Tag Archives: letter-pulse-top

Semiconductors, metals and insulators must be integrated to make the transistors that are the electronic building blocks of your smartphone, computer and other microchip-enabled devices. Today’s transistors are miniscule–a mere 10 nanometers wide–and formed from three-dimensional (3D) crystals.

But a disruptive new technology looms that uses two-dimensional (2D) crystals, just 1 nanometer thick, to enable ultrathin electronics. Scientists worldwide are investigating 2D crystals made from common layered materials to constrain electron transport within just two dimensions. Researchers had previously found ways to lithographically pattern single layers of carbon atoms called graphene into ribbon-like “wires” complete with insulation provided by a similar layer of boron nitride. But until now they have lacked synthesis and processing methods to lithographically pattern junctions between two different semiconductors within a single nanometer-thick layer to form transistors, the building blocks of ultrathin electronic devices.

Now for the first time, researchers at the Department of Energy’s Oak Ridge National Laboratory have combined a novel synthesis process with commercial electron-beam lithography techniques to produce arrays of semiconductor junctions in arbitrary patterns within a single, nanometer-thick semiconductor crystal. The process relies upon transforming patterned regions of one existing, single-layer crystal into another. The researchers first grew single, nanometer-thick layers of molybdenum diselenide crystals on substrates and then deposited protective patterns of silicon oxide using standard lithography techniques. Then they bombarded the exposed regions of the crystals with a laser-generated beam of sulfur atoms. The sulfur atoms replaced the selenium atoms in the crystals to form molybdenum disulfide, which has a nearly identical crystal structure. The two semiconductor crystals formed sharp junctions, the desired building blocks of electronics. Nature Communications reports the accomplishment.

“We can literally make any kind of pattern that we want,” said Masoud Mahjouri-Samani, who co-led the study with David Geohegan. Geohegan, head of ORNL’s Nanomaterials Synthesis and Functional Assembly Group at the Center for Nanophase Materials Sciences, is the principal investigator of a Department of Energy basic science project focusing on the growth mechanisms and controlled synthesis of nanomaterials. Millions of 2D building blocks with numerous patterns may be made concurrently, Mahjouri-Samani added. In the future, it might be possible to produce different patterns on the top and bottom of a sheet. Further complexity could be introduced by layering sheets with different patterns.

Added Geohegan, “The development of a scalable, easily implemented process to lithographically pattern and easily form lateral semiconducting heterojunctions within two-dimensional crystals fulfills a critical need for ‘building blocks’ to enable next-generation ultrathin devices for applications ranging from flexible consumer electronics to solar energy.”

Tuning the bandgap

“We chose pulsed laser deposition of sulfur because of the digital control it gives you over the flux of the material that comes to the surface,” said Mahjouri-Samani. “You can basically make any kind of intermediate alloy. You can just replace, say, 20 percent of the selenium with sulfur, or 30 percent, or 50 percent.” Added Geohegan, “Pulsed laser deposition also lets the kinetic energy of the sulfur atoms be tuned, allowing you to explore a wider range of processing conditions.”

It is important that by controlling the ratio of sulfur to selenium within the crystal, the researchers can tune the bandgap of the semiconductors, an attribute that determines electronic and optical properties. To make optoelectronic devices such as electroluminescent displays, microchip fabricators integrate semiconductors with different bandgaps. For example, molybdenum disulfide’s bandgap is greater than molybdenum diselenide’s. Applying voltage to a crystal containing both semiconductors causes electrons and “holes” (positive charges created when electrons vacate) to move from molybdenum disulfide into molybdenum diselenide and recombine to emit light at the bandgap of molybdenum diselenide. For that reason, engineering the bandgaps of monolayer systems can allow the generation of light with many different colors, as well as enable other applications such as transistors and sensors, Mahjouri-Samani said.

Next the researchers will see if their pulsed laser vaporization and conversion method will work with atoms other than sulfur and selenium. “We’re trying to make more complex systems in a 2D plane–integrate more ingredients, put in different building blocks–because at the end of the day, a complete working device needs different semiconductors and metals and insulators,” Mahjouri-Samani said.

To understand the process of converting one nanometer-thick crystal into another, the researchers used powerful electron microscopy capabilities available at ORNL, notably atomic-resolution Z-contrast scanning transmission electron microscopy, which was developed at the lab and is now available to scientists worldwide using the Center for Nanophase Materials Sciences. Employing this technique, electron microscopists Andrew Lupini and visiting scientist Leonardo Basile imaged hexagonal networks of individual columns of atoms in the nanometer-thick molybdenum diselenide and molybdenum disulfide crystals.

“We could directly distinguish between sulfur and selenium atoms by their intensities in the image,” Lupini said. “These images and electron energy loss spectroscopy allowed the team to characterize the semiconductor heterojunction with atomic precision.”

North America-based manufacturers of semiconductor equipment posted $1.51 billion in orders worldwide in June 2015 (three-month average basis) and a book-to-bill ratio of 0.98, according to the June EMDS Book-to-Bill Report published today by SEMI.  A book-to-bill of 0.98 means that $98 worth of orders were received for every $100 of product billed for the month.

SEMI reports that the three-month average of worldwide bookings in June 2015 was $1.51 billion. The bookings figure is 2.6 percent lower than the final May 2015 level of $1.55 billion, and is 3.5 percent higher than the June 2014 order level of $1.46 billion.

The three-month average of worldwide billings in June 2015 was $1.54 billion. The billings figure is 1.0 percent lower than the final May 2015 level of $1.56 billion, and is 16.2 percent higher than the June 2014 billings level of $1.33 billion.

“The June book-to-bill saw slight declines in the three-month averages for both booking and billings compared to May,” said Denny McGuirk, president and CEO of SEMI.  “Both figures, however, are above the trends reported one year ago and the first half of the year has been one of positive growth.”

The SEMI book-to-bill is a ratio of three-month moving averages of worldwide bookings and billings for North American-based semiconductor equipment manufacturers. Billings and bookings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)

Bookings
(3-mo. avg)

Book-to-Bill

January 2015 

$1,279.1

$1,325.6

1.04

February 2015 

$1,280.1

$1,313.7

1.03

March 2015 

$1,265.6

$1,392.7

1.10

April 2015 

$1,515.3

$1,573.7

1.04

May 2015 (final)

$1,557.3

$1,546.2

0.99

June 2015 (prelim)

$1,542.1

$1,506.1

0.98

Source: SEMI (www.semi.org)July 2015

By Pete Singer, Editor-in-Chief

Imagine EUV lithography in high volume production. ASML has been working for years to make it happen.

Earlier this year, ASML said that one of its major chip-manufacturing customers has placed an order for 15 EUV systems, including two that are set to be delivered before the end of this year. ASML did not name the customer, but it is almost certainly Intel (according to research firm IHS).

ASML’s CEO Peter Wennink said in a statement announcing that the customer agreement had been signed: “EUV is now approaching volume introduction. Long-term EUV planning and EUV ecosystem preparation is greatly supported by this commitment to EUV, kick-starting a new round of innovation in the semiconductor industry. The commitment extends the planning horizon and increases the confidence in EUV.”

EUV Unlike Anything Else in the Fab Figure 1

Unlike the current atmospheric based High End immersion lithography tools used in volume manufacturing, the ASML NXE tool is vacuum based and using 13.5nm EUV light, generated by a tin-based laser produced plasma source. The systems feature all-reflective 4x reduction optics assemblies from Carl Zeiss SMT with a numerical aperture (NA) of 0.33 and a maximum exposure field of 26mm by 33mm.

EUV tools are very different from any other tool in a fab in a couple of different ways. A main difference is that the tool is designed to operate in a continuous mode. “Other tools in the fab, such as single wafer tools or batch tools, will undergo many step changes during a total cycle such as process, vent, load and unload wafers and also cleaning steps,” says Jos Donders, global market sector manager at Edwards. “In principle the EUV tool is made for continuous operation. Knowing the cost of the tool and the cost for the facilities, you understand why it’s so important that the tool is always up and why there is such a demand on the reliability and uptime of the supporting equipment such as vacuum and abatement.”

