Tag Archives: letter-wafer-business

ClassOne, a supplier of new electroplating and wet process tools to the 200mm and smaller semiconductor manufacturing industry, today announced the sale its flagship Solstice® S8 CopperMax™ electroplating tool to i3 of Binghamton, NY.  i3 is rapidly expanding its St. Petersburg, FL facility to accommodate volume production work, and they need an automated plating tool with the ability to grow in tandem. CopperMax™ has been chosen to cost-effectively automate the facility’s wet-bench electroplating processes, with flexibility to easily add related downstream processes.

“i3 has selected CopperMax™ for several excellent reasons,” said ClassOne CEO Byron Exarcos. “Our proprietary CopperMax™ cation exchange membrane technology is simply unrivaled in this market. The plating chamber has been designed to dramatically reduce consumables cost while maintaining extremely high levels of feature quality—even for challenging deposition processes such as TSV. CopperMax customers routinely see reductions in additive consumables cost approaching 95%. What’s more, our Solstice platform is engineered for easy expansion, and is designed to support multiple independent processes simultaneously. It’s a perfect fit for facilities that want to grow beyond wet bench work.”

The Solstice S8 CopperMax platform can be configured with from 2 to 8 entirely independent, field-retrofittable process chambers. CopperMax™ also supports multiple wafer sizes simultaneously, allowing i3 to easily migrate from 4- to 6-inch wafers as their production requirements change. i3 will be working with ClassOne to add Solvent and UBM processing chambers to the same CopperMax™ tool in the coming months.

“CopperMax is a perfect fit for our needs,” said Neal Driver, VP-General Manager of i3 Microsystems. “The tool is incredibly flexible and will grow with us as we expand our production environment. We have also been impressed by ClassOne’s outstanding commitment to helping us develop and perfect our deposition processes. They’ve made a serious corporate commitment to customer service, and it shows.”

i3 is a highly-secure, vertically-integrated semiconductor supplier to the defense and aerospace industries. With Solstice® platforms now in production at several of the world’s foremost defense contractors, ClassOne has emerged as the supplier of choice for the exacting requirements of the defense and aerospace industries.

By Laith Altimime

In a bid to reinvigorate Europe’s electronics strategy and strengthen the region’s position in key emerging technologies, European electronics industry CEOs in June called on public and private actors to accelerate collaboration at the European Union and national levels. The CEO’s proposed new strategic actions include creating a European Design Alliance to pool the expertise of design houses and forming an electronics education and skills task force consisting of representatives from industry, research, European institutions, member states and SEMI.

The business executive’s calls – embodied in “Boosting Electronics Value Chain in Europe,” a report submitted to Mariya Gabriel, Commissioner for Digital Economy and Society, of the European Commission – come as global competition in the electronics industry intensifies. The document highlights Europe’s need to buttress its position amongst others in artificial intelligence (AI), autonomous driving and personalized healthcare – applications that rely on new semiconductor architectures, materials, equipment and design methodologies.

The European semiconductor industry plans to pour more than 50 billion EUR into technology development and innovation by 2025, deepening its investments in research, innovation and manufacturing to help drive Europe’s digital transformation.

For its part, SEMI, as the industry association connecting the electronics value chain, is well-positioned to bring together member companies and public actors to address key challenges facing the sector. This year in April, SEMI announced that Electronics System Design Alliance (ESD Alliance) will join SEMI, adding key electronics design companies to SEMI membership and unlocking the full potential of collaboration between electronics design and manufacturing.  With the ESD Alliance, SEMI adds the product design segment to the electronics supply chain, streamlining and connecting the full ecosystem. The integration also promises to support the industry coordination required to develop specialized (AI) chips used in various smart applications.

SEMI Europe is also accelerating its education and workforce development activities. SEMI Europe this year created its Workforce Development Council Europe, chaired by Emir Demircan, SEMI Europe’s senior manager of public policy, based in Brussels. The council is designed to connect electronics industry human resources representatives with members to evolve best practices in hiring that help Europe gain, train and retain world-class talent.

