Tag Archives: letter-pulse-top

Sales of automotive electronic systems are forecast to increase 7.0% in 2018 and 6.3% in 2019, the highest growth rate in both years among the six major end-use applications for semiconductors.  Figure 1 shows that sales of automotive-related electronic systems are forecast to increase to $152 billion in 2018 from $142 billion in 2017, and are forecast to rise to $162 billion in 2019.  Furthermore, automotive electronic systems are expected to enjoy a compound annual growth rate (CAGR) of 6.4% from 2017 through 2021, again topping all other major system categories, based on recent findings by IC Insights.

Figure 1

Overall, the automotive segment is expected to account for 9.4% of the $1.62 trillion total worldwide electronic systems market in 2018 (Figure 2), a slight increase from 9.1% in 2017. Automotive has increased only incrementally over the years, and is forecast to show only marginal gains as a percent of the total electronic systems market through 2021, when it is forecast to account for 9.9% of global electronic systems sales.  Though accounting for a rather small percentage of total electronic system marketshare in 2018, (larger only than the government/military category), automotive is expected to be the fastest-growing segment through 2021.

Figure 2

Technology features that are focused on self-driving (autonomous) vehicles, ADAS, vehicle-to-vehicle (V2V) communications, on-board safety, convenience, and environmental features, as well as ongoing interest in electric vehicles, continues to lift the market for automotive electronics systems, despite some highly publicized accidents involving self-driving vehicles this year that were at least partly blamed on technology miscues.

New advancements are more widely available onboard mid range and entry-level cars and as aftermarket products, which has further raised automotive system growth in recent years.  In the semiconductor world, this is particularly good news for makers of analog ICs, MCUs, and sensors since a great number of all of these devices are required in most of these automotive systems. It is worth noting that the Automotive—Special Purpose Logic category is forecast to increase 29% this year—second only to the DRAM market, and the Automotive—Application-Specific Analog market is forecast to jump 14% this year—as backup cameras, blind-spot (lane departure) detectors, and other “intelligent” systems are mandated or otherwise being added to more vehicles.  Meanwhile, memory (specifically, DRAM and flash memory) is increasingly playing a more critical role in the development of new automotive system solutions used in vehicles.

Applied Materials, Inc. today announced plans for the Materials Engineering Technology Accelerator (META Center), a major expansion of the company’s R&D capabilities aimed at creating new ways for Applied and its customers to drive innovation as classic Moore’s Law scaling becomes more challenging.

The primary goal of the META Center is to speed customer availability of new chipmaking materials and process technologies that enable breakthroughs in semiconductor performance, power and cost. The new center will complement and extend the capabilities of Applied’s Maydan Technology Center in Silicon Valley.

The META Center will be a hub for innovation, delivering on a call to action by Applied CEO Gary Dickerson for increased collaboration and speed across the technology ecosystem.

“Realizing the full potential of Artificial Intelligence and Big Data will require significant improvements in performance, power consumption and cost both at the edge and in the cloud,” said Gary Dickerson, president and CEO of Applied Materials. “The industry needs new computing architectures and chips enabled by innovative materials and scaling approaches. The META Center creates a new platform for working with customers to accelerate innovation from materials to systems.”

Scheduled to open in 2019, the META Center will be a first-of-its kind facility, spanning 24,000 square feet of cleanroom. It will be furnished with a broad suite of Applied’s most advanced process systems along with complementary technologies needed for new chip materials and structures to be piloted for high-volume production at customer sites.

To be located at the State University of New York Polytechnic Institute (SUNY Poly) campus in Albany, New York, the META Center will be created under agreements to be entered into with New York State, The Research Foundation for The State University of New York and SUNY Poly, that have been approved by the Empire State Development Board of Directors and are subject to further approval by The New York State Public Authorities Control Board.

“SUNY Poly provides an ideal combination of infrastructure, capabilities and talent in a thriving academic and entrepreneurial setting with deep roots in the semiconductor industry,” said Steve Ghanayem, senior vice president of New Markets and Alliances at Applied Materials. “The technology ecosystem will benefit from the acceleration of materials innovation through collaboration at the META Center.”

