafer bump technology (solder bump, gold bump, copper pillar bump) and Wafer Level Chip Scale Packaging (WLCSP).

STATS ChipPAC, with the strongest IP portfolio in the OSAT industry for many years, clearly brings very strong advanced packaging technologies to the JCET Group, particularly in Fan-out Wafer Level Packaging (FOWLP), laminate-based Flip Chip, package-on-package (PoP), and System-in-Package (SiP) capabilities. STATS ChipPAC will continue to be the FOWLP and SiP center of competency for the JCET Group, and all laminate based flip chip activities are being consolidated into STATS ChipPAC factories.

As a combined Group, the JCET Group is now able to address a much broader total available market (TAM). While each JCET Business Unit has its area of expertise, we are already seeing benefits of cross-selling services to our customers, particularly in China.

SST:. Will the SCP product focus change any in the coming years? Can you share any packaging roadmaps?

DS: No, the merger does not change STATS ChipPAC’s focus or roadmap at all. Our focus for the coming years continues to be on expanding our SiP and FOWLP business, in addition to our core turnkey wirebond, flip chip and PoP packaging business areas. STATS ChipPAC is firmly committed to our industry leading eWLB technology as supported by our eWLB line expansion occurring throughout this year. While we will continue to develop advanced 2.5D and 3D FOWLP package designs, we will be implementing further process optimizations, such as panel manufacturing, which will drive significantly better capital intensity and a lower unit cost for larger body sizes.

SST: Have/will SCP manufacturing facilities in Singapore moved/move to China?

DS: There is currently no plan for any relocation. Our STATS ChipPAC Singapore (SCS) facility remains the hub of the JCET Group’s effort in FOWLP as well as being our largest Test site. SCS is an important location for several Tier 1 customers who prefer having Singapore as part of their supply chain for regional diversity and other commercial reasons.

SST: What is JCET relationship to SMIC? We noticed with interest that SMIC recently increased its ownership position to 14.25% making it the single largest owner of JCET.

DS: JCET has entered into asset purchase transaction whereby it will acquire the remaining shareholding in STATS ChipPAC from the National Integrated Circuit Fund and SMIC. Concurrent to the asset purchase transaction, JCET has entered into a subscription agreement with SMIC whereby SMIC will subscribe for approximately 150 million JCET shares for a consideration of about US$400 million. After the proposed transaction, SMIC will have a 14.25% stake in JCET Group, resulting in JCET owning 100% of STATS ChipPAC. This transaction will strengthen the equity base of JCET with stronger shareholders, and create better operational synergies. These transactions have no significant impact to STATS ChipPAC’s organizational structure or management team, and will not impact our service to our customers.

SST: China’s government policy “National Guidelines for Development and Promotion of the IC Industry,” which was released in June of 2014 calls for expansion and vertical integration of the domestic semiconductor value chain with domestic sales revenue targets of $56B by 2020. How does packaging fit into these overall goals?

DS: The Chinese government correctly identifies packaging and test as critical parts of the overall semiconductor ecosystem and, therefore, packaging is an integral part of these goals. As the largest OSAT in China, the JCET Group is uniquely positioned to participate in and capitalize on the emergence and growth of the Chinese semiconductor ecosystem. With the addition of the advanced packaging technologies from STATS ChipPAC, the JCET Group is well positioned to help enable this growth.

SST: What new products or technologies would you like to share with our readers?

DS: We are very proud to have passed a significant milestone for 1B units shipped for our industry leading eWLB FOWLP product. The eWLB platform has an incredible amount of traction now and the technology roadmap around this platform is resonating with an increasingly diverse range of customers, from its traditional base in mobile communications into areas such as Advanced Driver Assistance Systems (ADAS) in automobiles and bio-processors in the wearables market. Furthermore, as a platform for system integration, enabled by finer L/S and multiple RDL’s, eWLB SiP in various configurations (such as multi-die with passives, PoP, 2.5D, etc) has a tremendous future.

SiP capabilities are incredibly important to those customers driving miniaturization as well as integration and modularization of functionality. This represents a major new source of TAM for the OSAT industry. We feel we are extremely well positioned in this area, as we have developed comprehensive capabilities, including design and simulation, advanced packaging technologies, high density SMT component placement, advanced molding for complex topographies, conformal shielding, and system level test, for a wide variety of SiPs/modules in multiple market segments. Depending on the application requirements and product complexity, we have developed various SiP configurations ranging from conventional 2D modules with multiple active and passive components, interconnected through flip chip, wire bonding, and SMT, to more complex modules such as Package-in-Package (PiP), eWLB Package-on-Package (eWLB PoP), 2.5D and 3D solutions.

