Tag Archives: letter-pulse-top

Researchers have set a new efficiency record for LEDs based on perovskite semiconductors, rivalling that of the best organic LEDs (OLEDs).

Compared to OLEDs, which are widely used in high-end consumer electronics, the perovskite-based LEDs, developed by researchers at the University of Cambridge, can be made at much lower costs, and can be tuned to emit light across the visible and near-infrared spectra with high colour purity.

The researchers have engineered the perovskite layer in the LEDs to show close to 100% internal luminescence efficiency, opening up future applications in display, lighting and communications, as well as next-generation solar cells.

These perovskite materials are of the same type as those found to make highly efficient solar cells that could one day replace commercial silicon solar cells. While perovskite-based LEDs have already been developed, they have not been nearly as efficient as conventional OLEDs at converting electricity into light.

Earlier hybrid perovskite LEDs, first developed by Professor Sir Richard Friend’s group at the University’s Cavendish Laboratory four years ago, were promising, but losses from the perovskite layer, caused by tiny defects in the crystal structure, limited their light-emission efficiency.

Now, Cambridge researchers from the same group and their collaborators have shown that by forming a composite layer of the perovskites together with a polymer, it is possible to achieve much higher light-emission efficiencies, close to the theoretical efficiency limit of thin-film OLEDs. Their results are reported in the journal Nature Photonics.

“This perovskite-polymer structure effectively eliminates non-emissive losses, the first time this has been achieved in a perovskite-based device,” said Dr Dawei Di from Cambridge’s Cavendish Laboratory, one of the corresponding authors of the paper. “By blending the two, we can basically prevent the electrons and positive charges from recombining via the defects in the perovskite structure.”

The perovskite-polymer blend used in the LED devices, known as a bulk heterostructure, is made of two-dimensional and three-dimensional perovskite components and an insulating polymer. When an ultra-fast laser is shone on the structures, pairs of electric charges that carry energy move from the 2D regions to the 3D regions in a trillionth of a second: much faster than earlier layered perovskite structures used in LEDs. Separated charges in the 3D regions then recombine and emit light extremely efficiently.

“Since the energy migration from 2D regions to 3D regions happens so quickly, and the charges in the 3D regions are isolated from the defects by the polymer, these mechanisms prevent the defects from getting involved, thereby preventing energy loss,” said Di.

“The best external quantum efficiencies of these devices are higher than 20% at current densities relevant to display applications, setting a new record for perovskite LEDs, which is a similar efficiency value to the best OLEDs on the market today,” said Baodan Zhao, the paper’s first author.

While perovskite-based LEDs are beginning to rival OLEDs in terms of efficiency, they still need better stability if they are to be adopted in consumer electronics. When perovskite-based LEDs were first developed, they had a lifetime of just a few seconds. The LEDs developed in the current research have a half-life close to 50 hours, which is a huge improvement in just four years, but still nowhere near the lifetimes required for commercial applications, which will require an extensive industrial development programme. “Understand the degradation mechanisms of the LEDs is a key to future improvements,” said Di.

IC Insights’ November Update to The 2018 McClean Report will present an in-depth analysis and detailed five-year forecast for the IC Industry, which is expected to enter a period of cyclical “cooling” after an extended period of very strong growth.

Figure 1 illustrates the worldwide quarterly year-over-year IC market increases from 1Q through 3Q and IC Insights’ forecast for 4Q of this year.  As shown, the first half of 2018 started out with strong quarterly year-over-year growth for the IC market.  However, year-over-year IC market growth dropped to 14% in 3Q.  Moreover, with the softening of the memory market, IC Insights projects that year-over-year IC market growth in 4Q will be only 6%.

Figure 1

Third quarter sequential growth confirms the slowing year-over-year trend. In 2017, 3Q/2Q IC market growth was 11%.  This year, 3Q/2Q growth slowed to a 6% increase (the same rate as the long term average).  As mentioned, the softening memory market has started to become a “headwind” on total IC market growth.  It is interesting that in 2017, the 3Q/2Q memory market growth rate was a very strong 18%.  In contrast, the 3Q/2Q memory market increase in 2018 was 8%, less than half of last year’s rate.