EUV Unlike Anything Else in the Fab Figure 2

Donders, who was involved with the early work at ASML in understanding vacuum and abatement requirements of EUV, said the scanner and the source have very different requirements when it comes to vacuum levels. “The condition in the source is very different than the condition in the scanner. The challenge for the vacuum and abatement system is to handle the different conditions in an acceptable footprint in the sub-fab,” he said. “The cleanliness requirements, the materials selection and the overall budget are very important, as is the vacuum system that supports it,” he added.

Hydrogen in EUV is used to mitigate the contamination effect on the mirrors Andrew Chambers, Technical manager at Edwards said.

Pumping hydrogen is a challenge in itself. “It’s a small molecule,” says Donders. “It’s very difficult to pump. Your pumping mechanism needs to accommodate hydrogen, but also other gases (when the tool is in different states).” Chambers said there is interest in alternative solutions for handling and abating the process gases for EUV and work in Edwards is underway to achieve this ahead of volume manufacturing.

Donders concluded that one of Edwards’ main tasks is to enable EUV lithography going into volume production by supporting it needs to further improve the total energy use and offering sustainable solutions going forward.

The ClassOne Technology Solstice S4 won the Best of West award, presented by Solid State Technology and SEMI. The award was presented to Byron Exarcos, president of ClassOne, at the company’s booth in the North Hall on Wednesday afternoon.

Byron Exarcos, president of ClassOne Technology; Karen Salava, president of SEMI Americas; and Pete Singer, Editor-in-Chief of Solid State Technolgy

Byron Exarcos, president of ClassOne Technology; Karen Salava, president of SEMI Americas; and Pete Singer, Editor-in-Chief of Solid State Technolgy

Solstice S4 is the first automated plating tool that delivers advanced performance on smaller substrates at affordable prices. Described as “advanced plating for the rest of us,” Solstice is designed specifically for the smaller-substrate users in emerging technologies such as MEMs, LEDs, Power Devices, RF Communications, Interposers, Photonics and Microfluidics. Solstice sets new standards for plating performance and affordability.

“There’s a convergence of forces for the different trends that we all see in the market, and right now, it’s the internet of things, it’s the More than Moore, and it’s the flexibility of the manufacturers to achieve all these things,” said Kevin Witt, chief technology officer at ClassOne Technology, after the award presention. “We’ve felt that we had a product that reflected a lot of what those requirements were.”

Witt said there’s a lot of work being done at the cutting edge of 300mm, as well it should. “But there’s an equally important 200mm and below surge. Those folks need equipment. What they can buy now is from the ‘90s,” he said.

Until now, with the Solstice. “The people that are building the 200mm and below fabs need the modern capability of wafer level packaging and interfacing for chip stacking. They need something that fits their budget profile, that is not a 300mm tool that has been repurposed for 200mm,” he said.

Witt concluded: “We went for best of show in the hopes that the world would see that there are companies that are focused on meeting the needs of the smaller level producers that are the next growth area.”

Designed for high-performance, cost-efficient ≤200mm electroplating, Solstice systems are priced at less than half of what similarly configured plating tools from the larger manufacturers would cost — which is why Solstice has been described as delivering “Advanced Plating for the Rest of Us.” Solstice can electroplate many different metals and alloys in a spectrum of processes, on transparent or opaque substrates. ClassOne now offers three Solstice models: the LT for plating process development, the S4 for mid-volume production, and the S8 for high-volume, cassette-to-cassette production, with throughput of up to 75 wph.

Earlier this week, at SEMICON West, ClassOne Technology announced a configuration for optimizing Through Silicon Via (TSV) and Through Wafer Via (TWV) processes on its Solstice® electroplating systems. The Solstice family, introduced last year, is designed to provide advanced yet cost-efficient plating for MEMS, Sensors, RF, Interposers and other emerging technologies for ≤200mm wafers. Flexibly configurable, the Solstice for TSV/TWV combines chambers for the critical blind via pre-wet operation with advanced copper plating on the robust and reliable automation frame that is the heart of the Solstice.

“In recent months customer requests for TWV, whether alone or in combination with forming redistribution layers (RDL), have skyrocketed,” said Witt. “Many of our smaller-wafer customers seek the advantages of 2.5 and 3D packaging needed for their next generation products; and cost-effective TSV or TWV processing is mission critical. The new Solstice configuration addresses their needs effectively and elegantly with a plating tool that is affordably priced for 200mm and smaller substrates.”

Witt explained that the new Solstice TSV configuration, which has already been sold to customers, employs a unique, high-efficiency but simple vacuum pre-wet chamber followed by copper via electroplating. This combination of capabilities enables the ClassOne tool to routinely produce fully-filled or lined vias with widths ranging from 5 to 250 micron having aspect ratios as high as 9:1. Traditionally, this level of performance has been challenging even for plating systems costing twice as much as Solstice. The Solstice can also be configured to perform additional downstream processing such as resist strip and seed layer etch making it a cluster tool that delivers a suite of critical processes, reducing cycle time and saving money. This technology makes it possible to process TSV alone or TSV and redistribution layers simultaneously to provide a complete solution on a single tool.

By Shannon Davis, Web Editor

China’s state-owned Tsinghua Unigroup Ltd. is preparing a $23 billion bid for chipmaker Micron Technology, in what analysts say would be the biggest Chinese takeover of a U.S. company.

Tsinghua, China’s largest state-owned chip design company, is prepared to bid $21 per share for Micron, according to Dow Jones.

As of Tuesday, a Micron spokesman told Reuters that the company had not yet received an offer, while Tsinghua chairman Zhao Weiguo told Bloomberg that the Chinese company was “very interested in cooperation” with Micron.

Tsinghua’s potential purchase of Micron is regarded as a strategic move to help the advancement of China’s own chip sector. The country currently has no major home-grown memory makers, according to Reuters.

Micron is the last remaining U.S. producer of DRAM memory chips, and any foreign takeover would still have to pass a review by the Committee on Foreign Investment in the United States, to examine the national security implications of the deal. The deal would also need to be examined by the Chinese National Development and Reform Commission.

This would not be the first significant consolidation in the memory sector this year. In May, Hewlett-Packard sold a 51 percent stake in its data-networking business to Tsinghua for approximately $2.3 billion.

What the analysts are saying

“Valuation appears low as a potential $21 a share bid is 8.3 times fiscal year PE or low end of the historic range of 7 to 15 whereas Micron was at $32 just 5 months ago,” UBS analyst Stephen Chin told MarketWatch.

MarketWatch speculated that a cheap valuation could encourage other companies to launch their own bids.

Because it can achieve extreme deformation, Equal Channel Angular Extrusion (ECAE) can deliver submicron, high strength and uniform microstructures. The resulting improvements in strength allow for monolithic targets with a longer target life of 20-100%.

BY STEPHANE FERRASSE, SUSAN STROTHERS and CHRISTIE HAUSMAN, Honeywell Electronic Materials, Sunnyvale, CA

First observed in 1852, cathodic sputtering is a form of physical vapor deposition (PVD) that involves the bombardment of a target material by positive ions to physically remove atoms from the surface, forming a vapor for substrate coating. It wasn’t until the 1960s and the growth of the electronics industry, however, that sputtering received significant attention.

Since then, sputtering has become entrenched in many integrated circuit (IC) production processes. While sputtering performance has benefited from advanced sputtering system designs and target material improvements, more is needed to meet future demands as device features shrink and thin film specifications become tighter.

The physical and chemical properties of sputtering targets play an integral role in thin film performance and device yield since they impact thin film composition, uniformity, consistency, defects (particulate), and step coverage. In addition, target utilization and lifetime is a factor in cost of ownership (CoO) as it correlates to chamber throughput and uptime.