Other SEMI Europe workforce development activities include the following:

  • SEMI member forums across Europe are helping young talent with career opportunities in the semiconductor industry.
  • In November, SEMICON Europa will host a Career Café where STEM students will explore careers in electronics design and manufacturing.
  • With the participation of representatives from the European Commission, SEMI Europe’s Industry Strategy Symposium in April focused on strategies for attracting more skilled workers into electronics design and manufacturing.

Looking ahead, semiconductor sales is forecast to reach USD 1 trillion by 2030. The global semiconductor industry is at the heart of a new era of connectivity, developing breakthrough solutions for ascendant data-driven technologies such as AI and Internet of Things (IoT). SEMI Europe’s role in strengthening the region’s position in the global electronics industry to help drive this extraordinary growth is critical. SEMI Europe will continue to foster public-private partnerships to tackle industry challenges that are too big, too risky and too costly for companies and government institutions to address alone.

Contact: Laith Altimime, President, SEMI Europe, [email protected] ; Emir Demircan, Sr Manager Public Policy, [email protected]

Originally published on the SEMI blog.

The semiconductor industry today is faced with several substantial issues-not the least of which are the continuing rise in design costs for complex SoCs, the decrease in the incidence of first-time-right designs and the increase in the design cycle time against shrinking market windows and decreasing product life cycles. An additional factor has now been added to SoC design costs with the emergence of very complicated software applications intended to run on the SoC silicon. The costs of the software effort have outstripped the silicon design costs and have become the major part of the cost of these designs. IP integration is also a growing part of design costs. Semico’s new report SoC Silicon and Software 2018 Design Cost Analysis: How Rising Costs Impact SoC Design Starts addresses these and many other design concerns while reporting that the average design cost for Basic SoCs across all geometries in 2017 was $1.7 million.

“Analysis of design activity for the three types of SoC profiled in this report shows that while design costs at new nodes continue to increase, the average design cost at each node is not increasing as quickly, giving room for designers to still accomplish their silicon solutions at reasonable costs if they are prudent in their design selection,” says Rich Wawrzyniak, Sr. Market Analyst for ASIC & SoC at Semico. “For each of the three types of SoC there is still considerable activity at the older nodes of 90nm, 65nm and 40nm. Costs at these geometries are much less than at 10nm and 7nm so even though these newer designs cost much more, the average for all SoCs has dropped due to the increase in new designs for Basic SoC.”

Key findings of the report include:

  • The average design cost for Value Multicore SoCs across all geometries was $4.8M in 2017.
  • The average design cost for all SoCs across all geometries is forecast to increase to $5.3M by 2023.
  • The number of ‘first-time-right’ designs has dropped at every process geometry since the 180nm node.
  • Silicon design costs at the 7nm node for an Advanced Performance Multicore SoC first-time effort are projected to be 23% higher than at the 10nm node.

In a unique, insightful look at this constantly evolving market, Semico Research’s new report, SoC Silicon and Software 2018 Design Cost Analysis: How Rising Costs Impact SoC Design Starts, examines the primary forces and integration pressures that are driving this market today in 135 pages, with 41 tables and 64 graphs. This study analyzes many important questions facing the semiconductor industry today including:

  • What is the current cost for a Complex System-on-a-Chip (SoC) design, and what will it be in the near future?
  • Is it possible to do SoC designs without maximizing the costs for these designs?
  • What is the incidence of ‘first-time-right’ for these designs today and in the near future?
  • How is the design cycle time for these designs changing?
  • How do complicated software applications impact the design costs?
  • How fast are IP integration costs rising, and how high will they go?
  • What strategies are designers using to cope with rising design costs?
  • What is the average silicon design cost today for each process geometry and SoC type, and how quickly is it rising?
  • What impact will EDA tools that include some artificial intelligence (AI) and machine learning (ML) functionality have on design costs for complex silicon?

The term energy harvesting, also known as power scavenging, is used to describe the creation of energy derived from a variety of external sources such as solar power, thermal energy, wind energy, kinetic energy or electromagnetic sources. Energy harvesters accumulate the wasted energy in a system, such as heat given off by motors or semiconductors, or the vibrations of motors or other moving objects. The basic technologies for generating energy are: mechanical vibration (kinetic energy), thermoelectric, solar (photovoltaic), and RF/Inductive.  A new research report from Semico Research Energy Harvesting: Reaping the Abundant Market, estimates that the semiconductor content for energy harvesting solutions will explode to $3.4 billion by 2022.