We anticipate that our strength in these areas coupled with our unique position in the highest growth region, China, will propel our growth well beyond the industry average going forward.

A group of scientists from Hong Kong University of Science and Technology; the University of California, Santa Barbara; Sandia National Laboratories and Harvard University were able to fabricate tiny lasers directly on silicon — a huge breakthrough for the semiconductor industry and well beyond.

For more than 30 years, the crystal lattice of silicon and of typical laser materials could not match up, making it impossible to integrate the two materials — until now.

As the group reports in Applied Physics Letters, from AIP Publishing, integrating subwavelength cavities — the essential building blocks of their tiny lasers — onto silicon enabled them to create and demonstrate high-density on-chip light-emitting elements.

To do this, they first had to resolve silicon crystal lattice defects to a point where the cavities were essentially equivalent to those grown on lattice-matched gallium arsenide (GaAs) substrates. Nano-patterns created on silicon to confine the defects made the GaAs-on-silicon template nearly defect free and quantum confinement of electrons within quantum dots grown on this template made lasing possible.

The group was then able to use optical pumping, a process in which light, rather than electrical current, “pumps” electrons from a lower energy level in an atom or molecule to a higher level, to show that the devices work as lasers.

“Putting lasers on microprocessors boosts their capabilities and allows them to run at much lower powers, which is a big step toward photonics and electronics integration on the silicon platform,” said professor Kei May Lau, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology.

Traditionally, the lasers used for commercial applications are quite large — typically 1 mm x 1 mm. Smaller lasers tend to suffer from large mirror loss.

But the scientists were able to overcome this issue with “tiny whispering gallery mode lasers — only 1 micron in diameter — that are 1,000 times shorter in length, and 1 million times smaller in area than those currently used,” said Lau.

Whispering gallery mode lasers are considered an extremely attractive light source for on-chip optical communications, data processing and chemical sensing applications.

“Our lasers have very low threshold and match the sizes needed to integrate them onto a microprocessor,” Lau pointed out. “And these tiny high-performance lasers can be grown directly on silicon wafers, which is what most integrated circuits (semiconductor chips) are fabricated with.”

In terms of applications, the group’s tiny lasers on silicon are ideally suited for high-speed data communications.

“Photonics is the most energy-efficient and cost-effective method to transmit large volumes of data over long distances. Until now, laser light sources for such applications were ‘off chip’ — missing — from the component,” Lau explained. “Our work enables on-chip integration of lasers, an [indispensable] component, with other silicon photonics and microprocessors.”

The researchers expect to see this technology emerge in the market within 10 years.

Next, the group is “working on electrically pumped lasers using standard microelectronics technology,” Lau said.

The 2015 analog market grew 2% to $47.0 billion.  Combined sales of general-purpose analog products (amplifiers/comparators, interface, power management, an signal conversion devices) increased 2% to $19.1 billion and sales of application-specific analog devices also improved 2% to $27.9 billion. Among analog IC products the market for signal conversion devices showed the largest increase in 2015, growing 14% to $2.9 billion.

IC Insights’ ranking of top analog IC suppliers for 2015 is shown in Figure 1.  Collectively, these 10 companies accounted for 56% of global analog sales last year, down slightly from 57% in 2014. Among the top suppliers, nine had analog sales in excess of $1.0 billion; five of these had sales in excess of $2.0 billion.  Only tenth-ranked Renesas fell short of the $1.0 billion mark.  With a 10% increase, NXP’s analog sales outperformed the total analog market by the widest margin (Figure 1).

Figure 1

Figure 1

Texas Instruments was again the leading supplier of analog devices in 2015 with $8.3 billion in sales, which was good for 18% marketshare.  TI’s analog sales slightly surpassed the combined revenue of the next three-largest analog suppliers, and represented 69% of its total semiconductor revenue last year.  TI has always been a major player in analog, but beginning in 2009, it doubled down on its long-term efforts to dominate this market segment. That year, TI became the first company to manufacture analog devices on 300mm equipment.  It purchased 300mm manufacturing tools from defunct Qimonda and transferred it to its existing fabs in Texas to build analog ICs.  In 2010, TI acquired two wafer fabs operated by Spansion in Aizu-Wakamatsu, Japan, and a fully equipped 200mm fab in Chengdu, China from Cension Semiconductor Manufacturing.  Both facilities were converted and immediately put to use making analog ICs.  In April 2011, TI acquired National Semiconductor—its rival in many analog markets—for $6.5 billion.