This article explores how the microstructure of sputtering targets can be engineered to improve strength, life and thin film quality. It also compares conventional thermo-mechanical processing (TMP) to the breakthrough TMP of Equal Channel Angular Extrusion (ECAE) technology from Honeywell.

Key sputtering target properties

A great deal of research has been directed toward improving the microstructure of sputtering targets. Key target properties and challenges that impact thin film functionality and device yield include:

Chemical purity: Elemental impurities in sputtering targets are undesirable as they transfer to the thin film and adversely impact performance. However, higher purity metals are weaker and less able to withstand the stresses induced in the sputtering chamber. This poses unique manufacturing and end-use challenges unlike most other uses of metallic products.

Metallurgical defects: Thin film particulate contamination has been an ongoing and growing challenge with each successive technology node. Porosity, inclusions, inconsistent grain structures, and large second phases present in the target material can — through arcing — cause direct or indirect particulate contamination on the wafer.

Thermal stability: High thermal stability in the target material is needed to withstand high-power sputtering applications.

Target grain size: Fine grain size provides higher strength and contributes to superior film uniformity. Consistent grain structure throughout the target provides stable uniformity through target life.

Target strength: Sufficient yield strength is required to prevent target warping, which can contribute to film non-uniformity and arcing.

Key solutions to those challenges include:

Alloying or doping is an extremely common way to add strength, increase thermal stability and promote grain refinement in all metals. Unfortunately, in semiconductor applications it is usually not desirable for alloys or doping elements to become part of the thin film itself, so it is rarely an option. The exception is when the alloying element improves the thin film properties.

The use of high strength backing plates bonded to high purity targets to add strength to the entire target assembly. This is a very common and acceptable practice, but it introduces several risks and manufacturing challenges, such as a failed bond, arcing at the bond line and deflection in the assembly. Coefficient of thermal expansion (CTE) mismatches between the target and the backing plate can also pose serious challenges to target manufacturing, especially for brittle materials. Furthermore, the use of high-temper- ature bonding methods can cause grain growth and destroy desirable target metallurgical properties. This necessitates trade-offs between grain size, bond type and bond strength.

Improvements in TMP to improve the micro- structure, as described in the next section.

TMP fabrication overview

The choice of fabrication method has an impact on sputtering performance because the more defor- mation applied to the metal, the smaller the grain size. Two types of TMP, shown schematically in FIGURE 1, are described below.

Sputtering Fig 1

Conventional TMP. This uses a combination of forging, rolling and heat treatment steps to obtain finer microstructures. It delivers good results and has been the industry standard. It is, however, restricted in terms of the amount of strain and deformation it can impart on the material. The amount of deformation, often expressed as a percent reduction of billet height, is limited to about 90% (equivalent strain of 2.3) in practice for targets. Higher reductions of greater than 90% require excessive tonnage and initial billet height, and impose severe requirements on conventional TMP equipment (stroke, daylight and tonnage capability). The maximum attainable strain of approximately 2.3 is not optimal for refinement of grain size. This, combined with the need for a backing plate to add strength, may not meet the needs of high-performance IC applications.

ECAE. This is a state-of-the-art extrusion process that is specifically designed to deliver the next level of microstructure performance. A billet is extruded through two intersecting channels of equal cross-sections – allowing attainable strains of 4.6-7, equivalent to greater than 99.9% reduction. As shown in FIGURE 1, the channels meet at a 90-degree angle and severe plastic deformation is realized uniformly by simple shear, in multiple passes, without changing the size or shape of the starting material. ECAE also has the flexibility to manipulate the metal in multiple directions. Together, these features enable submicron and homogenous microstructures.

 

Performance comparisons

Finer grain structures result in improved yield strength and ultimate tensile strength, as described below:

Sputtering Table 1

Grain Sizes The attainable grain sizes for ECAE versus conventional TMP methods are shown in TABLE 1. As shown, the extreme deformation of ECAE results in finer microstructures, and thus improved strength. Grain sizes from 0.2-0.8 m can be achieved for monolithic targets, a refinement in grain size by a factor of up to 100 times depending on the material.

Strength The ability of ECAE grain refinement to improve yield strength (YS) and ultimate tensile strength (UTS) is dramatic. YS, in particular, is critical for target applications because it governs the onset of permanent plastic deformation that leads to target warping. As shown in FIGURE 2, the yield strength of several ECAE submicron grained, high purity materials – including Al-0.5 wt% Cu, Cu, Cu-0.11 wt% Al, and Cu-1% Mn – is four to six times higher than a conventional TMP material.

Sputtering Fig 2

Thermal Stability Thermal stability in terms of a material’s resistance to grain growth during sputtering is critical for consistent thin-film uniformity. The grain structures in Table 1 for both ECAE and conventional TMP materials are stable under high power sputtering conditions.

Metallurgical Defects Any heat treatment can be performed prior to ECAE because the level of grain refinement during ECAE does not depend on initial grain size. Therefore, traditional heat treatment such as solutionizing used in conven- tional TMP can be completely replaced or combined optimally with ECAE to remove or refine second phase precipitates. For example, as shown in FIGURE 3 in the optical micrograph, a conventional TMP Al0.5Cu exhibits 1-7 m (AlCu) second phases. However, during the multi-pass ECAE process at room temperature, repetitive shearing, elongation, breakage and homogenization of second phases leads to their refinement to less than 100 nm as displayed in the TEM image of submicron ECAE Al0.5Cu. This is a dramatic refinement of second phases by a factor of over 100 compared to conventional TMP targets. ECAE has a similar effect on refinement and reduction of other material defects such as voids, inclusions or dendrites.

Sputtering Fig 3

ECAE cost-performance benefits

The properties of ECAE targets described above provide important cost-performance benefits over conventional TMP techniques, allowing users to lower their total CoO. A few key examples are described below.

Monolithic Design Improves Target Life and Productivity

With ECAE, previously bonded planar Al and Cu alloy targets can be designed as single-piece, monolithic targets. This translates into a longer target life versus their bonded counterparts produced via conventional TMP. As shown in FIGURE 4, sputtering is not limited by the bond line and therefore, the erosion groove can extend much deeper for optimum material utilization. In fact, monolithic ECAE submicron Al and Cu alloy targets (200 mm and 300 mm) show a 20-100% increase in target life.

Sputtering Fig 4

This longer target life equates to cost savings by:

  • Reducing downtime associated with target changes for greater tool utilization.
  • Reducing the cost per kWh of the sputtering target.
  • Eliminating risks associated with backing plates such as de-bonding or deflection.

Improved Wafer Yield Due To Improved

Performance An even greater cost savings for users is the increase in wafer yield associated with better performing sputtering targets. Second- phase precipitates, inclusions and voids all contribute to arcing and subsequent wafer-killing defects. Minimizing these defects drastically reduces potential sources for arcing. Additionally, submicron microstructures are more resistive, which increases the threshold voltage for arcing and enhances plasma stability. Put simply, when arcing is reduced, wafer particles are reduced and wafer yield is increased. Increasing wafer yield has the single most dramatic impact on device cost.

Summary

Sputtering targets produced via TMP – both conventional and ECAE – are designed to meet thin film deposition needs. ECAE, however, has the added ability to meet more challenging IC geometries and performance. Because it can achieve extreme deformation, ECAE can deliver submicron, high strength and uniform microstructures.

The resulting improvements in strength allow for monolithic targets with a longer target life of 20-100%, depending on design. Added to this is the ability of ECAE to minimize arcing, and to reduce the size of precipitates and inclusions and other metallurgical defects, while meeting needs for chemical purity and thermal stability.

Manufacturers can reduce their CoO through improvements in thin film uniformity, greater productivity, higher wafer yield, lower production costs and less downtime.

STEPHANE FERRASSE, SUSAN STROTHERS and CHRISTIE HAUSMAN are with Honeywell Electronic Materials, Spokane, WA.