According to Samsung R&D, “We value our collaboration with Applied Materials on process development. The industry needs new innovations beyond traditional device scaling including the exploration of new materials. We are very pleased to see Applied Materials’ effort to expand its advanced R&D capabilities to provide added resources to customers and accelerate chip development.”

“TSMC welcomes closer collaboration with critical suppliers like Applied Materials in both equipment and materials,” said J.K. Lin, TSMC’s Vice President of Information Technology and Risk Management & Materials Management. “Working together to accelerate the industry’s innovation and address high-growth opportunities is very much in the spirit of TSMC’s Grand Alliance, the largest ecosystem in the semiconductor industry.”

“IBM and Applied Materials have a long history of collaboration in materials engineering to advance semiconductor industry breakthroughs,” said Dr. Mukesh V. Khare, IBM Research Vice President. “AI is one of the biggest opportunities of our time and will require innovations across materials, devices and architectures. We are pleased to see Applied expanding its capabilities to support the industry through the AI journey with its new META Center in Albany, New York.”

“As complexity increases and costs rise, traditional device scaling is slowing for the latest technology nodes,” said Tom Caulfield, CEO GLOBALFOUNDRIES. “It’s great to see Applied Materials investing in a broad range of advanced R&D capabilities to bring new and new combinations of materials into chip manufacturing, and I look forward to our continued collaborative efforts as we develop more differentiated solutions for our clients.”

“Delivering the improvements in performance and efficiency that allow Arm partners to continue to advance compute will mean overcoming the challenges presented by scaling transistors and interconnect in the deep nanometer process nodes,” said Greg Yeric, fellow, Arm. “There are many novel ideas being explored in this area, but the timeline from concept to production needs to be accelerated, and the expansion of Applied Materials’ R&D capabilities will help enable this research to advance at a faster pace.”

“Applied Materials is the world leader in semiconductor process and tools,” said Kurt Busch, CEO of Syntiant Corp. “We strongly value our relationship with Applied Materials and look forward to the benefits their latest technology will bring to breakthrough edge device machine learning products.”

By Paul Semenza

Automobiles have become an even more important segment for MEMS and sensors as carmakers integrate more chips for propulsion, navigation, and control into their designs. However, these advanced functions and their crisp rate of adoption have fragmented the sourcing of automotive chips. IHS Markit’s Jérémie Bouchaud provided a closer look at and outlook for this key market at the MEMS and Sensors Executive Congress in late October in Napa. Following are key takeaways from his presentation.

Autonomous and Electric/Hybrid Vehicles to Drive MEMS Market Growth

The automotive market, approaching 100 million vehicles produced annually, is approaching $6 billion, dominated by MEMS and silicon magnetic sensors for chassis and safety, and powertrain applications. Going forward, the market growth will be in autonomous vehicles and electric/hybrid vehicles. Because the penetration of electric and hybrid vehicles is much higher than that of autonomous vehicles, it has a larger available market, particularly for sensors. Each of these markets has its own dynamics.

For example, the electric and hybrid market has historically relied on a significant number of traditional, or non-semiconductor sensors, but new sensor technologies are vying to address multiple sensing needs. The most important limitation on demand of autonomous vehicles is the overall market penetration: IHS Markit expects autonomous vehicle production to reach 10 million at most by 2030.

Production of Electric and Hybrid Automobiles Now Growing at Fast Clip

Production of electric and hybrid vehicles is in a rapid growth phase, and IHS Markit expects penetration of such vehicles to reach 50% of the automotive market by 2030, up from 3% in 2016. The core functions of charging and power inversion require, among other capabilities, current, temperature and position sensing. Historically, many of these functions have been handled by non-semiconductor devices, for example negative temperature coefficient (NTC) thermistors for temperature sensing, devices that appear to be strongly positioned. In other areas, semiconductor sensors are competing with traditional devices.

For example, silicon magnetoresistive devices are going head-to-head with inductive devices for position and Hall effect sensing. Sensing requirements are also likely to evolve over time, particularly as battery systems become more reliable and robust. While some automakers are looking to sensors to monitor pressure or gas leaks from batteries, battery makers are more focused on maturing the systems and reducing the need for monitoring.