“While there is a great deal of interest in the different types of energy harvesting devices or energy generators, the greater opportunity for the semiconductor industry is the overall solution which includes power conversion, power management, microcontrollers, radios and MEMS sensors,” says Joanne Itow, Semico’s Manager of Manufacturing Research. “The advent of IoT with remote monitoring and data collection has also prompted more interest in energy harvesting as a viable solution to maintain WSNs (Wireless Sensor Networks).”

Key findings of the report include:

  • The number of devices with an energy harvesting solution will reach 509 million units by 2022.
  • Consumer devices (including toys) with energy harvesting accounted for 8 million units in 2017.
  • Bridges are expected to be a large user of energy harvesting in the infrastructure sector by 2022.
  • Energy harvesting devices in all buildings is expected to have a CAGR of 20.7% by 2022.

In its recent report Energy Harvesting: Reaping the Abundant Market” (MP112-18), Semico Research examines the market opportunity for energy harvesting outside of large solar installations and commercial power generation. A broad range of markets will employ energy harvesting to either replace batteries or extend battery life. These applications cover wireless sensor nodes (WSN) for bridges, infrastructure, building automation and controls, home automation (including lighting, security and environmental), automotive applications, cell phones, wearables and other consumer electronics. The report is 98 pages long and includes 13 tables and 37 figures.

Companies cited in the report include:

Analog Devices, Microchip (Atmel), CHERRY/ZF, Cymbet, Cypress, EnOcean, e-peas, Analog Devices/Linear Technology, Maxim Integrated, Microchip Technology, Powercast, Renesas, Semtech, Silicon Labs, Silicon Reef, STMicroelectronics, Texas Instruments, Ilika, Imprint Energy, Sakti3, Solid Power, Apple, Laird, microGen, Micropelt, Perpetuum, Piezo Systems, Sanyo, Thermo Life, Thermogen Technologies, EH Solution Providers, LORD Microstrain®, National Instruments, Nikola Labs, Phase IV Engineering, Resensys, Soundpower Corp., Eta Compute, Mentor Graphics, and X-FAB.

By Iris Tsou

The march to greater precision, efficiency and safety – the lifeblood of high-technology manufacturing facilities – has taken on a new urgency as emerging applications such artificial intelligence (AI), the Internet of Things (IoT) and Industry 4.0 give new meaning to smart factories. Facing fiercer competition and ever more sophisticated fabrication processes, semiconductor fabs are under intense pressure to keep pace with new technologies as they work to upgrade. Nowhere are the stakes higher than in Taiwan, where high-tech manufacturing contributes mightily to the region’s GDP growth.

To help Taiwan fabs confront the challenges and opportunities of designing smarter factories, SEMI and its High-Tech Facility Committee hosted the High-Tech Facility Workshop in June. SEMICON Taiwan 2018 High-Tech Facility Pavilion exhibitors gathered to explore how they can build smarter factories by deploying smart surveillance and disaster prevention technologies along with smart communications systems that better use manufacturing data to drive new safety and product quality efficiencies.

During the workshop, SEMI High-Tech Facility Committee representatives shared strides it has made upgrading overseas facilities and developing standards to help establish smart factories in Taiwan.

SEMICON Taiwan – 5-7 September at Taipei’s Nangang Exhibition Center – is also an important event for advancing smart manufacturing in Taiwan. Nearly 30 leading global manufacturers will exhibit at the SEMICON Taiwan High-Tech Facility Pavilion. The venue covers operational aspects of semiconductor manufacturing vital to becoming smarter including energy savings, nano-contamination control, facility information modeling, precision instrumentation and control, fire protection, mechatronics, and automation control. The pavilion will also feature a series of theme events offering a comprehensive overview of topics including the latest practices for integrating smart facility capabilities from the perspective of an advanced fab designer.

At the TechXPOT stage, High-Tech Facility Pavilion exhibitors will also demonstrate the latest technology breakthroughs and cutting-edge smart factor solutions.