TI also strengthened its analog position by transitioning to 300mm manufacturing capacity at its newer RFAB and its older DMOS 6 fabs.  Aside from boosting its analog manufacturing capacity, moving to 300mm wafer helped reduce total production costs by 40%, according to the company.

Other changes seen in the 2015 ranking include Infineon moving up one place to become the second-largest analog supplier and Skyworks Solutions moving up two spots to #3.  ST slipped from #2 in 2014 to #5 in the 2015 ranking following its 13% decline in analog sales, which it attributed to soft equipment sales (computer, consumer, automotive, industrial) among its primary customers. Collectively, Infineon, NXP, and ST—Europe’s three-largest IC suppliers—accounted for 15% analog marketshare last year.

Skyworks continues to enjoy solid analog sales due to design wins with smartphones providers around the world. Skyworks Solutions makes analog and mixed signal semiconductors for Apple, Samsung, and other suppliers of mobile devices.  Many of Skyworks’ power amplifier components are found in Apple’s iPhone 6 models.  It has been estimated that Skyworks supplies $4 worth of content for every iPhone 6 handset.

Although highly focused in mobile markets, Skyworks plans to expand into the automotive, home, and wearable markets to develop its presence in applications linked to the Internet of Things.  Analog ICs such as audio amplifiers, op amps, and analog switches are building blocks for creating wearable applications. Skyworks’ wireless technology is used in General Electric healthcare equipment, and the company recently sealed a deal to supply high-performance filter solutions to Panasonic.

Analog Devices’ analog sales grew 2% last year.  One of its key analog ICs is a device that enables 3D/Force Touch, a feature available on the Apple Watch, the latest iPhones, and new generations of the iPad, that uses tiny electrodes to distinguish between a light tap and a deep press to trigger contextually specific controls.

IC Insights forecasts the total analog market to grow 4% this year, reaching $49.1 billion and then surpass the $50.0 billion mark for the first time in 2017 as analog sales climb to an expected $51.4 billion. From 2015 to 2020, the analog market is forecast to grow at a compound annual growth rate of 6%, one point higher than the total IC market.

BioMEMS have been used for years, for plenty of applications. Some are linked to solid, mature, slow-growing industries, while others are part of booming applications that are adding new fuel to the bioMEMS market. According to Yole Développement (Yole) analysts, this market will triple from US$2.7 billion in 2015 to US$7.6 billion in 2021. Indeed, with the barrier between consumer and healthcare blurring, an increasing number of healthcare-related applications are using MEMS components, resulting in impressive market growth. Why is MEMS technology increasingly finding a sweet spot within the healthcare sector? What is the added-value of this technology? What are the drivers of this market? Who is developing what?…

Yole’s analysts propose today a high added-value survey of the BioMEMS components and their applications within the healthcare industry.

biomems_market_yole_april2016_433x280

Analysts from the “More than Moore” market research and strategy consulting company, Yole propose a comprehensive technology and market review of the microsystems for healthcare applications. Entitled BioMEMS: Microsytems for Healthcare Applications, this report provides an overview of the diverse bioMEMS components and applications, along with a detailed key players’ description at each level of the supply chain with market shares and related activities. It highlights threats and opportunities related to BioMEMS components along with market and technology trends. Yole’s analysis also details the challenges related to implantable devices and highlights the emergence of consumer healthcare with promising and booming applications.

Faced with an aging “baby boomer” population, healthcare is more important than ever. In-vitro diagnostics, pharmaceutical research, patient monitoring, drug delivery, and implantable devices: all of these fields is growing and system integrators need new innovative technologies. Adopting bioMEMS including accelerometers, pressure sensors, flow sensors, micropumps and others bring improved sensing and actuating functions for all of these healthcare fields. “MEMS components are increasingly used by healthcare system integrators,” says Sébastien Clerc, Technology & Market Analyst at Yole. “Indeed BioMEMS are used to bring new functionalities, improve performances and costs and enable miniaturized devices.”