Autonomous Vehicles Drive New Source of Demand for MEMS and Sensors

The movement towards automated driving has created a new source of demand for MEMS and sensors, with advanced driver assistance systems driving faster growth than the historical powertrain applications. Currently available vehicles are at Level 2 (partial automation), with multiple cameras and radars. Level 3 vehicles (conditional automation) are likely to enter the market next year, adding driver monitoring cameras, LIDAR systems and, potentially, microbolometers or other night-vision systems. Level 4 and 5 (high and full automation, respectively) will add vehicle-to-vehicle communications and other systems, but are not likely to be widely available for several years.

The autonomous vehicle market, while smaller overall compared to electric/hybrid vehicles, provides a more attractive opportunity for MEMS devices, particularly in LIDAR systems. LIDAR and other sensing/surveying systems are at the heart of autonomous vehicles, and MEMS devices are in demand for the critical beam-steering function. However, demand for image and other sensors will accelerate as the higher levels of autonomy are rolled out.

Automotive Drives Extremely Diverse Set of Applications for MEMS and Sensor Makers

The automotive market presents an extremely diverse set of applications for MEMS and sensor makers. Some companies have developed broad product portfolios and compete in multiple applications. For example, TDK offers NTC thermistors as well as MEMS and silicon-based sensors. Semiconductor companies such as Infineon are competing in MEMS and with silicon-based sensors such as magnetoresitive and Hall effect.

The growth in demand for image and radar sensors used in ADAS, as well as magnetoresistive and Hall sensors in EVs, means that the center of gravity in automotive markets is likely to shift from MEMS over the next several years – a fundamental change, Bouchaud cautioned, that will put automotive sensor suppliers focusing solely on MEMS at risk.

Paul Semenza is a consultant in SEMI Industry Research and Statistics. 

By Emir Demircan

Joining distinguished speakers from the European Commission, industry, academia and Member States, Laith Altimime, SEMI Europe president, will keynote on “European Competitiveness in the Context of the Global Digital Economy” on 20 November at the European Forum for Electronic Components and Systems (EFECS) in Lisbon, Portugal.

Players across the European electronics manufacturing value chain will gather 20-22 November, 2018, at EFECS to share the industry’s vision and set the future direction of technology innovation. Themed “Our Digital Future,” this year’s forum focuses on how rapid innovation in electronics components and systems-based applications are shaping Europe’s digital future. Start-ups, SMEs, research institutes, academia, large and medium enterprises and public authorities will learn about new collaboration initiatives and the latest developments in European funding instruments while offering their expectations for future funding programmes.

Organized by AENEAS, ARTEMIS-IA, EPoSS, ECSEL Joint Undertaking and the European Commission, in association with EUREKA, EFECS will also highlight the impact and results of various European funding instruments.

For more information about the event, please click here.

Emir Demircan senior manager for advocacy and public policy at SEMI Europe. 

IC Insights’ November Update to the 2018 McClean Report, released later this month, includes a discussion of the forecasted top-25 semiconductor suppliers in 2018 (the top-15 2018 semiconductor suppliers are covered in this research bulletin).  The Update also includes a detailed five-year forecast of the IC market by product type (including dollar volume, unit shipments, and average selling price).

The expected top-15 worldwide semiconductor (IC and O-S-D—optoelectronic, sensor, and discrete) sales ranking for 2018 is shown in Figure 1.  It includes seven suppliers headquartered in the U.S., three in Europe, two each in South Korea and Japan, and one in Taiwan.  After announcing in early April 2018 that it had successfully moved its headquarters location from Singapore to the U.S., IC Insights now classifies Broadcom as a U.S. company.

In 2Q18, Toshiba completed the $18.0 billion sale of its memory IC business to the Bain Capital-led consortium. Toshiba then repurchased a 40.2% share of the business.  The Bain consortium goes by the name of BCPE Pangea and the group owns 49.9% of Toshiba Memory Corporation (TMC).  Hoya Corp. owns the remaining 9.9% of TMC’s shares.  The new owners have plans for an IPO within three years. Bain has said it plans to support the business in pursing M&A targets, including potentially large deals.

As a result of the sale of Toshiba’s memory business, the 2018 sales results shown in Figure 1 include the combined sales of the remaining semiconductor products at Toshiba (e.g., Discrete devices and System LSIs) and NAND flash sales from Toshiba Memory Corporation.