The September 6th High-Tech Facility International Forum at SEMICON Taiwan will again gather factory experts and thought leaders from industry and academia to examine “Effective Ways to Make a Facility Smart.“ Experts from industry heavyweights in the fields of wafer foundry, LCD, memory and semiconductor packaging including TSMC, UMC, Innolux, ASE, Micron Taiwan, Winbond and VIS will offer insights into key areas of high-tech facilities including facility electricity, machinery, water management, vaporization and automation systems. On the same day as the forum, the High-Tech Facility Get-Together and High-Tech Facility VIP Dinner will bring together industry elites, academic professionals, and government officials to explore partnership opportunities.

SEMI Taiwan and the High-Tech Facility Committee share HTF market trends information, technology updates and standards with SEMI members and exhibitors.

Founded in 2013, the High-Tech Facility Committee now has 85 corporate members. Dedicated to accelerating industry collaboration through the integration of Taiwan industrial, government and academic resources, the committee each year holds several group meetings focusing on topics including energy savings, earthquake and fire protection, nano-contamination control, and precision instrumentation and control to advance critical technologies and facilitate standardization. The committee also aims to help the industry become more competitive faster by promoting technology standards that boost productivity and reduce production costs.

Please visit www.semi.org and www.semicontaiwan.org for more information about SEMI’s high-tech facility initiatives.

Iris Tsou is a marketing specialist at SEMI Taiwan. 

Originally published on the SEMI blog.

By Ajit Manocha

At a Glance

“Software is eating the world … and AI is eating software.” Amir Husain, author of The Sentient Machine, at SEMICON West 2018

We’re living in a digital world where semiconductors have been taken for granted. But, Artificial Intelligence (AI) is changing everything – and bringing semiconductors back into the deserved spotlight. AI’s potential market of hundreds of zettabytes and trillions of dollars relies on new semiconductor architectures and compute platforms. Making these AI semiconductor engines will require a wildly innovative range of new materials, equipment, and design methodologies.

Moore’s Law carried us the past 50-plus years and as we’re now stepping into the dawn of AI’s potential, we can see that the coming Cognitive Era will drive its own exponential growth curve. This is great for the world – virtually every industry will be transformed, and people’s lives will get better – and it’s fantastic for our industry. This truly is the very best time to be working in our industry. I’m excited to be at SEMI in this inflection period and at the center of the collaborative platforms that bring the electronics manufacturing supply chain together to Connect, Collaborate, and Innovate to realize the new Cognitive Era. I invite you to partner with SEMI in building the foundation for the Cognitive Era to increase the growth and prosperity of our industry.

The World Wakes Up

Our lives have become digital. An Amazon Echo wakes us up and answers questions about the weather and traffic. Google Maps tells us the best way to get to a meeting. Yelp finds the best nearby restaurant. A Tweet now even informs us of the latest change in government policy. It’s a digital world that we live in – and the world already takes it for granted.

We in the industry know that the digital world only works because of the semiconductors we make and because of our integrated electronics manufacturing supply chain. We make the materials and equipment that, in turn, make the chips that become the beating hearts of the digital economy.

But, semiconductors have been largely invisible – hidden away under and inside a smart speaker, locked deep within a phone, buried in data centers and out of view. Meanwhile, the internet companies like Google, Amazon, Alibaba, Tencent, and Facebook stole the meaning of “Tech” and were given most of the credit for our digital world.

But, finally, things are changing – it’s all coming back to semiconductors!

AI Changing Everything

Over $400B in semiconductors were sold in 2017 – those unseen chips like hearts beating away in Apple computers, in mobile phones for online shopping and social media, and in televisions showing Netflix. Now internet companies Alphabet, Alibaba, Amazon, Facebook, Microsoft and others are rushing to develop their own chips. Silicon is back in the Silicon Valley! Hardware is, once again, the place to be. Why? We are now entering the epoch of Artificial Intelligence (AI) – and semiconductors, and new compute architectures, are the key to AI. At this moment, hardware, not software, is the AI enabler to make leaps in performance and to usher in new architectures to become brain-like with neural networks.

Beyond major AI chip investments like Google’s (Alphabet) $300M+ program to develop its Tensor Processing Unit (TPU) chip, there’s been a surge in new chip startups and VC funding. Last year, VCs (with corporate investors) invested more than $1.5B in new AI chip startups – doubling the rate from the prior year.