BY JIN YOU ZAO, STATS ChipPAC, Singapore, and JOHN THORNELL, Rudolph Technologies, Inc. Bloomington, MN, USA

The demand for 4-mask layer Cu-plated wafer-level chip scale packaging (WLCSP) is increasing rapidly, and the current capability for in-line Cu height measurements is not suitable for high volume manufacturing (HVM). Thus, metrology constrains production capacity and limits volume ramp. Furthermore, the bottleneck created by a backlog of Cu step height measurements risks the timely detection of process drift and control. For a 4-mask layer Cu-plated WLCSP, accurate Cu step height measurement is required for both the Redistribution Layer (RDL) and Under Bump Metal (UBM) to ensure consistent delivery of good electrical performance and package reliability. This is especially important as WLCSP is moving towards finer feature size and pitch to meet increasing demand for smaller form factor.

In this article, the current measurement methodology is reviewed and an alternative measurement solution is derived. Full automation capability is delivered, yet the solution is reliable and versatile enough for high-mix production volumes. For quick-turn and high-mix volume manufacturing, accurate and fast in-line monitoring is crucial for timely process drift detection and control.

WLCSP in-line process measurement challenges

Contact-based profilometers are commonly used in wafer bumping for measurement of metal feature (RDL, UBM) thicknesses due to their ease of use and their low cost of ownership. However, the method of measurement is largely semi-automatic, and the identification of exact features and measurement locations is challenging.

This becomes more acute in a high product-mix HVM environment, where measurement needs to be highly adaptive to different features on different products. As such, contact-based profilometers are limited to sampling measurements, and cannot perform 100% die inspection for process characterization.

It is thus desirable to have an automated feature measurement system capable of measuring features at precise locations on different topology on wafers in both sampling and full inspection modes.

Specifically, feature measurement for wafer bumping comprises the following configurations (FIGURE 1):

HVM Fig 1

a) Cu RDL feature height measurement after Cu electro-plating, where the sputtered metal seed layer to enable Cu plating remains on the first layer polyimide surface

b) Final Cu RDL feature thickness measurement on first layer polyimide surface (PI-1) after the Cu seed layer is etched away. Accurate final Cu RDL thickness measurement would require a good gauging of the PI-1 thickness underneath, especially if the topology is not flat.

c) Cu UBM feature height measurement after Cu electroplating

d) Final Cu UBM feature thickness measurement on second layer polyimide surface (PI-2)

The development for automated feature measurement proceeded in two phases: (Phase-1) Cu step height highlight measurement on reflective metal surfaces, and (Phase-2) Cu thickness and polyimide thickness measurement on non-reflective surfaces.

Phase-1: Auto Cu height measurement

In this phase, the 3D inspection (3DI) system commonly used for solder bump height (typically greater than 20μm) measurement is explored for auto Cu feature height measurement. Typical 3DI system such as Rudolph’s WaferScanner, is equipped with the 3D triangulation laser sensor (FIGURE 2). Laser triangulation, where a laser is directed at the wafer surface at an angle of 45° and focused to a spot size of 8μm, provides fast, precise measurements of bump height and coplanarity. Through a combination of laser-scanning and wafer movement, the beam scans the entire wafer surface. A lens collects the reflected/scattered laser light and focuses it on a position sensitive detector.

HVM Fig 2

To enable Cu feature height measurement (typically in the range of 2- 20μm), the Triangular laser sensor was redesigned with a spot size of 5μm, providing accuracy down to +/-0.2 μm. The laser scanning algorithm was also improved from an array to a stagger method to improve the repeatability of scanning signals. As Cu feature height measurement is influenced by the surrounding topology, the ability to select any datum for measurement is critical. This was achieved through the integration of camera-based 2D inspection to the improved triangular laser sensor system using the developed datum selection program. An automated height measurement report can be conveniently generated for further analysis through the program (FIGURE 3).

FIGURE 3. Selectable datum for Cu feature height measurement through camera-sensor integration.

FIGURE 3. Selectable datum for Cu feature height measurement through camera-sensor integration.

To verify the consistency of measurement performance, both the improved 3D triangulation laser sensor system and contact profilometer were used to measure feature Cu height on correlation device wafers. It confirmed that the automated 3D triangulation laser sensor system registers statistically similar Cu feature height mean compared to the manual contact profilometer, but required only one-fifth of the measurement time taken by the profilometer. Wafer bumping facilities which already have an existing pool of 3DI inspection tools can be modified to extend measurement application to Cu feature height without the need for excessive new investment.

Phase-2: Auto Cu/ PI thickness measurement

While a strong signal can be derived using the 3D triangular laser signal for Cu feature height measurement after electroplating (Fig. 1, a and c), it is more difficult to establish a stable signal for Cu feature height measurement after the reflective metal seed layer is etched away, and a reference datum needs to be established on the remaining transparent polyimide surface (Fig. 1, b and c). Several conventional methods exist for non-contact measurement of step heights, such as various confocal sensors, triangulation sensors, and scanning white light interferometry. These sensors typically have difficulty differentiating between reflections from the top and bottom surfaces of a layer, that is, layer thickness. This limitation comes from the depth of focus of the objective, which in turn depends on its numerical aperture (NA). Thus, for all these techniques, sensor performance is highly dependent on objective lens.

To overcome this technical constraint, it was necessary to develop a metrology system that can measure concurrently the transparent layer thickness as well as the metal feature step height above the surface of the transparent layer. This can be achieved through the integration of reflectometry and visible light interferometry principles [3]. In this method, the direct reflection from the transparent layer provides direct thickness measurement of the transparent material, while the interferometry captures topography (distance from the sensor), allowing the system to measure the thickness of the opaque metals by scanning over the edge of the feature. This technique is called the visible thickness and shape sensor (VT-SS) system.

In the following sections we provides further description of how the VT-SS system can be adapted for feature height/thickness measurement on varying topology and opaque materials. For this work, we used the Rudolph Technologies NSX System configured with the VT-SS sensor.

VT-SS system MSA study

Measurement system analysis (MSA) seeks to qualify a measurement system for use by quantifying its accuracy, precision and stability. VLSI standard wafers with 8μm, 24μm, and 48μm step heights were used to assess gauge repeatability and reproducibility (GR&R) and accuracy of the VT-SS system, as well as system correlation on two different NSX Systems (tool matching) that were retrofitted with the VT-SS system.

A. Gauge repeatability and reproducibility
For the GR&R study, a total of ten parts on VLSI wafers (4 parts from 8μm, 3 parts from 24μm and 48μm respectively) were measured three times each, including wafer loading and unloading. FIGURE 4 shows gauge R&R for VT-SS is 1.35% of tolerance and fully meeting AIAG standard of <10%.

HVM Fig 4

B. Accuracy
Step height measurement accuracy was evaluated by means of bias and linearity analysis using the VLSI step height wafers. For this study, one location on each standard wafer was measured ten times and compared to the VLSI specification for the wafer.

Based on the studies in FIGURE 5, measurement with VT-SS system shows an average bias of 0.95%, and linearity error of 0.0059%, meeting the AIAG standard of <5%.

FIGURE 5. Accuracy study on VT-SS with VLSI standard.

FIGURE 5. Accuracy study on VT-SS with VLSI standard.

C. Correlation of Multiple Systems
Having established VT-SS capability, the next evaluation is system correlation on multiple tools of the same configuration. The same VLSI wafers described above were measured on a second system with the same hardware and software configuration.

HVM Table 1

A summary of results are shown in TABLE 1, and a detailed example of the 24μm step height is shown in FIGURE 6. For each wafer, the two systems produce similar results, with an offset that ranges from approximately 10nm to 30nm. Considering that the measurement uncertainty is on the order of 5nm (1-), the small system offset is within expectations.

HVM Fig 6

VT-SS system application assessment

VT-SS system allows capturing of both the transparent polyimide thickness and opaque Cu feature height with a single scan from polyimide layer to Cu feature. From the part of the scan covering the polyimide, signals representing the direct measure of the polyimide thickness, the distance to the first surface of the polyimide, and the distance to a metal surface under the passivation stack are measured. The direct measure of the polyimide thickness is the measurement a standard spectroscopic reflectometer would produce. In that part of the scan where the sensor spot illuminates the Cu step height, the direct thickness peak and one of the distance peaks disappear. Only a distance peak to the surface of the Cu feature is present since the copper is opaque. The Cu step height above the first polyimide layer is then determined from the appro- priate distance measures from each part of the scan. Thus, all the desired thickness and Cu thickness measurements are reported.