In total, the top-15 semiconductor companies’ sales are forecast to jump by 18% in 2018 compared to 2017, two points higher than the expected total worldwide semiconductor industry 2018/2017 increase of 16%.  The three largest memory suppliers—Samsung, SK Hynix, and Micron—are each forecast to register greater than 25% year-over-year growth in 2018 with SK Hynix expected to log the highest growth among the top 15 companies with a 41% surge in sales this year.  All of the top-15 companies are expected to have sales of at least $8.0 billion in this year, two companies more than in 2017.  Nine of the top-15 companies are forecast to register double-digit year-over-year growth in 2018.  Moreover, five companies are expected to have ≥20% growth, including four of the big memory suppliers (Samsung, SK Hynix, Micron, and Western Digital/SanDisk) as well as Nvidia.

Figure 1

The largest move upward in the ranking is forecast to come from Western Digital/San Disk, which is expected to move up three spots to the 12th position.  In contrast, NXP is expected to fall two places to 13th with a sales increase of only 1% this year.  However, the worst-performing company in the ranking is forecast to be Qualcomm with a semiconductor revenue decline of 3% this year, the only top-15 company expected to register a drop in sales.

Intel was the number one ranked semiconductor supplier in 1Q17 but lost its lead spot to Samsung in 2Q17. It also fell from the top spot in the full-year 2017 ranking, a position it had held since 1993.  With the strong surge in the DRAM and NAND flash markets over the past year, Samsung is forecast to go from having 7% more total semiconductor sales than Intel in 2017 to having 19% more semiconductor sales than Intel in 2018.

Memory devices are forecast to represent 84% of Samsung’s semiconductor sales in 2018, up three points from 81% in 2017 and up 10 points from 71% just two years earlier in 2016.  Moreover, the company’s non-memory sales in 2018 are expected to be only $13.3 billion, up only 6% from 2017’s non-memory sales level of $12.5 billion. In contrast, Samsung’s memory sales are forecast to be up 31% this year and reach $70.0 billion.

The top-15 ranking includes one pure-play foundry (TSMC) and three fabless companies.  If TSMC were excluded from the top-15 ranking, Taiwan-based MediaTek would have been ranked in the 15th position with forecasted 2018 sales of $7.9 billion, up only 1% from 2017.

IC Insights includes foundries in the top-15 semiconductor supplier ranking since it has always viewed the ranking as a top supplier list, not a marketshare ranking, and realizes that in some cases the semiconductor sales are double counted.  With many of our clients being vendors to the semiconductor industry (supplying equipment, chemicals, gases, etc.), excluding large IC manufacturers like the foundries would leave significant “holes” in the list of top semiconductor suppliers.  Foundries and fabless companies are identified in the Figure.  In the April Update to The McClean Report, marketshare rankings of IC suppliers by product type were presented and foundries were excluded from these listings.

Overall, the top-15 list is provided as a guideline to identify which companies are the leading semiconductor suppliers, whether they are IDMs, fabless companies, or foundries.

Spurred on by growing demand for innovative user experience in smartphones, shipments of foldable active-matrix organic light-emitting diode (AMOLED) panels are expected to reach 50 million units by 2025 for the first time since their launch in 2018, according to IHS Markit (Nasdaq: INFO), a world leader in critical information, analytics and solutions.

The foldable AMOLED panels are expected to account for 6 percent of total AMOLED panel shipments (825 million), or 11 percent of total flexible AMOLED panel shipments (476 million) by 2025.

“As the conventional smartphone market has become saturated, smartphone brands have tried to come up with an innovative form factor for a smartphone,” said Jerry Kang, senior principal analyst of display research at IHS Markit. “A foldable AMOLED panel is considered to be the most attractive and distinguishable form factor at this moment.”

In October 2018, China’s Royole Corporation unveiled the world’s first foldable-screen smartphone with a 7.8-inch AMOLED panel. A few other brands are also expected to launch foldable-screen smartphones in 2019.

“Smartphone brands are cautious about launching foldable smartphones because the phones should be durable enough for repeated folding and thin and light enough even when supporting a larger display and battery,” Kang said. “Unit shipments of foldable AMOLED panels may not grow as fast for the first few years, but area per unit will be expected to be larger than that of conventional displays. Panel makers are forecast to see an increase in fab utilization.”