GLOBALFOUNDRIES today announced the establishment of Avera Semiconductor LLC, a wholly owned subsidiary dedicated to providing custom silicon solutions for a broad range of applications. Avera Semi will leverage deep ties with GF to deliver ASIC offerings on 14/12nm and more mature technologies while providing clients new capabilities and access to alternate foundry processes at 7nm and beyond.

Avera Semi is built upon an unrivaled legacy of ASIC expertise, tapping into a world-class team that has executed more than 2,000 complex designs in its 25-year history. With more than 850 employees, annual revenues in excess of $500 million, and over $3 billion in 14nm designs in execution, Avera Semi is well positioned to serve clients developing products across a wide range of markets, including wired and wireless networking, data centers and storage, artificial intelligence and machine learning, and aerospace and defense.

The new company is led by Kevin O’Buckley, a leader in the ASIC business since joining GF as part of the acquisition of IBM Microelectronics in 2015. Previously, he spent nearly 20 years at IBM in a variety of roles spanning both technical and executive leadership positions.

“I couldn’t imagine a better time to launch a new venture focused on delivering custom ASIC solutions,” O’Buckley said. “Data traffic and bandwidth demands have exploded, and next-generation systems for cloud and communications must deliver more performance and handle more complexity than ever before. Avera Semi has the right combination of expertise and technology to help our clients design and build high-performance, highly optimized semiconductor solutions.”

“Arm has a long history of collaborating with the team building Avera Semi to enhance PPA and bring innovative solutions to market,” said Drew Henry, senior vice president and general manager, Infrastructure Line of Business, Arm. “As the needs for compute requirements continue to evolve and diversify, we look forward to joining Avera’s capabilities and technologies with Arm Neoverse solutions and physical design IP to deliver unique value to a broad customer base.”

“Synopsys’ long history of collaboration with GF has enabled us to deliver a broad portfolio of high-quality DesignWare IP on a range of GF processes,” said John Koeter, vice president of marketing for IP at Synopsys. “We look forward to continuing this success with Avera Semi to provide designers with the necessary IP for their next-generation, high-performance SoC designs on advanced FinFET processes.”

Avera Semi offers clients a range of capabilities to enable end-to-end silicon solutions:

●      ASIC offerings on both leading-edge and proven process technologies, including a newly established foundry partnership on 7nm
●      A rich IP portfolio, including high-speed SerDes, high-performance embedded TCAMs, ARM® cores and performance and density-optimized embedded SRAMs
●      A comprehensive, production-proven design methodology that builds on a strong record of first-time-right results to help reduce development costs and time-to-market
●      Advanced packaging options to increase bandwidth, eliminate I/O bottlenecks, and reduce memory area, latency and power
●      Flexible ASIC business engagement models that give clients the ability to supplement in-house resources with the level of support needed from experienced chip design, methodology, test and packaging teams

3D NAND is poised to become the dominant NAND flash technology and promises both enhanced performance and capacity. The Innodisk 3D NAND solid state drive (SSD) series is designed to fulfill the more stringent requirements for ruggedness and endurance seen in the industrial market.

The series uses pure industrial-grade Toshiba 3D TLC NAND flash with a rated P/E cycle number of 3000, ensuring solid longevity, while the fully in-house designed firmware is geared towards industrial usage. The SSDs uses direct write, and avoids using SLC cache which eventually causes an SSD performance drop and bloated P/E cycle numbers. Furthermore, the firmware can be customized to a large degree to suit any specialized requirement.

The series includes two product lines: the DRAM-less 3TE7 and the 3TG6-P with integrated DRAM using a Marvell controller. The product lines are available in capacities up to 1TB and 2TB respectively. They can both be fitted with Innodisk’s trio of power stabilizing technologies iCell™, iPower Guard™ and iData Guard™ to further strengthen data integrity in areas susceptible to power fluctuations.

The 3D NAND SSDs also use End-to-End Power Path Protection that ensures error correction at every data transfer point with the host and within the drives themselves. For more sensitive data, drives that utilize AES encryption are available with in-house designed software for easier deployment and management.

By Serena Brischetto

SEMI spoke with Prof. Christoph Kutter, executive director, Fraunhofer EMFT, about trends and innovations in flexible hybrid electronics ahead of his presentation at the 2018 FLEX Europe – Be Flexible conference at SEMICON Europa 2018, 13-16, November 2018, in Munich, Germany. To register for the event, click here.

