Tag Archives: letter-wafer-tech

Although the van der Waals force was discovered around 150 years ago, it is still difficult to quantify when predicting the behaviour of solids, liquids, and molecules. Precise measurements were only possible up to now for single atoms or macroscopic objects. However, the van der Waals forces are particularly important at intermediate size, where they crucially co-determine the behaviour of complex molecules, such as biomolecules and proteins. They are also responsible for the functioning of certain adhesives and are the reason why geckos can adhere so amazingly well to surfaces, even allowing them to climb smooth walls.

“Using our method, we determined the van der Waals force for the first time for single molecules throughout a larger distance range,” says Dr. Christian Wagner. The measured values agree with theoretical predictions, according to which the binding strength decreases with the cube of the distance – which explains the extremely small range of the interaction. It was also revealed that the bigger the molecule, the stronger its attraction to the surface. In reality, this effect is even stronger than simple models predict and also than would be intuitively assumed. “Usually, only the interaction of all those atoms involved is added together. But the van der Waals forces that we measured are 10 % higher than this,” says the physicist from Jülich’s Peter Grünberg Institute.

More room to maneuver leads to stronger bonds

What is the reason for the superlinear increase? The van der Waals force, to put it simply, emerges due to the displacement of electrons in the shells of atoms and molecules, caused by quantum fluctuations, which leads to a weak electrical attraction. In the case of larger molecules, more atoms are involved as each of these molecules also comprises more atoms. And on top of this, each and every atom contributes more strongly.

“As large organic molecules often form electron clouds that stretch across the entire molecule, they offer electrons considerably more room to maneuver than a single atom,” says the head of the young investigators group at Jülich, Dr. Ruslan Temirov. “This makes them easier to displace, which overproportionally increases the electrical attraction.”

Measuring the force with a tuning fork

For the measurements, the scientists affixed complex organic carbon compounds, which they had attached to a metal surface, to the tip of an atomic force microscope. They had secured this tip in turn to a vibration sensor so that the tip moved back and forth rapidly, a bit like a tiny tuning fork. When the molecules are removed from the surface, this vibrational frequency alters, allowing conclusions to be drawn in relation to the van der Waals forces, even when the tip is withdrawn a few molecule lengths (approx. 4nm) from the surface.

The values determined are particularly interesting for simulation calculations using density functional theory, the development of which was honoured with the Nobel Prize in 1998. The technique is the most commonly used method today for calculating the structural, electronic, and optical properties of molecules and solids. Despite its many advantages, it still has problems correctly predicting the van der Waals forces.

Published in the journal Nature, the discovery could revolutionise fuel cells and other hydrogen-based technologies as they require a barrier that only allow protons – hydrogen atoms stripped off their electrons – to pass through.

In addition, graphene membranes could be used to sieve hydrogen gas out of the atmosphere, where it is present in minute quantities, creating the possibility of electric generators powered by air.

One-atom thick material graphene, first isolated and explored in 2004 by a team at The University of Manchester, is renowned for its barrier properties, which has a number of uses in applications such as corrosion-proof coatings and impermeable packaging.

For example, it would take the lifetime of the universe for hydrogen, the smallest of all atoms, to pierce a graphene monolayer.

Now a group led by Sir Andre Geim tested whether protons are also repelled by graphene. They fully expected that protons would be blocked, as existing theory predicted as little proton permeation as for hydrogen.

Despite the pessimistic prognosis, the researchers found that protons pass through the ultra-thin crystals surprisingly easily, especially at elevated temperatures and if the films were covered with catalytic nanoparticles such as platinum.

The discovery makes monolayers of graphene, and its sister material boron nitride, attractive for possible uses as proton-conducting membranes, which are at the heart of modern fuel cell technology. Fuel cells use oxygen and hydrogen as a fuel and convert the input chemical energy directly into electricity. Without membranes that allow an exclusive flow of protons but prevent other species to pass through, this technology would not exist.

Despite being well-established, fuel-cell technology requires further improvements to make it more widely used. One of the major problems is a fuel crossover through the existing proton membranes, which reduces their efficiency and durability.

The University of Manchester research suggests that the use of graphene or monolayer boron nitride can allow the existing membranes to become thinner and more efficient, with less fuel crossover and poisoning. This can boost competitiveness of fuel cells.

The Manchester group also demonstrated that their one-atom-thick membranes can be used to extract hydrogen from a humid atmosphere. They hypothesise that such harvesting can be combined together with fuel cells to create a mobile electric generator that is fuelled simply by hydrogen present in air.

Marcelo Lozada-Hidalgo, a PhD student and corresponding author of this paper, said: “When you know how it should work, it is a very simple setup. You put a hydrogen-containing gas on one side, apply small electric current and collect pure hydrogen on the other side. This hydrogen can then be burned in a fuel cell.

“We worked with small membranes, and the achieved flow of hydrogen is of course tiny so far. But this is the initial stage of discovery, and the paper is to make experts aware of the existing prospects. To build up and test hydrogen harvesters will require much further effort.”