To aid interpretation of measured signal peaks, a visualization program was developed for automated generation of feature thickness. FIGURE 7 shows an illustration of the program interface for visualization of measured thickness. Raw data can also be exported for further analysis.

HVM Fig 7

A. VT-SS Cu RDL Layer thickness measurement
To assess VT-SS system’s measurement performance on an actual device feature, it was used to measure the Cu feature RDL thickness layer above the first polyimide (PI) layer (refer to Fig. 1, for a pictorial illustration) on a correlation device wafer. The measured RDL thickness was then cross verified with the actual measured Cu feature step height from a contact profilometer and WaferScanner

B. VT-SS Polyimide cum RDL layer Thickness
Further evaluation of the VT-SS system accuracy was achieved through comparison with cross sectional scanning electron microscopy (X-SEM) measurements. X-SEM allows evaluation of both RDL step height and PI thickness (Fig. 1, b). As discussed above the measurement sensor has the unique capability to simultaneously measure step height, i.e. a distance measurement, and film thickness. Both types of measurements must be independently evaluated for accuracy.

Conclusion

We have reported the development of VT-SS-based system on a fully automated platform for in-line process measurement of wafer bumping processes. This new metrology integrates both reflectometry and visible light interferometry principles. Based on MSA studies, VT-SS on a fully automated platform is a precise, accurate and fast metrology system. Engineering validations have shown VT-SS is highly capable in measuring critical dimensions such as RDL/UBM metal thickness, transparent polyimide/ passivation thickness, and feature sizes in one single step. It relieves the current constraints imposed by existing measurement tools on in-line process control, especially in a high mix, high volume production environment. This allows WLCSP production to move to new milestones of quality, yield, cycle time and productivity.

Acknowledgment

The authors would like to thank Harry Kam of STATSChipPAC Singapore (SCS) for his sponsorship in this project, and other team members from SCS and Rudolph Technologies, Inc. for supporting the development work.

References
1. Yole Development, WLCSP Market & Industrial Trends: 2012, Jan2012
2. Robert F. Kunesh, “Wafer Level Chip-Scale Packaging: Evolving to Meet a Growing Application Space”, Adv. Microelectronics, Jan/Feb 2013, Vol. No.1, pp14-16.
3. J. Schwider and Liang Zhou, “Dispersive Interferometric Profilometer,” Opt. Lett., Vol. 19, p. 995, 1994.

JIN YOU ZAO is with STATS ChipPAC in Singapore, and JOHN THORNELL is with Rudolph Technologies, Inc., in Bloomington, MN.

CEA-Leti today announced its first results towards the demonstration of CoolCube’s feasibility in FinFET technology on its 300mm production line, and new CoolCube circuit designs that improve the trade off between area, speed and power.

Key process steps developed on 300mm wafers show progress in closing the gap between the demonstration of a single device and taking the technology to fabrication.

CoolCube is Leti’s sequential integration technology that enables the stacking of active layers of transistors in the third dimension. Under development for eight years, it aims at fully benefiting from the third dimension, and is enabled by cutting in half the thermal budget in manufacturing transistors, while maintaining their performance.

Mobile devices, where minimal power consumption is key, are the primary market for chips manufactured with the technology. CoolCube also allows designers to include backside imagers in the chips, and co-integration of NEMS in a CMOS fabrication process also is possible.

“CoolCube enables local via density that is 10,000 times higher than ‘standard’ 3D integration, because the technology is designed to connect stacked active layers at a nanometric scale,” said Maud Vinet, Leti’s advanced CMOS laboratory manager. “In the digital area, we expect this 3D technique to allow a gain of 50 percent in area and 30 percent in speed compared to the same technology generation in classic 2D – gains comparable to those expected in the next generation. In heterogeneous integration, we expect CoolCubeTM to be an actual enabler of smart-sensor arrays by allowing a close integration of sensors, detection electronics and digital signal processing.”

Leti’s team will be in the European PavilionSouth Hall, Booth #2317, during SEMICON West.

Leti feature 1

Leti’s CoolCube is made possible by sequential integration.

 GLOBALFOUNDRIES today launched a new semiconductor technology developed specifically to meet the ultra-low-power requirements of the next generation of connected devices. The “22FDX” platform delivers FinFET-like performance and energy-efficiency at a cost comparable to 28nm planar technologies, providing an optimal solution for the rapidly evolving mainstream mobile, Internet-of-Things (IoT), RF connectivity and networking markets.

While some applications require the ultimate performance of three-dimensional FinFET transistors, most wireless devices need a better balance of performance, power consumption and cost. 22FDX provides the best path for cost-sensitive applications by leveraging the industry’s first 22nm two-dimensional, fully-depleted silicon-on-insulator (FD-SOI) technology. It offers industry’s lowest operating voltage at 0.4 volt, enabling ultra-low dynamic power consumption, less thermal impact, and smaller end-product form-factors. The 22FDX platform delivers a 20 percent smaller die size and 10 percent fewer masks than 28nm, as well as nearly 50 percent fewer immersion lithography layers than foundry FinFET.

“The 22FDX platform enables our customers to deliver differentiated products with the best balance of power, performance and cost,” said Sanjay Jha, chief executive officer of GLOBALFOUNDRIES. “In an industry first, 22FDX provides real-time system software control of transistor characteristics: the system designer can dynamically balance power, performance, and leakage. Additionally, for RF and analog integration, the platform delivers best scaling combined with highest energy efficiency.”

22FDX leverages the high-volume 28nm platform in GLOBALFOUNDRIES’ 300mm production line in Dresden, Germany. This technology heralds a new chapter in the “Silicon Saxony” story, building on almost 20 years of sustained investment in Europe’s largest semiconductor fab. GLOBALFOUNDRIES launches its FDX platform in Dresden by investing $250 million for technology development and initial 22FDX capacity. This brings the company’s total investment in Fab 1 to more than $5 billion since 2009. The company plans to make further investments to support additional customer demand. GLOBALFOUNDRIES is partnering with R&D and industry leaders to grow a robust ecosystem and to enable faster time-to-market as well as a comprehensive roadmap for its 22FDX offering.

GLOBALFOUNDRIES’ 22FDX platform enables software-control of transistor characteristics to achieve real time tradeoff between static power, dynamic power and performance. This platform consists of a family of differentiated products architected to support the needs of various applications:

  • 22FD-ulp: For the mainstream and low-cost smartphone market, the base ultra-low power offering provides an alternative to FinFET. Through the use of body-biasing, 22FD-ulp delivers greater than 70 percent power reduction compared to 0.9 volt 28nm HKMG, as well as performance equivalent to FinFET. For certain IoT and consumer applications, the platform can operate at 0.4 volt, delivering up to 90 percent power reduction compared to 28nm HKMG.
  • 22FD-uhp: For networking applications with analog integration, this offering is optimized to achieve the same ultra-high performance capabilities of FinFET while minimizing energy consumption. 22FD-uhp customizations include forward body-bias, application optimized metal stacks, and support for 0.95 volt overdrive.
  • 22FD-ull: The ultra-low leakage offering for wearables and IoT delivers the same capabilities of 22FD-ulp, while reducing leakage to as low as 1pa/um. This combination of low active power, ultra-low leakage, and flexible body-biasing can enable a new class of battery-operated wearable devices with an order of magnitude power reduction.
  • 22FD-rfa: The radio frequency analog offering delivers 50 percent lower power at reduced system cost to meet the stringent requirements of high-volume RF applications such as LTE-A cellular transceivers, high order MIMO WiFi combo chips, and millimeter wave radar. The RF active device back-gate feature can reduce or eliminate complex compensation circuits in the primary RF signal path, allowing RF designers to extract more of the intrinsic device Ft performance.