SEMI: Recent developments on thin semiconductors, new materials and cost-effective processing techniques have opened the door to a plurality of new applications and future products. What are the most innovative integration approaches?

Kutter: We have a variety of good examples, from medical to automotive. In his keynote, Philips Research Professor Ronald Dekker will present innovative approaches to integration as electronic devices find their way into the human body. Christian Neumann, head of Digital Printed Electronics at Heraeus, will discuss new markets like smart textiles and in-mold electronics, and Mike Hack, VP of Business Development at Universal Display Corporation, will explore the promise of OLED technology in giving rise to new, exciting products over the next few years.

SEMI: Can you share some details about the Fraunhofer EMFT roadmap?

Kutter: In his speech, Christof Landesberger, department manager at Fraunhofer EMFT will delve into the R2R Manufacture of Flexible Hybrid Electronics technology roadmap.  Flex Electronics allows for the hybrid integration of different functionalities and components for a broad variety of applications, which are needed in IoT scenarios. Christof will show a few examples of that.

SEMI: Are you currently working and experimenting on something particularly exciting?

Kutter: Thin chip foil packages with embedded microcontroller ICs were demonstrated successfully by Fraunhofer EMFT using single sheet film substrates. In order to achieve the next major step towards R2R manufacture, we are currently setting up a laser direct imaging (LDI) system for R2R lithographic patterning of interconnects and wiring schemes. A key advantage of such laser imaging system is its capability to correct the UV exposure process locally and, if necessary, individually at any chip position. Such adaptive lithographic patterning is supposed to bridge the gap between alignment requirements and geometric distortions in the web substrate. First results will be shown at the conference for the first time.

SEMI: What are your expectations for the future and why would you recommend attending the 2018 Flexible – Be Flexible conference at SEMICON Europa?

Kutter:  We expect Flex Hybrid Integration to become more and more important, since it offers the best of each world: mass volume printing technologies integrated with high performance ultra-low power electronics. You will see many examples of hybrid integration approaches during the conference.

SEMICON Europa is a very important platform to highlight the latest developments in the semiconductor industry. During the 2018 Flexible – Be Flexible conference, themed “Innovations enabled by Flexible Electronics,” researchers, market analysts, material and product developers, and equipment suppliers will gather to provide insights into the latest Flexible Hybrid Electronics innovations. We are particularly proud to organize this platform with SEMI and FlexTech Alliance.

Prof. Dr. Christoph Kutter is the director of the Fraunhofer EMFT, focusing on sensing technologies based on silicon electronics and flexible hybrid integration technologies.

Kutter serves as a member of the board of trustees at Fraunhofer Institut Für Nachrichten – Heinrich-Hertz Institut HHI and has been a ember of Supervisory Board at First Sensor AG since May 24, 2017 He completed his physics studies at TU Munich. In 1995, he earned his doctorate in physics at the University of Konstanz.

 

Serena Brischetto is a marketing and communications manager at SEMI Europe.

 

By Emir Demircan

SEMI Europe today confirmed its support for the joint call to future Members of the European Parliament to put industry at the core of the European Union’s future. The joint call is as follows:

Industry Matters for Europe and Its Citizens

European industry is everywhere in our daily life: from the houses we build, the furniture we buy, the clothes we wear, the food we eat, the healthcare we receive, the energy and means of transport we use to the objects and products ever-present in our lives. With its skilled workforce and its global reputation for quality and sustainability, industry is vital for Europe and its prosperity. Today, 52 million people and their families throughout Europe benefit directly and indirectly from employment in industrial sectors. Our supply chains, made up of hundreds of thousands of innovative SMEs and larger suppliers, are thriving and exporting European industrial excellence all over the world.

Industry Needs You!

Following the 2008 financial crisis, millions of manufacturing jobs were lost in Europe, each time bringing dramatic human and social consequences. Even now, we are still far from the employment levels seen before the crisis and jobs are vulnerable to worrying international trends, including increasing protectionism. The European Union now needs an ambitious industrial strategy to help compete with other global regions – such as China, India and the USA – that have already put industry at the very top of their political agenda.