Due to lower demand for conventional flexible AMOLED panels, suppliers are hoping that smartphone brands release foldable devices as early as possible. With more optimism, some are even considering investing in another fab solely for foldable AMOLED panels.

“Panel suppliers should consider how much demand will increase for the foldable application before investing in additional fabs, because the supply of flexible AMOLED panels is forecast to exceed demand even as we move into 2019,” Kang said.

According to the AMOLED & Flexible Display Intelligence Service by IHS Markit, the supply capacity of flexible AMOLED panels will account for more than half of total AMOLED capacity in the fourth quarter of 2019.

SEMI, the global industry association serving the electronics manufacturing supply chain, today voiced support and encouragement for trade discussions between U.S. President Donald Trump and People’s Republic of China President Xi Jinping – talks that are planned for Dec. 1 during the G20 Summit in Argentina. Representing the semiconductor industry end-to-end, from chip design through manufacturing, SEMI expressed hope for a deal and offered principles beneficial to the global microelectronics manufacturing supply chain.

“With SEMI members being key enablers of the more than $2 trillion electronics manufacturing supply chain, SEMI has a clear foundational mission based on free and fair trade, open markets, and support for international laws governing IP, cybersecurity and national security,” said Ajit Manocha, SEMI president and CEO. “Adhering to these principles benefits all SEMI member companies and the global ecosystem of industries and applications enabled by semiconductor manufacturing. I commend our global government leaders for returning to the negotiating table.”

Recent tariffs and trade tensions, on top of newly imposed and rumored export controls, have complicated the global electronics manufacturing supply chain, forcing many SEMI member companies to rethink their investment strategies. Over the past six months, SEMI has testified that tariffs threaten to undercut the ability of many SEMI members to sell overseas by increasing costs, stifling innovation, and curbing U.S. technological leadership.

SEMI continues to educate U.S. lawmakers, as well as governments worldwide, about the critical importance of free and fair trade, open markets, and respect and enforcement of IP for all players in the global electronics manufacturing supply chain. As part of this initiative, SEMI is providing the 10 Principles for the Global Semiconductor Supply Chain in Modern Trade Agreements below to government officials and encouraging them to include these guidelines in forward-looking agreements.

These core principles outline the primary considerations for balanced trade rules that benefit SEMI members around the world, strengthen innovation and perpetuate the societal benefits of affordable microelectronics – essential components in all advanced communications, computing, transportation, healthcare and consumer electronics.

10 Principles for the Global Semiconductor Supply Chain in Modern Trade Agreements

1. Affirm principles of non-discrimination.

Non-discriminatory treatment is a central tenet of the global trading system. SEMI strongly believes that any trade deal should provide that all products from a party to the deal cannot be put at a competitive disadvantage in any other party’s market. Related, any agreement must be fully compliant with the World Trade Organization’s rules.

2. Maintain strong respect for intellectual property and trade secrets through robust safeguards and significant penalties for violators.

Protection for intellectual property are essential for the semiconductor industry. These standards enable the ability to innovate and grow. SEMI supports robust copyright standards, strong patent protections, and regulations that safeguard industrial design. SEMI also strongly supports rules that preserve trade secrets protection, including establishing criminal procedures and penalties for theft, including by means of cyber theft.

3. Remove tariffs and end technical barriers on semiconductor products.

Parties should eliminate tariffs and technical barriers on semiconductors and all technology products, that rely on electronic chips. Removing tariffs and technical barriers is crucial for businesses, especially for small and medium-sized enterprises, in penetrating new markets. Related, any trade deal should open markets for services providers, ensuring that all face fair and transparent treatment.

4. Simplify and harmonize the customs and trade facilitation processes.

The trade deals should include strong commitments on customs procedures and trade facilitation to ensure that border processing will be quick, transparent, and predictable. The parties should also work to use electronic customs forms to expedite customs processing.

5. Combat any attempts of forced technology transfer.

All trade deals should have clear and firm rules that prohibit countries from requiring companies to transfer their technology, intellectual property, or other proprietary information to persons in their respective territories.