GLOBALFOUNDRIES has been working closely with key customers and ecosystem partners to enable optimized design methodology and a full suite of foundational and complex IP. Design starter kits and early versions of process design kits (PDKs) are available now with risk production starting in the second half of 2016.

Strong support from Customers and Partners for 22FDX

​“GLOBALFOUNDRIES’ FDX platform, using an advanced FD-SOI transistor architecture developed through our long-standing research partnership, confirms and strengthens the momentum of this technology by expanding the ecosystem and assuring a source of high-volume supply,” said Jean-Marc Chery, chief operating officer of STMicroelectronics. “FD-SOI is an ideal process technology to meet the unique always-on, low-power requirements of IoT and other power-sensitive devices worldwide.”

“Freescale’s® next-generation i.MX series of applications processors is leveraging the benefits of FD-SOI to achieve industry leading ultra-low power performance-on-demand solutions for automotive, industrial and consumer applications,” said Ron Martino vice president of applications processors and advanced technology adoption for Freescale’s MCU group.  “GLOBALFOUNDRIES’ 22FDX platform is a great addition to the industry which provides a high volume manufacturing extension of FD-SOI beyond 28nm by continuing to scale down for cost and extend capability for power-performance optimization.”

“The connected world of mobile and IoT devices depend on SoCs that are optimized for performance, power and cost,” said Will Abbey, general manager, physical design group, ARM. “We are collaborating closely with GLOBALFOUNDRIES to deliver the IP ecosystem needed for customers to benefit from the unique value of 22FDX technology.”

“VeriSilicon has experience designing IoT SoCs in FD-SOI technology and we have demonstrated the benefits of FD-SOI in addressing ultra-low power and low energy applications,” said Wayne Dai, president and CEO of VeriSilicon Holdings Co. Ltd. “We look forward to collaborating with GLOBALFOUNDRIES on their 22FDX offering to deliver power, performance and cost optimized designs for smart phones, smart homes, and smart cars especially for the China market.”

“Next-generation connected devices, in markets from wearables and IoT to mobile and consumer, require semiconductor solutions that provide an optimal balance of performance, power and cost,” said Tony King-Smith, EVP Marketing, Imagination Technologies. “The combination of GLOBALFOUNDRIES’ new 22FDX technology with Imagination’s broad portfolio of advanced IP – including PowerVR multimedia, MIPS CPUs and Ensigma communications – will enable more innovation by our mutual customers as they bring differentiated new products to the market.”

“FD-SOI technology can provide a multi-node, low-cost roadmap for wearable, consumer, multimedia, automotive, and other applications,” said Handel Jones, founder and CEO, IBS, Inc. “GLOBALFOUNDRIES’ 22FDX offering brings together the best in low-power FD-SOI technology in a low-cost platform that is expected to experience very strong demand.”

“FD-SOI can deliver significant improvements in performance and power savings, while minimizing adjustments to existing design-and-manufacturing methodologies,” said CEA-Leti CEO Marie-Noëlle Semeria. “Together, we can collectively deliver proven, well-understood design-and-manufacturing techniques for the successful production of GLOBALFOUNDRIES’ 22FDX for connected technologies.”

“GLOBALFOUNDRIES’ announcement is a key milestone for enabling the next generation of low-power electronics,” said Paul Boudre, CEO of Soitec. “We are pleased to be GLOBALFOUNDRIES’ strategic partner. Our ultra-thin SOI substrate is ready for high-volume manufacturing of 22FDX technology.”

Engineered SOI substrates are now a mainstream option for the semiconductor industry.

BY MARIAM SADAKA and CHRISTOPHE MALEVILLE, Soitec, Austin, TX and Grenoble, France

The number of mobile subscribers worldwide reached 95.5% of the world’s population in 2014 and is expected to reach 9.3B by 2019 (1). This fast growing trend is driving end markets towards satisfying stringent demands of mobile connected users. Whether it is a smartphone or a wearable device, the key requirements include low cost, extended battery life, more functionalities, smaller form factor, and fast time to market. In an effort to bring more performance, more functionality or less power consumption, innovation starting at the substrate level has demonstrated significant achievements. This includes implementing planar Fully Depleted Silicon-On- Insulator (FD-SOI) devices with full back bias capability to extend Moore’s Law beyond 28nm and meet power/ performance/cost requirements for low power SoCs. In addition, using High Resistivity SOI for integrating the RF Front End Module (FEM) providing significant die cost advantage with increased performance and functionality. In this paper, engineered substrates for next generation ultra-low power integrated digital and RF devices and other emerging applications will be discussed.

Device scaling and device functional diversification

Device scaling has been following Moore’s law for the last five decades, doubling transistor density every two years, bringing higher performance, more functionality at lower cost. To maintain this trend, the industry implemented non-classical ways to continue on the scaling path. This started with innovation at the material level, then innovation at the device structure level demonstrating improved electrostatic control enabled by fully depleted (FD) devices (FIGURE 1). FD devices include planar FD-SOI, vertical FinFET or multi-gate device structures. FD-SOI is a great example of device scaling in the substrate era, where the engineered substrate provides the fully depleted structure that solves the variability challenge and enables body bias capabilities to meet the power/performance and cost requirements for low power consumer SoCs.

FIGURE 1. Technology migration history [2].

FIGURE 1. Technology migration history [2].

The semiconductor industry also has another key focus called More-Than-Moore. This new trend provides added non-digital functional diversification without necessarily scaling according to Moore’s Law. More- than-Moore technologies cover a wide range of domains, and there are numerous examples where advantages brought by substrate engineering enable better perfor- mance and more functionality. With the increasing demand for wireless data bandwidth and the emergence of LTE Advanced, new RF devices with higher levels of integration and more stringent specifications need to be developed. RF-SOI substrates are a great example of how engineered substrates play a major role in achieving the needed level of performance and integration. Two generations of High Resistivity SOI (HR-SOI) substrates compatible with standard CMOS processing were developed [3]. While Gen 1 HR-SOI is well suited for 2G and 3G requirements, Gen 2 HR-SOI enables much higher linearity and isolation meeting most stringent LTE Advanced requirements and thus is paving the way for higher levels of integration with better performance at an improved cost (FIGURE 2).

FIGURE 2. Soitec’s RF-SOI leadership from ideas to high volume manufacturing.

FIGURE 2. Soitec’s RF-SOI leadership from ideas to high volume manufacturing.

UTBB FD-SOI substrates

FD-SOI with ultra-thin Box, known as Ultra-Thin-Body and Box (UTBB) substrates, are an attractive candidate for extending Moore’s Law at 28nm and beyond while keeping the cost benefit from shrinking. UTBB FD-SOI devices represent an extension of the planar device archi- tecture demonstrating several advantages essential to low power SoCs.

FD-SOI devices have excellent immunity to Short Channel Effects (SCE) leading to improved sub-threshold swing and Drain-Induced Barrier Lowering (DIBL), and minimum Random Dopant Fluctuation (RDF), thanks to the undoped channel. This ensures lowest Vt variation [4,5], improves performance at lower Vdd as well as improves SRAM and analog mismatch and analog gain, allowing superior digital/analog co-integration [6].

UTBB FD-SOI devices combine the advantage of tuning the front gate and back gate work function [4] as well as enabling effective back bias capabilities for multi-Vt options (FIGURE 3). The back bias capability is a unique feature that enables Vt modulation for better trade-off of power and performance and can be effectively applied in a static or dynamic mode. Moreover, UTBB FD-SOI back bias capabilities show no degradation with scaling and offer a wider range of biasing versus bulk at no area penalty [5].

FIGURE 3. UTBB FD-SOI with Back Bias (Courtesy of ST Microlectronics).

FIGURE 3. UTBB FD-SOI with Back Bias (Courtesy of ST Microlectronics).