Therefore we, industrial sectors from all branches, call on you – future Members of the European Parliament – to commit today to:

  • Put industry at the top of the political agenda of the European Parliament during the next institutional cycle (2019-2024)
  • Urge the next European Commission to shortlist industry as a top priority of its 5-year Work Programme and appoint a dedicated Vice-President for Industry
  • Uphold the next European Commission to swiftly present an ambitious long-term EU industrial strategy which shall include clear indicators and governance

We, the Signatories of this Manifesto, count on your support to make sure that Europe remains a hub for a leading, smart, innovative and sustainable industry, that benefits all Europeans and future generations. Europe can be proud of its industry. Together we must put it at the core of the EU’s future!

The joint call and the list of supporting associations can be reached here.

Emir Demircan is senior manager, Advocacy and Public Policy, at SEMI Europe. He can be reached at [email protected]

By Nishita Rao

DARPA’s Vision of Cross-Collaboration

Ron Polcawich, program manager, DARPA Microsystems Technology Office, will give the closing keynote at MEMS & Sensors Executive Congress on October 29-30, 2018 in Napa Valley, Calif. SEMI’s Nishita Rao spoke with Polcawich about the MEMS workshop on rapid innovation that he held earlier this year and his interest in continuing that conversation with a broad audience of MEMS and sensors suppliers attending MEMS & Sensors Executive Congress.

SEMI: What is your vision for the Rapid Innovation through Production MEMS (RIPM) concept and why does the MEMS and sensors industry need it?

Polcawich: The goal behind our RIPM concept is to advance the state of MEMS device technology by creating enhanced access to mature process flows for utilization by military, academic and commercial MEMS designers.

Compare MEMS to IC development and you will see much more rapid innovation in ICs. In many cases, IC designers can get through four design cycles in a calendar year because the process technologies are so mature.

In contrast, it can take three to four years to develop the process flow for a MEMS device. I believe that we can do better. With so much process-flow development in MEMS having taken place over the past 15 years, we now have plenty of commercial designs out there. How do we capitalize on these existing production process flows so we can rapidly innovate to avoid those painfully long production cycles?

With this question in mind, we launched a campaign to solicit feedback from small, medium and large foundries, integrated device manufacturers (IDMs), systems designers and integrators, and academic stakeholders. Our effort culminated in a May workshop where we were able to bring many of the same groups to the table. During one intensive day, we discussed challenges to the RIPM concept and what we would need to make it work.

SEMI: What were some of your areas of focus?

Polcawich: We covered a range of topics, from improving access to sophisticated packaging technology, such as advanced interposer technologies, to IP entanglement and the role of process design kits (PDKs).

SEMI: In an industry historically defined by competition over collaboration, how do you hope to convince MEMS supply-chain members to work together?

Polcawich: We see benefits from the proposed RIPM concept across the board. Foundries would benefit from outputting higher volumes of devices as well as charging for more sophisticated PDKs and process flows — which would comprise a new source of revenue for them.

From our discussions at the workshop and throughout the summer, we understand that certain technology sectors are going to be more willing to engage with the community than others. Notional examples that we highlighted at the workshop include the possibility of manufacturing high-performance inertial sensors, oscillators and pressure sensors within the same process flow. The challenge to the community is having the MEMS designers work within a locked-down process flow and not requesting different material layers, gaps and critical feature dimensions for each device type, which is very common within our industry. We asked everyone the question, “If there were broader access to production process flows, would faster technology transition and innovation cycles enable a more rapid time-to-market for a wider range of products?”

SEMI: What would you like MEMS & Sensors Executive Congress attendees to take away from your presentation?

Polcawich: We welcome additional feedback on the RIPM concept to help shape any potential program ideas. Furthermore, we would like assistance in identifying tipping-point technologies on each sector’s/foundry’s/IDM’s technology roadmap. We could use that information to determine mutual investment opportunities that could shift the roadmap timelines to the left, enabling more rapid production and commercialization timelines.  

Dr. Ronald Polcawich joined DARPA as a Program Manager in the Microsystems Technology Office (MTO) in August 2017. His research interests include advanced materials processing, micromechanics for small-scale robotics, device designs, and miniaturized position, navigation, and timing (PNT) systems. Read more.