6. Enable the free flow of cross-border data.

In today’s global economy, all industries, including the semiconductor industry, rely on the free flow of data. Countries should refrain from putting in place unjustifiable regulations that limit the free flow of information, which simply serve to curb innovation and impact growth. SEMI supports provisions that enable the movement of data, subject to reasonable safeguards for privacy and other protections.

7. Eliminate forced data localization measures.

Many countries have created laws that require physical infrastructure and data centers in every country they seek to serve, which adds unnecessary costs and burdens. Forward-looking policies should eliminate the use of forced data localization measures.

8. Harmonize global standards to achieve “one standard, one test, accepted everywhere.”

Businesses should not have to face different standards for each market they serve. Global standards, driven by industry, should be market-oriented, and there should be strong commitments on transparency, stakeholder participation and coordination.

9. Create transparent rules for state-owned and -supported enterprises to ensure fair and non-discriminatory treatment.

SEMI supports a trade deal that contains robust commitments to ensure that state-owned and -supported enterprises compete based on performance, quality and price, as opposed to discriminatory regulation, opaque subsidies, favoritism, or other tools that artificially benefit state-backed businesses.

10. Establish protections for companies and individuals that respect privacy while also balancing security.

Any trade deal should have firm consumer protections, including privacy, that enables ease of use, but also does not forgo security. SEMI support efforts to use encryption products in support of this venture and also believes that parties should work to advance efforts on cybersecurity through self-assessment, declaration of conformity, increased cooperation and information sharing, all of which will help prevent cyber-attacks and stop the diffusion of malware.

Micron Technology, Inc., (Nasdaq: MU) today announced that it has begun mass production of the industry’s highest-capacity and first monolithic 12Gb low-power double data rate 4x (LPDDR4x) DRAM for mobile devices and applications. This latest generation of Micron’s LPDDR4 memory brings key improvements in power consumption while maintaining the industry’s fastest LPDDR4 clock speeds, thereby delivering advanced performance for next-generation mobile handsets and tablets. In addition, Micron’s 12Gb LPDDR4x doubles memory capacity to offer the industry’s highest-capacity monolithic LPDDR4 without increasing the footprint compared to the previous generation product.

The exponential increase in usage of compute and data-intensive mobile applications such as artificial intelligence (AI), augmented reality (AR) and 4K video has been accompanied with demands by mobile users to maximize battery life and performance and increase capacity. Next-generation mobile devices that integrate multiple high-resolution cameras and increasingly use AI for image optimization also require higher DRAM capacities to support these features.

As the industry transitions towards deployment of 5G mobile technology, the memory subsystem in mobile handsets will have to support these dramatically higher data rates and the associated processing of data in real-time. New applications built upon 5G technology will also be able to leverage the increased capabilities of the memory subsystem to enable new and immersive user experiences.

As the industry’s highest-capacity monolithic mobile memory, Micron’s LPDDR4x DRAM delivers industry-leading bandwidth and power efficiency, along with the benefit of enabling higher DRAM capacities in the handset.

“Micron is a recognized pioneer in bringing low-power DRAM technology to the world and we once again have delivered another milestone with the launch of the industry’s first, highest-capacity monolithic 12Gb mobile DRAM,” Senior Vice President and General Manager of Micron’s Mobile Business Unit Raj Talluri said. “This latest generation of LPDDR4 enables mobile handset manufacturers to deliver a rich user experience for ultra-slim mobile devices as user demands for performance, capacity and longer battery life continue to rise as a result of data-intensive applications.”

The LPDDR4x DRAM will be produced based on 1Y-nm (10-nanometer-class) process technology, resulting in improved efficiency and reduction in battery power consumption. Micron’s LPDDR4x mobile DRAM is capable of reducing power by up to 10 percent at similar data rates of 4,266 megabits per second (Mb/s) compared to previous generations.

Micron 12Gb LPDDR4 memory solutions are available today. For more information, visit www.micron.com.

Worldwide silicon wafer area shipments increased during the third quarter 2018, surpassing record second quarter 2018 area shipments to set another all-time high, according to the SEMI Silicon Manufacturers Group (SMG) in its quarterly analysis of the silicon wafer industry.

Total silicon wafer area shipments reached 3,255 million square inches during the most recent quarter, a 3.0 percent rise from the 3,164 million square inches shipped during the previous quarter. New quarterly total area shipments clocked in 8.6 percent higher than third quarter 2017 shipments.