After years of consolidation, there is, as some have described, a “Cambrian Explosion” of semiconductor startups with names like Cerebras, Graphcore, Wave Computing, Horizon Robotics, Cambricon Technologies, and DeePhi from the US, Europe, and China. Cambricon (China) has already become the first AI chip “Unicorn” (startup valued $1B+) with a valuation of more than $2.5B after their recent Round B financing. It’s a new silicon world and a new race, as Cade Metz (The New York Times, 1/14/2018) said, “… everyone is starting from the same place: the beginning of a new market.”

Winning at AI is very big business. John Kelly, SVP Cognitive Solutions and Research at IBM, in his SEMICON West keynote earlier this month, said, we’re in the era of Artificial Intelligence with more than a $2T opportunity for AI decision making support on top of the $1.5T IT business in 2025. McKinsey estimates deep learning could account for between $3.5T and $5.8T in annual value.

As John Kelly presented, AI will transform entire industries – not just our personal devices and lives. The $2T AI decision making support opportunity in 2025 is projected to transform the major economy industries as follows:

Moore’s Law describes the exponential increase in the number of transistors per area that has driven growth, and has been the engine for digital innovation, through first the computer era and then the mobility era and now into the dawn of the data era. While the Dennard scaling approach to Moore’s Law may be slowing, the data-centric era continues to drive demand and the industry continues to find new ways to pack more transistors into less volume. Chip sales are forecast to pass $0.5T in 2019 and I predict they will surpass $1T before 2030.

It turns out the Smart is not enough – we must reach “Beyond Smart.”

Beyond Smart – The Cognitive Era

As we move further into the data-centric age, we see it is more than Big Data and AI, it is, instead, the dawn of a wholly new cognitive era. SEMICON West’s 2018 theme was “Beyond Smart” because we are standing at the inflection from sensors triggering actions (smart) to systems that learn and make decisions (cognitive). Devices are moving “beyond smart” to being “cognitive or aware.” Gary Dickerson (CEO of Applied Materials) at SEMICON West said, “… we are in the beginning of the first inning of a major inflection.”

Even in the early dawn of the cognitive era, the volume of data is simply astonishing. In the last 24 months, we create more than 90% of all historic digital data. By 2025 we expect AI to generate 160 zettabytes – with 80% of that unstructured data. Moore’s Law is an exponential, but as John Kelly points out, AI’s deep learning is driving its own exponential with performance/watt increasing 2.5X each year.

AI was the focus of SEMICON West’s Day 1 keynotes – and a common theme through much of the events programming. There was a common language in the keynotes by John Kelly, Gary Dickerson, and William Dally (Chief Scientist and SVP of Research NVIDIA), and others. We heard how AI is based on data, algorithms, and compute. I was inspired by these talks and for the potential for AI and the cognitive era.

Looking ahead, I believe data + algorithms + compute + machine learning = knowledge and cognition. My vision is that this AI knowledge and cognition will be the catalyst to create new modes of systems transformations that will usher in the next Industrial Revolution. As the 4th Industrial Revolution becomes a reality, I look forward to working with others in SEMI Think Tanks to imagine the 5th Industrial Revolution – and its opportunities for our industry. I believe that it will make our lives better, healthier, more prosperous, and more fulfilled.

A sentiment shared by many speakers at SEMICON West was – this is the most exciting time to be in the semiconductor manufacturing industry. Many wished they were just now starting in the industry as this is the most interesting inflection and transformation ever. There is a flood of new architectures, new materials, new equipment, new processes – and a new system-based design approach to enable the Cognitive Era. We, in hardware manufacturing, are in the driver’s seat for this incredible ride.

SEMI is working to help its members speed their time to better business results – and to take full advantage of the Cognitive Era and AI opportunity. At SEMICON West 2018, SEMI provided a broad and deep slate of program education and spotlighted AI expertise across the electronics manufacturing supply. In case you missed it, SEMI also provided

  • Seven keynotes and dozens of expert panelists
  • Semiconductor venture funding program – problems and solutions for the ecosystem
  • SEMI Smart Workforce Pavilion with over 600 students registered to learn about the industry
  • Smart Pavilions including Smart Manufacturing and Smart Automotive

SEMI highlighted the five key vertical application platforms where our industry needs to collaborate across the full supply chain and streamline the supply chain for efficiency. The five are: IoT, Smart Transportation, Smart Manufacturing, Smart MedTech, and Smart Data. These verticals drive huge business potential and are just one of the reasons that SEMICON West has become the gathering place of the extended electronics manufacturing supply chain.