Polcawich will present Rapid Innovation with Production MEMS Workshop Outbrief on Tuesday, October 30 at MEMS & Sensors Executive Congress in Napa Valley, Calif.

Register today to connect with Ron and learn about DARPA’s rapid innovation in MEMS concept.

Nishita Rao is a marketing manager at SEMI.

By Wilfried Vogel, NETA

Downsizing and thinning all the electronic parts has always been a trend in our modern era. However, the nanoscience and nanotechnologies were still science fiction in the 60’s and the word nanotechnology was used for the first time in 1974. At the same time, the first atomic force microscopes (AFM) and scanning acoustic microscopes (SAM) were developed. Today nanotechnologies represent huge investments –  even from governments – and a global market of several thousand of billions of euros.

Non-destructive testing at the nanometric scale is the purpose here. Ultrasounds are widely used in the aeronautics industry or during medical echography. The spatial resolution reached in that case is around the millimeter which is a million time too large when we speak of nanotechnologies.

SAM systems benefit from a higher definition thanks to MHz/GHz ultrasounds, the smallest axial resolution found on the market is below the micron.

The nanometric world requires another 2 to 3 orders of magnitude below and it can only be reached thanks to THz ultrasounds. These frequencies cannot be generated with standard transductors, that’s why the ASynchronous OPtical Sampling (ASOPS) systems are equipped with ultrafast lasers.

This complex technology is now available on the market in a compact instrument. The JAX is the first industrial imaging ASOPS system (Fig. 1).

When the laser hits the surface, the most part of the energy is absorbed by the first layers of atoms and converted into heat without damaging the sample (Fig. 2), leading to transient thermoelastic expansion and ultrasound emission.

The choice of the probe is also important to keep the temporal and the spatial resolution as low as possible, that’s why another ultrafast laser is used as a probe (Fig 3.).

The ultrasound is propagating a few nanometers per picosecond through the thin film and at some point will bounce back partially or completely to come back to the surface when meeting a different medium.

The probe laser is focused at the surface, when the ultrasound hits back the surface, the reflectivity fluctuates locally over time.

The variation of reflectivity is detected and stored into the computer as a raw data.

The technique is often called picosecond ultrasonics, it has been developed at Brown University in the USA by Humphrey Maris in the mid 80’s.

The ASOPS is not the only kind of technology able to perform picosecond ultrasonics, but it’s the latest evolution and the fastest to perform a full measurement. The trick here is to slightly shift the frequency of the probe laser compared to the pump’s one (Fig. 4). Both lasers are synchronized by a separate electronical unit. The probe arrives slightly after the pump and this delay is extending with time until the whole sampling is over.

The elastic answer of the thin film to a pump excitation is too fast to be measured in real time. You have to artificially extend time and reconstruct the signal of the probe.

The measure described above is for one single point. With a more standard instrument able to perform picosecond ultrasonics, it would take several minutes. Here with the ASOPS, the measure takes less than a second. It means that by simply scanning point by point all over the surface (Fig. 5), you will get a full map of the studied mechanical parameter in minutes.

Thickness measurement

For instance if your interest is in the thickness of a thin film, you can easily retrieve an accurate value by measuring the time between two echoes of the ultrasound at the surface of the sample (Fig. 6).

Until recently, the kind of setup required to make these measurement was found in a optical lab with a large honeycomb table full of mirrors and lenses. Even though the results are respectable, the time to install and repeatability are often the main issue.

Hopefully the technology is now accessible for non-specialists who just want to focus on measuring the mechanical properties of their samples and not to take care of all the optical part. The industrialization of such an innovative and complex device is giving an easy access to new information.

Since a punctual measurement takes a few milliseconds, it is easily feasible to measure all over the surface of the sample and get a full mapping of the thickness.

In the examplebelow (Fig. 7), the sample consists of a 500 µm silicon substrate and 255 nm sputtered tungsten single layer. The scanned surface is approximately 1.6 mm x 1.6 mm and the lateral resolution in X-Y is 50 µm, 999 points in total.

A large scratch is being highlighted at the surface but the average thickness remains in the range of 250 nm. The total time of measurement is less than 10 minutes, which is comparable to a single point measurement with one laser and a mechanical delay line (homodyne system).