UTBB FD-SOI is a scalable technology supporting at least three nodes; 28nm, 14nm and 10nm (FIGURE 4A). The technology satisfies density/area, performance and power saving requirements without a disruptive change in device architecture and integration. Today, available foundry offerings demonstrate competitive performance at 28 & 22nm [1,7] and the technology is proven down to 10nm [8]. Scaling requires thinner SOI and BOX. In order to alleviate the constraints on SOI film thickness reduction, a scaling sequence based on different BOX layer thickness was proposed, FIGURE 4B [9]. SOI substrates with 25nm BOX are already in production and 10 nm BOX has been demon- strated. Furthermore, the substrate roadmap beyond 14nm includes substrate strain engineering providing the advantage of enhancing the carrier mobility independent of device pitch. This includes strained silicon directly on insulator (SSOI) or strained SiGe- On-Insulator (SGOI) [10].

FIGURE 4. (a) UTBB FD-SOI Device integration supporting three nodes (11) (b) SOI/BOX thickness scaling ensuring a DIBL of 100 mV/V or below down to 7 nm node [9].

FIGURE 4. (a) UTBB FD-SOI Device integration supporting three nodes (11) (b) SOI/BOX thickness scaling ensuring a DIBL of 100 mV/V or below down to 7 nm node [9].

FD-SOI devices are planar devices that are fully compatible with mainstream CMOS processing, designs and EDA tools, providing a faster time to market solution. In addition to fully leveraging conventional CMOS processes, FD-SOI process integration is simpler than bulk (FIGURE 5) [1, 12]. FD-SOI process saves several masks and process steps typically included for Vt tuning and for the integration of uniaxial stressors needed to boost performance in planar and FinFET bulk [13, 14]. Even with the drastically increasing lithography cost, such process simplifications more than compensate for the SOI substrate cost, resulting in a lower overall processed wafer cost [11].

FIGURE 5. 28nm FD-SOI vs. 28LP process (courtesy of ST Microelectronics).

FIGURE 5. 28nm FD-SOI vs. 28LP process (courtesy of ST Microelectronics).

While the vertical FinFET device features excellent gate control and high density/performance per area, it also requires a disruptive change in process and design resulting in higher cost and longer time to market. For applications that require the ultimate performance/ digital integration and large die size, vertical FinFETs are a good solution. For other applications that cannot afford the FinFET solution, such as cost sensitive low-mid end mobile consumer applications, FD-SOI is a great candidate for providing low power/high performance and more analog integration capabilities with the least process and design disruption for low cost and fast time to market. Furthermore, FD-SOI devices with back bias can operate at voltages as low as 0.35V [15,16] without area and costly design penalties making them excellent candidates for Ultra-Low Power (ULP) applications. FD-SOI devices consume less energy than bulk at the MEP (Minimum Energy Point) and maintain the smallest energy per cycle with higher operating frequency across the whole Vdd range [17, 18]. This makes UTBB FD-SOI technology a very attractive option for enabling ULP cost sensitive IoT applications.

Smart Cut enabling uniformity for Vt variability control

FIGURE 6: The Smart Cut process.

FIGURE 6: The Smart Cut process.

Optimization of the conventional Smart Cut process is essential for delivering ultra-thin SOI and BOX with well controlled wafer-to-wafer and within-wafer uniformity (FIGURE 6). The Smart Cut unique uniformity control relies on several key aspects of the process [19]: (a) A highly uniform thermal oxidation of a donor wafer to form the BOX (b) A conformal hydrogen implant through the oxide to define the separation plane in the Silicon (c) A high temperature anneal to eliminate the SOI roughness while keeping excellent on-wafer SOI uniformity (20). Developing an efficient smoothing process to eliminate the Si roughness is critical for ensuring low transistor Vt variability. This requires Si thickness monitoring across the entire range of the spatial frequency. As existing ellipsometry and AFM characterizations are necessary but not sufficient, Soitec developed Differential Reflective Microscopy (DRM) to address the 100um scale SOI roughness. Consequently, bridging the gap between ellipsometry and AFM and providing a complete picture of surface roughness crucial for controlling Vt variations at the transistors level (FIGURE 7).

FIGURE 7. SOI layer thickness control.

FIGURE 7. SOI layer thickness control.

As the FD-SOI substrate plays a key role in defining the device structure, substrate local and global thickness control is very important. This is especially true for UTBB FD-SOI devices, where the BOX thickness affects the efficiency of Vt tuning through back biasing, and the channel thickness uniformity and roughness influence the electrostatics of the device and Vt variation respectively. Today, Soitec guarantees volume production of SOI 12nm ±5Å and BOX 25nm ±10Å (6 sigma value, all sites, all wafers). When benchmarking variability; planar FD-SOI exhibits the best performance compared to Bulk technologies [4, 5]. Global variability is also reduced and maximum TSi dispersion (TSi,max) obtained on 300mm wafers is already satisfying the objective for Vt variability for advanced technology nodes [4].

High resistivity SOI substrates

The rapid adoption of new wireless standards and the increasing demand for data bandwidth requires RF IC designers to develop devices with higher levels of integration, meeting more and more stringent specification levels. The engineered substrates on which those devices are manufactured play a major role in achieving that level of performance. The improved high frequency performance of CMOS with process shrinks, and the availability of CMOS foundry technol- ogies on 200 or 300mm substrates has made it possible to have high volume fabrication of integrated Si based RF systems, including high quality passive devices [21,22] and RF switches and power amplifiers on SOI substrates [23]. Historically, switches and power amplifiers were built on gallium arsenide (GaAs) substrates. Since 2008, RF-SOI has progressively displaced GaAs and silicon-on- sapphire technologies by offering the best cost, area and performance for RF switches, and thus becoming the mainstream technology solution adopted by the majority of RF foundries [24].

Gen 2 HR-SOI engineered substrates

FIGURE 8. Silicon uniformity requirements to meet ITRS variability roadmap [4].

FIGURE 8. Silicon uniformity requirements to meet ITRS variability roadmap [4].

Typical SOI substrates do not have thick enough BOX to prevent the electrical field from diffusing into the substrate, inducing high-frequency signal losses, non-linearity and crosstalk which are detrimental to RF performance. To improve the insertion loss, harmonic distortion and isolation performance required for switches, the bulk base substrate of an SOI substrate was replaced by a high-resistivity base substrate known as Gen 1 HR-SOI. The adoption of Gen 1 HR-SOI wafers for RF applications has allowed monolithic integration of RF FEM, leading to smaller size, better reliability, improved performance and lower system cost [25, 26]. While first generation substrates are well suited for 2G and 3G applications, they suffer from the a parasitic surface conduction (PSC) layer induced under the BOX due to fixed oxide charges which attract free carriers near the Si/SiO2 interface. This drastically reduces the substrate effective resistivity by more than one order of magnitude, limiting the substrate capability in meeting the next step in performance for LTE advanced standards (FIGURE 9).

FIGURE 9. Gen 2 HR-SOI Substrate.

FIGURE 9. Gen 2 HR-SOI Substrate.

To address this intrinsic limitation, Soitec and Université Catholique de Louvain (UCL) developed a second gener- ation (Gen 2) HR-SOI substrate with improved effective resistivity as high as 10KOhm.cm (FIGURE 10). This was achieved by adding a trap-rich layer underneath the buried oxide to freeze the PSC. These traps originate from the grain boundaries of a thin polysilicon layer added between the BOX and high resistivity substrate [27]. The high resistivity characteristics of Gen 2 HR-SOI substrates are conserved after CMOS processing, enabling very low RF insertion loss (< 0.15 dB/mm at 1 GHz), low harmonic distortion (-40dB) along coplanar waveguide (CPW) transmission lines, and purely capacitive crosstalk close to quartz substrates (FIGURE 11). It was further demon- strated that the presence of a trapping layer does not alter the DC or RF behavior of SOI MOS transistors [28]. With second generation HR-SOI products, RF IC performance is further advanced meeting more stringent losses, coupling and non-linearity specifications (FIGURE 12) [25].