“Silicon shipment volumes remained at record levels during the third quarter,” said Neil Weaver, chairman SEMI SMG and Director, Product Development and Applications Engineering of Shin Etsu Handotai America. “Silicon shipments are mirroring this year’s strong semiconductor unit growth in support of a growing and diversified electronics market during our stable economy.”

Silicon Area Shipment Trends – Semiconductor Applications Only

Millions of Square Inches
1Q2017
2Q2017
3Q2017
4Q2017
1Q2018
2Q2018
3Q2018
Total
2,858
2,978
2,997
2,977
3,084
3,164
3,255

Source: SEMI, (www.semi.org), November 2018

Silicon wafers are the fundamental building material for semiconductors, which in turn, are vital components of virtually all electronics goods, including computers, telecommunications products, and consumer electronics. The highly engineered thin round disks are produced in various diameters (from one inch to 12 inches) and serve as the substrate material on which most semiconductor devices, or chips, are fabricated.

All data cited in this release is inclusive of polished silicon wafers, including virgin test wafers and epitaxial silicon wafers, as well as non-polished silicon wafers shipped by the wafer manufacturers to the end-users.

The Silicon Manufacturing Group (SMG)  is a sub-committee of the SEMI Electronic Materials Group (EMG) and is open to SEMI members involved in manufacturing polycrystalline silicon, monocrystalline silicon or silicon wafers (e.g., as cut, polished, epi, etc.). The purpose of the group is to facilitate collective efforts on issues related to the silicon industry including the development of market information and statistics about the silicon industry and the semiconductor market.

SEMI Taiwan today announced the formation of the FlexTech Taiwan Steering Committee. Serving as a platform that connects industry, academia, research and government, the committee will focus on identifying market trends and needs, solving technical challenges and accelerating innovation and business development to advance the flexible hybrid electronics industry and open business opportunities for its members.

Lightweight and highly scalable, flexible hybrid electronics promise to bring new applications and capabilities to consumer electronics, medical and health care, defense, transportation, textile, sports and leisure, robotics and industrial automation. To fulfill the potential of flexible hybrid electronics, the industry must overcome challenges in areas such as yield, cost, regulation and technology standards.

Key focus areas of the FlexTech Taiwan Steering Committee will include:

  • Capitalizing on Taiwan’s success in semiconductor and LCD/LED displays to build a complete flexible hybrid electronics ecosystem
  • Advocating for government policies on developing emerging industries, technology research funding, and talent development
  • Organizing exhibitions and other events to raise awareness and communicate the value of flexible hybrid electronics the electronics industry
  • Establishing industry standards to accelerate research and development and facilitate technology and product development

The FlexTech Taiwan Steering Committee consists of key industry players spanning equipment, materials, design, manufacturing, systems and end applications. Committee members include E Ink, ASE Group, AUO, Hitachi, Brewer Science, CymMetrik, DuPont, Singular Wings Medical, BenQ Materials Corporation, Nagase, Flexterra, Wisechip Semiconductor, AiQ Smart Clothing, Makalot Industrial, Far Eastern New Century, Ritdisplay Corportation, Applied Materials, Industrial Technology Research Institute (ITRI), National Sun Yat-sen University, and Chang Gung University.

Over the past 20 years, SEMI-FlexTech, a SEMI Strategic Association Partner, has promoted the development and commercialization of flexible hybrid electronics. Key achievements include:

  • Working with Boeing to develop a flexible electronic control device to reduce the weight of drones and commercial aircraft
  • Teaming with GE to develop RF stickers that measure human hydration
  • Collaborating with the U.S. Air Force to develop a non-invasive wearable device that measures biodata of aircraft pilots

For the past 17 years, SEMI and FlexTech have championed the development of the FHE industry through conferences and exhibitions in major microelectronics manufacturing regions such as North America, Europe, Taiwan, Japan, Korea, Singapore and China.

FLEX Taiwan, 29-30 May, 2019, is a one-day technical conference that provides a powerful platform for connecting with customers, suppliers, future partners and academia to drive collaboration and uncover new opportunities in flexible hybrid electronics. For more information, please click here.