Until now, the industry offer for production management was only homodyne instruments performing picosecond ultrasonics measurements, reducing the full scan of the surface to a very few points checked only over a full wafer.

We just saw that single layer thin film thickness measurement is pretty straight forward. If you are dealing with more than one layer the raw data is much more complex to read. However, it is possible to model the sample and to compare the simulated signal to the actual measure with an incredible fit.

Multiphysics

When you chat with several experts of thin films, they will all agree to tell you that:

  • Thickness is a key parameter
  • Adhesion is always a problem
  • Non-destructive measurement is a fine improvement
  • Faster is better
  • Imaging is awesome

In the industry, thickness and adhesion are the main concern at all steps of the manufacturing process, whether you are working in the display or the semiconductor field. The picosecond ultrasonics technique is already used in-line for wafer inspection, which shows its maturity and yet confidentiality.

The standard procedures for adhesion measurement are applicable only on flat and large samples, and they are destructive. When it comes to 3D samples and if you want to check the adhesion on a very small surface, the laser is the only solution. Adhesion can now be verified inline all over the sample during every step of the manufacturing process.

Now the academic world has different concerns and goes deeper and deeper in the understanding of the material behavior at the atomic scale.

The ASOPS system can go beyond the picosecond ultrasonics – which is already a great source of information if we stick to thickness and adhesion –  and get even more from the raw data such as thermal information or critical mechanical parameters.

Thermal conductivity

Thermal conductivity is the parameter representing the heat conducting capability of a material.

Thin films, superlattices, graphene, and all related materials are of broad technological interest for applications including transistors, memory, optoelectronic devices, MEMS, photovoltaics  and more. Thermal performance is a key consideration in many of these applications, motivating efforts to measure the thermal conductivity of these films. The thermal conductivity of thin film materials is usually smaller than that of their bulk counterparts, sometimes dramatically so.

Compared to bulk single crystals, many thin film have more impurities which tend to reduce the thermal conductivity. Besides even an atomically perfect thin film is expected to have reduced thermal conductivity due to phonon leakage or related interactions.

Using pulsed lasers is one of the many possibilities to measure the thermal conductivity of a thin material. The time-domain thermoreflectance (TDTR) is a method by which the thermal properties of a material can be measured. It is even more suitable for thin films materials, which have properties that vary greatly when compared to the same materials in bulk.

The temperature increase due to the laser can be written as follows:

∆T(z)=(1-R) Q/(C(ζA)) exp⁡(-z/ζ)

where R is the sample reflectivity,
Q is the optical pulse energy,
C is the specific heat per unit volume,
A is the optical spot area,
ζ is the optical absorption length,
z is the distance into the sample

The voltage measured by the photodetector is proportional to the variation of R, it is possible then to deduce the thermal conductivity.

In some configuration, it can be useful to shoot the probe on the bottom of the sample (Fig. 7) or vice versa in order to get more accurate signal from one side or the other of the sample.

Surface acoustic wave

When the pump laser hits the surface, the ultrasound generated is actually made of two distinct waves modes, one propagating in the bulk, which is called longitudinal (see Fig. 1), one traveling along the surface, it’s called the Rayleigh mode.

In the industry the detection of surface acoustic wave (SAW) is used to detect and characterize cracks.

The surface wave is very sensitive to the presence and characteristics of the surface coatings, even when they are much thinner than the penetration depth of the wave. Young Modulus can be determined by measuring the velocity of the surface waves.

The propagation velocity of the surface waves, c, in a homogeneous isotropic medium is related to:

– the Young’s modulus E,
– the Poisson’s ratio ν,
– the density ρ

by the following approximate relation c=(0.87+1.12ν)/(1+ν) √(E/(2ρ(1+ν)))

When using an industrial ASOPS system to measure and image the SAW, the pump laser is fixed (Fig. 8) and always hitting the same spot.

The probe is measuring its signal around the pump laser thanks to a scanner installed in the instrument.

Future challenges

We had a quick overview of some applications and parameters that can be measured with an industrial  ASOPS imaging system. Of course it was not exhaustive, we could think for instance of adding Brillouin scattering detection in transparent material and more.