With SEMI, together we can realize the potential of the coming Cognitive Era. SEMI members can advance the industry with SEMI collective action in Workforce Development, Advocacy (public policy and regulatory), Standards to synchronize the industry, and in the many SEMI technology communities and special interest groups – to increase the global industry’s rate of growth and overall level of prosperity. For more information, please visit www.semi.org; to become a member, please visit http://www.semi.org/en/become-member-join-semi.

Ajit Manocha is President and CEO of SEMI

Originally published on the SEMI blog.

SEMI today announced its support for calls on the Trump administration yesterday by nearly 50 members of Congress to remove tariffs on U.S. semiconductor products imported from China. In a bipartisan letterto Ambassador Robert Lighthizer, U.S. Trade Representative (USTR), the members of the House of Representatives – led by Reps. Pete Sessions (R-TX) and Zoe Lofgren (D-CA), the House co-chairs of the Congressional Semiconductor Caucus – stressed the importance of semiconductors in the modern economy and argued that the duties will do nothing to address concerns regarding China’s trade practices.

SEMI fully supports the Congressional recommendation and believes that the proposed tariffs will ultimately reduce semiconductor-related exports, limit technology innovation, introduce significant uncertainty in the semiconductor supply chain and cost U.S. companies an estimated more than $500 million annually. The tariffs also threaten to raise prices of semiconductor products and put thousands of high-paying and high skill jobs at risk. Last week, SEMI testified before a U.S. government interagency panel weighing the merits of the tariffs, urging the Trump administration to eliminate tariffs on semiconductor products.

Reaching their highest recorded quarterly level ever on robust demand, worldwide silicon wafer area shipments rose 2.5 percent in the second quarter of 2018 to 3,160 million square inches from 3,084 million square inches the previous quarter, according to the SEMI Silicon Manufacturers Group (SMG) in its quarterly analysis of the silicon wafer industry. New quarterly total area shipments are 6.1 percent higher than second quarter 2017 shipments.

“The second calendar quarter of the year typically enjoys a volume increase over the first quarter,” said Neil Weaver, chairman SEMI SMG and Director, Product Development and Applications Engineering of Shin Etsu Handotai America. “This quarter is no exception. Continued solid demand is driving record wafer volume shipments.”

Silicon* Area Shipment Trends

Millions of Square Inches
1Q2017
2Q2017
3Q2017
4Q2017
1Q2018
2Q2018
Total
2,858
2,978
2,997
2,977
3,084
3,160
*Semiconductor applications only
Source: SEMI, (www.semi.org), July

Silicon wafers are the fundamental building material for semiconductors, which in turn, are vital components of virtually all electronics goods, including computers, telecommunications products, and consumer electronics. The highly engineered thin round disks are produced in various diameters (from one inch to 12 inches) and serve as the substrate material on which most semiconductor devices, or chips, are fabricated.

All data cited in this release includes polished silicon wafers, including virgin test wafers and epitaxial silicon wafers, as well as non-polished silicon wafers shipped by the wafer manufacturers to end users.

Hewlett Packard Enterprise (HPE) and PLDA®, an industry leader in high-speed interconnect IP, today announced a joint collaboration to meet the challenges of next-generation connectivity for advanced workloads. Gen-Z is a new open interconnect protocol and connector developed by the Gen-Z Consortium to solve the challenges associated with processing and analyzing huge amounts of data in real time. HPE and PLDA are working together to develop Gen-Z semiconductor IP designed to the Gen-Z Core Specification 1.0.

Announced in February 2018, the Core Specification 1.0 enables the industry to begin the development of products that incorporate the Gen-Z interconnect protocol.