And Yole details:
• Microfluidic devices will cover the largest part of the BioMEMS market in 2021 representing 86% of the total market. Microfluidic chips are increasingly used in life sciences applications. These components will enjoy a 19.2% every year between 2015 and 2021, driven by applications such as Point-of-Care testing.
• In parallel, silicon microphones and flow meters are showing a double digit growth during the 2015 – 2021 period (in value): respectively +23.3% and 18.3%. Though silicon microphones are still an emerging and small market, Yole’s analysts confirm the attractiveness of this MEMS technology for hearing aids application, where it brings higher performance than former technologies. They expect a fast penetration into these devices over the next five years. The trend is also positive for flow sensors: indeed the consulting company Yole highlights an increasing adoption of MEMS disposable devices for drug delivery applications. These disposable BioMEMS components are expected to take an important part of the MEMS flow sensor market in a near future. Until recently, flowmeters were relatively expensive devices and did not suit to drug delivery devices. However today the adoption of disposable sensors for this application opens new high-volumes opportunities for MEMS players. Price reduction was mandatory and MEMS technology successfully addressed the industry needs.

Many other bioMEMS components are also active within the healthcare industry. Yole’s analysts identified pressure sensors, accelerometers, gyroscopes, microdispensers, temperature sensors and more… Their market dynamics highly depend on the related applications and on the ability of MEMS makers to innovate. Lack of strong technical innovations and emerging applications are the characteristics of certain BioMEMS markets. Yole’s analysts give some examples below:
• The pressure sensors market for healthcare applications is showing a slowly growth. 75% of the market is dedicated to the blood monitoring applications. Established for decades, this market is mature with no real disruptive technologies. Reduction of the number of players and attempt to increase volumes are the main trends of this sector for the next years, analyzes Yole in its bioMEMS report. • Accelerometers market is also showing slow growth opportunities. Such devices are today mainly used for CRM applications (implantable pacemakers and defibrillators) which are growing slowly. New applications such as ballistocardiography or fall detection have the potential to boost this market but still represent very low volumes right now.

However the emergence of consumer could change the game and become a real opportunity for MEMS manufacturers with huge volumes. MEMS companies, involved within the consumer market are already considering the consumer healthcare sector. In the meantime, consumer giants acquire promising healthcare and biotech startups and are positioning themselves to address this market. Despite the great promises of consumer healthcare, it will take some time to reach its full potential, highlights the consulting company in its bioMEMS report. Performance, consumer acceptance, reimbursement, reliability, data security… Yole identified numerous barriers preventing rapid explosion of consumer healthcare. Various players have to sit around the table and discuss to find solutions and thus knock down these barriers: Yole expects it will take a few years until consumer healthcare devices are widely adopted.

Communication and computer systems are forecast to be two of the three largest system applications for IC sales in every global region—Americas, Europe, Japan, and Asia-Pacific—this year, according to data presented in the upcoming Update to the 2016 edition of IC Insights’ IC Market Drivers, A Study of Emerging and Major End-Use Applications Fueling Demand for Integrated Circuits. Communications applications are expected to capture nearly 43% of IC sales in Asia-Pacific and 39% of the revenue in the Americas region this year. Communications and computer applications are forecast to tie as the largest end-use markets in Japan while in Europe, communications apps are forecast to trail computer applications with 23.5% of ICs sales (Figure 1).

Figure 1

Figure 1

Consumer systems are forecast to be the third-largest end-use category for ICs in the Americas and Asia-Pacific regions in 2016. Automotive is expected to be the second-largest system application for ICs in Europe, which has been a bastion for automotive electronics systems development. Each of Europe’s three largest IC manufacturers—Infineon, ST, and NXP—is annually ranked among the top suppliers of automotive ICs. In addition, the automotive segment is forecast to edge ahead of the consumer segment in Japan in 2016 to become the third-largest end-use market for ICs in that country.

Collectively, communications, computers, and consumer systems are projected to account for 86.4% of IC sales in the Americas this year (an increase of half a percentage point from 2015) and 89.5% in Asia-Pacific (a decrease of half a percentage point from 2015). This year, communications, computer, and automotive applications are forecast to represent 73.5% of IC sales in Japan and 78.8% of IC sales in Europe, the same percentage as in 2015.

For more than three decades, computer applications were the largest market for IC sales but that changed in 2013 when the global communications IC market took over the top spot due to steady strong growth in smartphones and weakening demand for desktop and notebook personal computers. Figure 2 shows that globally, communications systems are now forecast to represent 39.3% of the $291.3 billion IC market in 2016 compared to 34.7% for computers, and 10.7% for consumer, which has gradually been losing marketshare for several years. IC sales to the automotive market are forecast to represent only about 7.4% of the total IC sales this year but from 2015-2019, this segment is projected to rise by a compound average growth rate (CAGR) of 8.0%, fastest among all the end-use applications.