Today, ASOPS technology is moving from the margin to the mainstream. The academic community already recognizes this non-destructive technology as truly operational and able to deliver reliable and accurate measurements. For industrial applications, ASOPS systems will most certainly begin to replace standard systems in the short term and to fill the gap of ultrasonic inspection at nanometric scale.

Besides it is easily nestable in the production line while some other instruments are meant to remain research devices because they require much more care, vacuum pumps, complex settings etc.

However, the industry is far from done exploiting the full range of capabilities offered by ASOPS systems, this versatile technology also continues to be developed and validated for a broad range of other critical applications. Indeed, ASOPS systems has already shown a great potential on biological cell research. We can expect new developments to be done in the future and see instruments help the early disease detection within the next few years.

“2017 was an unprecedented year for semiconductor industry,” commented Santosh Kumar, Director of Packaging, Assembly and Substrates at Yole Korea, part of Yole Développement (Yole). “The market grow by 21.6% year-to-year to reach record of almost US$412 billion.”

Under this dynamic context, the advanced packaging industry is playing a key role, offering huge opportunities of innovation for the companies involved. According to Yole’s analyst, Santosh Kumar, the advanced packaging market should reach about US$ 39 billion in 2023.

The market research and strategy consulting company Yole, releases this month, its famous report, Status of the Advanced Packaging Industry. Santosh Kumar, with the help of the advanced packaging team at Yole, proposes today an impressive 2018 edition with key market trends, the description of technology evolution, a detailed analysis of the competitive landscape.

For the 1st time, this technology & market report includes a specific section dedicated to the advanced packaging technologies in the new semiconductor era. It offers a short term and long term outlook, with detailed roadmaps. It also details the impact of front-end scaling on advanced packaging. In addition Yole’s team points out the competitive landscape, with disruption and opportunities, detailed supply chain, production splits by manufacturers.

“This report is part of our key advanced packaging technology & market analyses,” asserts Emilie Jolivet, Director, Semiconductor & Software at Yole. “Thanks to this report, we built a strong reputation and became step by step one of the major consulting companies in this area.”

To highlight results of this new advanced packaging report, Yole combines the release of this report with the relevant interview of a key advanced packaging player, Amkor Technology. OSATs clearly play a significant role in the evolution of the industry and Ron Huemoeller, Corporate Vice President, Head of WWRD & Technology Strategy and Christopher A. Chaney, IRC, Vice President, Investor Relations, both at Amkor Technology agreed to share their vision with @Micronews readers: More.

Between 2017 and 2023, the total packaging market’s revenue will grow at 5.2% CAGR . In parallel, over the same period, the advanced packaging market will grow at 7% CAGR. On the other hand, the traditional packaging market will grow at a lower CAGR of 3.3%.

Of the different advanced packaging platforms, 3D TSV and fan-out will grow at rates of 29% and 15%, respectively. Flip-chip, which constitutes the majority of the advanced packaging market, will grow at CAGR of almost 7%. Meanwhile, fan-in WLP will grow at a 7% CAGR from 2017 – 2023, mainly led by mobile.

“Advanced packages will continue their important role of addressing high-end logic and memory in computing and telecom, with further penetration in analog and RF in high-end consumer/mobile segments,” analyses Santosh Kumar from Yole. All of this while eyeing opportunities in the growing automotive and industrial segments.

What’s happened in 2017? According to Yole, two advanced packaging roadmaps are foreseen:
•  Scaling: going to sub10 nm nodes
•  And functional: staying above 20nm nodes.

In parallel, the semiconductor industry is developing products on both of them. Under this favorable context, advanced semiconductor packaging is seen as a way to increase the value of a semiconductor product, adding functionality, maintaining/increasing performance while lowering cost.
Both roadmaps hold more multi-die heterogeneous integration including SiP and higher levels of package customization in the future. A variety of multi-die packaging is developing in both high and low end, for consumer, performance and specialized applications. Heterogeneous integration has created opportunities for both the substrate and WLP based SiP.

2017 also show the merger of 3 competitive areas that will continue to develop: PCB vs. substrate, substrate vs. Fan-Out and Fan-Out vs. 2.5D/3D.