Creating one standard interconnect is important because it allows any component – processing, memory, accelerators, networking – to talk to any other component as if it were communicating with its own local memory using simple commands. PLDA’s Gen-Z IP will provide the building blocks to create high performance low latency solutions where every device in the system is connected at the speed of memory.

“PLDA is proud to collaborate with HPE to provide comprehensive design IP to silicon providers to enable volume production of Gen-Z compatible components and to enable system vendors to utilize the Gen-Z silicon components to build network, storage and compute systems and solutions,” said Arnaud Schleich, CEO, at PLDA. “This will enable an open ecosystem of Gen-Z building blocks for a variety of solutions from the intelligent edge to the cloud.

With Gen-Z, the industry can simultaneously support memory, I/O, storage and different forms of compute on a common disaggregated, composable or memory-semantic fabric (or interconnect).

Gen-Z reflects a broader industry trend that recognizes the importance and role of open standards in providing a level playing field to promote adoption, innovation and choice. By enabling technologists to collaborate and contribute to an open and competitive ecosystem, Gen-Z will help the industry fundamentally change how the world thinks about computing.

“At HPE, we recognize the need to partner in the development of new architectures and technologies that can effectively meet the needs of our customers,” said Mark Potter, CTO, HPE and Director, Hewlett Packard Labs. “HPE is committed to supporting open standards and working collaboratively to develop this new interconnect. The collaboration with PLDA is a demonstration of HPE’s commitment to the development and industry-wide proliferation of Gen-Z, an important technology in meeting the demands of the modern data center and in creating a Memory-Driven Computing architecture.”

With Gen-Z, the industry can combine fast persistent memory, DRAM and task-specific processing and accelerators on a fast memory fabric without legacy constraints or device hierarchies. This approach optimizes and simplifies system configurations to deliver optimal performance tailored to specific user demands simply and efficiently with better performance at reduced cost.

In a key move to inspire the next generation of innovators, the School District of Osceola County (SDOC) today became the first school district to join the SEMI High Tech U (HTU) Certified Partner Program (CPP), a curriculum that prepares high-school students to pursue careers in STEM fields.

Under the program sponsored by the SEMI Foundation, SDOC will independently deliver HTU programs to local students at the Osceola Technical College Campus, in Kissimmee, Florida. SEMI Foundation awarded SDOC the certification today at a graduation ceremony for HTU students.

“SDOC’s partnership with the SEMI Foundation gives young people and families in our community exposure to high-tech career opportunities and the educational pathways to reach their goals,” said Debra Pace, superintendent of School District of Osceola County. “Our industry partners – including Mercury, University of Central Florida, BRIDG, Osceola Technical College, imec, Neo City and the Osceola County Education Foundation – have all made it possible for SDOC to offer this amazing opportunity to students.”

“We are delighted to partner with SDOC in our common goal to motivate the next generation of innovators,” said Leslie Tugman, executive director of the SEMI Foundation. “The School District of Osceola County is well-positioned to put college-bound high school students on a track that speeds the time from graduation to employment in high technology. SDOC’s certification is a tremendous benefit for it students, the community and employers in the fast-growing Central Florida tech corridor.”

To win the certification, SDOC delivered HTU over the past three years with guidance and instruction from SEMI. SDOC is only the second organization to receive the certification.

The nonprofit SEMI Foundation has been delivering its flagship program, SEMI High Tech U, at industry sites around the world since 2001 to emphasize the importance of STEM skills and inspire young people to pursue careers in high-technology fields. HTU students meet engineers and STEM volunteer instructors from industry for site tours and hands-on classroom activities such as etching wafers, making circuits, coding and training for professional interviews.

SEMI’s Certified Partner Program identifies organizations that provide quality training and can recruit and educate local high-school students in the value of careers in science, technology, engineering and math (STEM). Participating organizations are trained to deliver the unique SEMI curriculum with the support of volunteer instructors from the high-tech and STEM industries. SEMI High Tech U is the longest-running STEM career exploration program in the United States with documented student impact. Since inception, SEMI has reached over 8,000 high-school students in 12 states and nine countries with its award-winning program.

SEMI Foundation is a 501(c)(3) nonprofit charitable organization founded in 2001 to support education and career awareness in the electronics and high-tech fields through career exploration programs and scholarships. For more information, visit www.semifoundation.org.