Figure 2

Figure 2

Additional details on end-use markets for ICs are included in the 2016 edition of IC Insights’ IC Market Drivers—A Study of Emerging and Major End-Use Applications Fueling Demand for Integrated Circuits.

North America-based manufacturers of semiconductor equipment posted $1.59 billion in orders worldwide in April 2016 (three-month average basis) and a book-to-bill ratio of 1.10, according to the April Equipment Market Data Subscription (EMDS) Book-to-Bill Report published today by SEMI.  A book-to-bill of 1.10 means that $110 worth of orders were received for every $100 of product billed for the month.

SEMI reports that the three-month average of worldwide bookings in April 2016 was $1.59 billion. The bookings figure is 15.6 percent higher than the final March 2016 level of $1.38 billion, and is 1.3 percent higher than the April 2015 order level of $1.57 billion.

The three-month average of worldwide billings in April 2016 was $1.46 billion. The billings figure is 21.5 percent higher than the final March 2016 level of $1.20 billion, and is 4.0 percent lower than the April 2015 billings level of $1.52 billion.

“Bookings reached their highest levels in eight months and billings levels also significantly improved in April,” said Denny McGuirk, president and CEO of SEMI. “The data reflect strong investments in 3D NAND and in China.”

The SEMI book-to-bill is a ratio of three-month moving averages of worldwide bookings and billings for North American-based semiconductor equipment manufacturers. Billings and bookings figures are in millions of U.S. dollars.

  Billings
(3-mo. avg)
Bookings
(3-mo. avg)
Book-to-Bill
November 2015 $1,288.3 $1,236.6 0.96
December 2015 $1,349.9

 

$1,343.5 1.00
January 2016 $1,221.2 $1,310.9 1.07
February 2016 $1,204.4 $1,262.0 1.05
March 2016 (final) $1,197.6 $1,379.2 1.15
April 2016 (prelim) $1,455.0 $1,594.6 1.10

Source: SEMI (www.semi.org), May 2016

Despite unit-shipment declines, large thin-film transistor (TFT) liquid crystal display (LCD) shipment area is expected to grow 5 percent year over year, to reach 168 million square meters in 2016. Due to lower demand for both TV and IT panels, unit-shipment growth is expected to decline 5 percent to 656 million units in 2016, according to IHS Inc. (NYSE: IHS), a global source of critical information and insight. LG Display will lead large TFT LCD area shipment growth in 2016 with 25 percent market share, followed by Samsung Display with 20 percent share. IHS defines large displays are those that are nine inches and larger.

TV panel unit shipments are expected to fall nearly 7 percent in 2016, while shipment area is expected to grow 7 percent, as panel makers respond to slowing demand and migrate production to larger displays, according to the latest IHS Large Area Display Market Tracker. Unit shipments of PC displays are also expected to fall 7 percent.

“Falling prices are causing panel makers to focus on the most profitable products, including larger displays and those employing newer display technologies,” said Yoonsung Chung, director of large area display research for IHS Technology. “From the panel maker’s perspective, area shipment is more important than unit shipments, so panel makers are accelerating the migration to larger TV panel sizes and higher resolutions.”

Display manufacturers are targeting a 24 percent year-over-year growth rate for 48-inch-and-larger panel sizes, which are expected to reach 93 million units in 2016. 4K LCD TV panels are expected to grow 73 percent in 2016, reaching 66 million units.

Chinese panel makers buck the tide

Because of ongoing production-capacity expansion, China is the only country expected to experience positive unit-shipment growth in 2016 in the large display segment. Chinese panel makers will enjoy 37 percent shipment-area growth and 12 percent unit-shipment growth in 2016, compared to the previous year. Area-shipment growth in South Korea will rise 2 percent, year over year.

“China’s power in the large TFT-LCD market is growing,” Chung said. “This trend could accelerate the shift to AMOLED by tier-one panel makers quicker than expected.”

Large_Area_Display_2016F_Chart

Large AMOLED displays on the rise

TV panels will drive growth in large active-matrix light-emitting diode (AMOLED) area shipments, growing 124 percent year over year to reach one million square meters in 2016. In fact, TV is expected to comprise 92 percent of total large AMOLED panel shipments by area in 2016. However, unit-shipment growth is expected to decline slightly, due to slower demand from the tablet PC category. Large AMOLED unit shipments are forecast to fall 5 percent, year over year, to reach 3.7 million in 2016.

The IHS Large Area Display Market Tracker explores the entire range of large display panels shipped worldwide and regionally, including monthly and quarterly revenues and shipments by display area, application, size and aspect ratio for each supplier.