It will be difficult to repeat 2017 performances and Yole’s Semiconductor & Software team went further in its investigation this year again, to propose you today a comprehensive analysis of this evolution. Lot of questions are still pending and the Status of the Advanced Packaging industry will give you a deep understanding of the megatrends impacting this industry, the related business opportunities and technical innovations. A detailed description of this report is available on i-micronews.com, advanced packaging reports section.

By Nishita Rao

Nicolas Sauvage, senior director of Ecosystem at TDK InvenSense, will present at the fast-approaching MEMS & Sensors Executive Congress on October 29-30, 2018 in Napa, Calif. SEMI’s Nishita Rao spoke with Sauvage to offer MSEC attendees advance insights on Sauvage’s feature presentation.

SEMI: What is “autonomy value” and why is it important?

Sauvage: How do you increase the perceived value of an electronic device? If it’s an autonomous car, its value is closely tied to the autonomy level — i.e., the independence — that it offers people. Higher autonomy value for a self-driving car, for example, means that even a blind person could use it. It’s been almost two years since Waymo demonstrated this, and here’s the video that shows it.

Countless other sensor-based electronic products have their own “autonomy value.” Imagine the need to get medicine to people during a humanitarian health crisis. Drones could be your best option because they can deliver to inaccessible or remote locations. Unlike older drones, which require active piloting by a person, a drone with higher autonomy value could deliver medicine to Doctors Without Borders without ongoing human intervention.

This drone could navigate objects, such as trees and birds, and would have excellent location-awareness. It could fly through any landscape in bright sunlight or during the night. To increase the drone’s autonomy value, you would need better sensors, including those sensors that can enable sensing in sunny conditions or in pitch-black night, as well as better machine learning.

SEMI: In this example, what types of sensors would the drone manufacturer need?

Sauvage: The manufacturer would need a “surrounding-sensing” solution that includes ultrasonic and pressure sensors as well as image sensors. Start with high-quality image sensors combined with ultrasonic range-finding sensors — high-accuracy devices that function in all lighting conditions and can detect objects of any color. Add motion sensors and a pressure sensor, which would capture the height of the drone to make known the drone’s location in space. The drone would need this combination of sensors, plus smart sensor fusion, because GPS alone cannot avoid obstacles: its signal can be sporadic in certain parts of the world or in certain terrain, making it unreliable.

A key attribute of all these sensors would be low power consumption since the drone would run on battery.

SEMI: To what extent might autonomy value cause manufacturers to consider multi-vendor solutions?

Sauvage: I would like to see it inspire the MEMS and sensors ecosystem to work together, to arrive at multi-vendor solutions that will benefit humanity through greater autonomy value. Whether we’re looking at autonomous cars, drones, robotics or other applications, there are cases where we need to prioritize safety and security over industry competition.

SEMI: Where are we today in terms of achieving true autonomy value – and where are we going?

Sauvage: The sky is the limit, literally. Machine learning and surrounding-sensing solutions applied to cars, drones and robots will increase autonomy value to the point where we can justifiably call it artificial intelligence.

SEMI: What would you like MEMS & Sensors Executive Congress attendees to take away from your presentation?

Sauvage: I hope that attendees will recognize the value of ecosystem solutions in increasing autonomy value. Together we can expand the variety of sensor types that address novel use-cases and jobs-to-be-done. Instead of waiting for customers to ask for ecosystem-level solutions, we need to articulate a complete MEMS and sensors supply-chain ecosystem if we want the Internet of Things (IoT) and Industrial IoT (IIoT) to grow more quickly.

As senior director of Ecosystem, Nicholas Sauvage is responsible for all strategic relationships, including Google and Qualcomm, and other HW/SW/System companies. He is also responsible for strategic and market-driven goal-setting of our SensorStudio developer program, and driving select partnerships with SoC sensor hub platforms. Prior to joining InvenSense, Nicolas was part of NXP Software management team, responsible for worldwide sales, as well as for P&L and product management of their OEM Business Line. Nicolas is an alumnus of Institut supérieur d’électronique et du numérique, London Business School and INSEAD.

Register today to connect with Nicolas Sauvage at the event. You can also connect with him on LinkedIn.

Nishita Rao is a marketing manager at SEMI.