FIGURE 10. Measured effective resistivity of Gen 1 HR- SOI and trap-rich Gen 2 HR-SOI (TRSOI). Both use 10 kOhm.cm nominal resistivity handle Si substrate [25].

FIGURE 10. Measured effective resistivity of Gen 1 HR- SOI and trap-rich Gen 2 HR-SOI (TRSOI). Both use 10 kOhm.cm nominal resistivity handle Si substrate [25].

FIGURE 11. (a) Measured crosstalk comparing Gen 2 HR-SOI (TR SOI), Gen 1 HR-SOI and quartz [25] . (b) Measured harmonic distortion along a CPW line, on standard SOI (~ 10ohm.cm) and Gen 1 HR-SOI (~ 1 kOhm.cm) and Gen 2 HR-SOI (TR-SOI) (~ 10 kOhm.cm).

FIGURE 11. (a) Measured crosstalk comparing Gen
2 HR-SOI (TR SOI), Gen 1 HR-SOI and quartz [25] . (b) Measured harmonic distortion along a CPW line, on standard SOI (~ 10ohm.cm) and Gen 1 HR-SOI (~ 1 kOhm.cm) and Gen 2 HR-SOI (TR-SOI) (~ 10 kOhm.cm).

FIGURE 12. Harmonic two and three measured on CPW on commercially available versions of Gen 2 HR- SOI (eSi) substrates.

FIGURE 12. Harmonic two and three measured on CPW on commercially available versions of Gen 2 HR- SOI (eSi) substrates.

Because the trap-rich layer in Gen 2 HR-SOI substrates is integrated at the substrate level, additional process steps and consequently more conservative design rules are no longer needed, leading to a more cost effective process and a possible smaller die area per function. Gen 2 HR-SOI substrates now enable RF designers to add diverse on-chip functions such as switches, power amplifiers and antenna tuners with excellent RF isolation, good insertion loss and better signal integrity at lower cost than traditional technologies (FIGURE 13). It also brings clear benefits for the integration of passive elements, such as high quality factor spiral inductors [29], tunable MEMS capacitors [30], as well as reducing the substrate noise between devices integrated on the same chip. Beyond performance, RF-SOI offers a unique advantage to further reduce board area by integrating all FEM devices on the same die [3].

FIGURE 13. Gen 2 HR-SOI (eSi) substrates, advantages vs Gen 1 HR-SOI substrate.

FIGURE 13. Gen 2 HR-SOI (eSi) substrates, advantages vs Gen 1 HR-SOI substrate.

In addition to innovation at the substrate level, Soitec developed the characterization needed to predict the RF Harmonic Quality Factor (HQF) at the substrate level and before device/circuit manufacturing. The characterization method is based on spreading resistance profiling (SRP), which can predict the 2nd harmonic distortion (HD2) performance of a coplanar waveguide (FIGURE 14). This essential metrology step is used today throughout the Soitec product line to ensure Gen 2 HR-SOI SOI substrates provide the expected RF performance at the device level.

FIGURE 14. Harmonic Quality Factor (HQF) methodology.

FIGURE 14. Harmonic Quality Factor (HQF) methodology.

New substrates for new collaborations

As demonstrated, UTBB FDSOI and Gen 2 HR-SOI substrates are well positioned to address ULP IoT and mobile connectivity applications that will respectively require drastic power reduction and higher frequency bands at very low cost. Combining advanced CMOSprocess capabilities with the demonstrated benefit of engineered SOI substrates is paving the way for digital and RF integration for next generation cost sensitive integrated ULP mobile connected devices.

Furthermore, there are multiple examples where innovative substrate engineering can address roadmap challenges, enable further integration; provide differ- entiation in final product at a more efficient cost and footprint. Some examples of different application segments include: Photonics, Imaging sensors, advanced FinFET (TABLE 1).

Substrate Table 1

Looking beyond a wafer and an application, entering the substrate era requires critical partnerships across the entire ecosystem. This includes having an augmented collaboration along the value and supply chain, covering collaborations with material, equipment and substrate suppliers as well as collaborations with foundries, IDMs and fabless companies. Soitec greatly supports this model and believes in establishing strong collaborations to seed future critical innovations.

Conclusion

Engineered SOI substrates are now a mainstream option for the semiconductor industry adopted by several foundries. UTBB FD-SOI substrates enable planar fully depleted devices with full back bias capability to extend Moore’s Law at 28nm and beyond providing excellent power/performance/cost benefits. Gen 2 HR-SOI substrates enable FEM integration and higher linearity and isolation meeting stringent performance requirements for advanced standards at an improved cost. Combining advanced CMOS process capabilities with the demonstrated benefit of engineered SOI substrates is paving the way for digital and RF integration for next generation cost sensitive integrated ULP mobile connected devices. As such, engineered SOI substrates are well positioned to serve future integrated IoT applications.

Acknowledgement

The authors would like to thank Bich-Yen Nguyen and Eric Desbonnets for their valuable contribution and constructive discussions.

References

1. The International Telecommunication Union & Ericsson (2014)
2. YongjooJeon,2015FD-SOIandRF-SOIforum,http://www. soiconsortium.org/fully-depleted-soi/presentations/janu- ary-2015, Tokyo (2015)
3. Soitec,WhitepaperonRFsubstrates,http://www.soitec. com/pdf/Soitec_RF-SOI_Substrates_WP.pdf (2015)
4. O. Weber et.al., IEDM, p.1-4, (2008)
5. L.Grenouilletet.al.,IEDM,p.3.6.1-3.6.4,(2012) 6. S.LeTualet.al.,ISSCC,p.32-383,(2014)
7. M. Mendicino, S3S conference, http://semiengineering. com/time-to-look-at-soi-again/ (2014)
8. Qinget.al.,IEDM,p.9.1.1-9.1.4,(2014)
9. O.Faynotet.al.,IEDM,p.3.2.1–3.2.4.6–8,(2010)
10. W. Schwarzenbach et al., ICICDT, p. 1-4, (2012)
11. Nguyen, et. al., Advanced Substrate News, (2014)
12. P. Magashak et. al., DAC (2014)
13. J. Hartmann, FD-SOI Tech Symposium, http://www.soicon-
sortium.org/fully-depleted-soi/presentations/december-2012/
(2012)
14. P. Flatresse, S3S Conference short course, Monterey, 2013 15. P. Flatresse, ISSCC, p. 424-425, (2013)
16. H. Makiyama et. al, IEDM, p. 33.2.1 – 33.2.4, 2013
17. Mäkipää & Billiot, IEE 2013
18. N. Sugii et. al, J. Low Power Electron. Appl., 4, 65-76, (2014) 19. W. Schwarzenbach et al., ECS Trans., 45, p. 227 (2012)
20. W. Schwarzenbach et al., ECS Trans., 53, p. 39 (2013)
21. C. Didier, White Paper :RF-SOI Wafer Characterization,
Soitec (2015)
22. J.-P. Raskin et al., IEEE Trans. on Electron Devices, 44, p.
2252 (1997)
23. A. Larie et. al, ISSCC, p.48-50, 2015
24. Yole Développement: RF Filters, PAs, Antenna Switches &
Tunability for Cellular Handsets, (2014)
25. J. Le Meil, et. al., VSLI TSA, (2015)
26. J.-P. Raskin et. al., IEEE Trans Electron Devices, v.44, #12, p.
2252-2261, (1997)
27. D. Lederer and J.-P. Raskin, Solid-State Electronics, 47 (11),
p. 1927 (2003)
28. K. Ben Ali et. al, IEEE Trans. Electron Devices, v. 61,.#3, p.
722-728, (2014)
29. F. Gianesello et. al. SOI Conference, p. 119-120 , 2007 30. Y. Shim, IEEE MWCL, v. 23, # 12, p. 632-634, (2013)

MARIAM SADAKA is a Soitec fellow based in Austin, TX and CHRISTOPHE MALEVILLE is Senior Vice President, Digital Electronics Business Unit for Soitec, Grenoble, France.