Dr Sheng Hu, a postdoctoral researcher and the first author in this work, added: “It looks extremely simple and equally promising. Because graphene can be produced these days in square metre sheets, we hope that it will find its way to commercial fuel cells sooner rather than later”.

Physicists at the University of Kansas have fabricated an innovative substance from two different atomic sheets that interlock much like Lego toy bricks. The researchers said the new material — made of a layer of graphene and a layer of tungsten disulfide — could be used in solar cells and flexible electronics. Their findings are published today by Nature Communications.

Hsin-Ying Chiu, assistant professor of physics and astronomy, and graduate student Matt Bellus fabricated the new material using “layer-by-layer assembly” as a versatile bottom-up nanofabrication technique. Then, Jiaqi He, a visiting student from China, and Nardeep Kumar, a graduate student who now has moved to Intel Corp., investigated how electrons move between the two layers through ultrafast laser spectroscopy in KU’s Ultrafast Laser Lab, supervised by Hui Zhao, associate professor of physics and astronomy.

 “To build artificial materials with synergistic functionality has been a long journey of discovery,” Chiu said. “A new class of materials, made of the layered materials, has attracted extensive attention ever since the rapid development of graphene technology. One of the most promising aspects of this research is the potential to devise next-generation materials via atomic layer-level control over its electronic structure.”

According to the researchers, the approach is to design synergistic materials by combining two single-atom thick sheets, for example, acting as a photovoltaic cell as well as a light-emitting diode, converting energy between electricity and radiation. However, combining layers of atomically thin material is a thorny task that has flummoxed researchers for years.

“A big challenge of this approach is that, most materials don’t connect together because of their different atomic arrangements at the interface — the arrangement of the atoms cannot follow the two different sets of rules at the same time,” Chiu said. “This is like playing with Legos of different sizes made by different manufacturers. As a consequence, new materials can only be made from materials with very similar atomic arrangements, which often have similar properties, too. Even then, arrangement of atoms at the interface is irregular, which often results in poor qualities.”

Layered materials such as those developed by the KU researchers provide a solution for this problem. Unlike conventional materials formed by atoms that are strongly bound in all directions, the new material features two layers where each atomic sheet is composed of atoms bound strongly with their neighbors — but the two atomic sheets are themselves only weakly linked to each other by the so-called van der Waals force, the same attractive phenomenon between molecules that allows geckos to stick to walls and ceilings.

“There exist about 100 different types of layered crystals — graphite is a well-known example,” Bellus said. “Because of the weak interlayer connection, one can choose any two types of atomic sheets and put one on top of the other without any problem. It’s like playing Legos with a flat bottom. There is no restriction. This approach can potentially product a large number of new materials with combined novel properties and transform the material science.”

Chiu and Bellus created the new carbon and tungsten disulfide material with the aim of developing novel materials for efficient solar cells. The single sheet of carbon atoms, known as graphene, excels at moving electrons around, while a single-layer of tungsten disulfide atoms is good at absorbing sunlight and converting it to electricity. By combining the two, this innovative material can potentially perform both tasks well.

The team used scotch tape to lift a single layer of tungsten disulfide atoms from a crystal and apply it to a silicon substrate. Next, they used the same procedure to remove a single layer of carbon atoms from a graphite crystal. With a microscope, they precisely laid the graphene on top of the tungsten disulfide layer. To remove any glue between the two atomic layers that are unintentionally introduced during the process, the material was heated at about 500 degrees Fahrenheit for a half-hour. This allowed the force between the two layers to squeeze out the glue, resulting in a sample of two atomically thin layers with a clean interface.

Doctoral students He and Kumar tested the new material in KU’s Ultrafast Laser Lab. The researchers used a laser pulse to excite the tungsten disulfide layer.

“We found that nearly 100 percent of the electrons that absorbed the energy from the laser pulse move from tungsten disulfide to graphene within one picosecond, or one-millionth of one-millionth second,” Zhao said. “This proves that the new material indeed combines the good properties of each component layer.”

The research groups led by Chiu and Zhao are trying to apply this Lego approach to other materials. For example, by combining two materials that absorb light of different colors, they can make materials that react to diverse parts of the solar spectrum.

The National Science Foundation funded this work.

Gigaphoton Inc., a lithography light source manufacturer, today announces the provision of a new function, called “eTGM (eco-Total Gas Management),” for the existing users of its flagship high-output GT Series of ArF immersion laser products free of charge for a fixed period of time.

Today, ArF immersion lasers used for leading-edge semiconductor fabrication utilize a mixture of neon, fluorine, and argon gases as a laser gas, with neon gas accounting for more than 96% of the laser gas mixture. Therefore, a fairly large amount of neon gas is consumed to run ArF immersion lasers. However, on top of a recent reduction in supply of neon gas, political uncertainty in Ukraine, one of major Ne production countries, and flooding in Odessa Oblast this September have currently limited the supply of this rare gas, leading to a rise in its price. This may cause a critical challenge to its major user, the world semiconductor industry.

In order to support stable high-volume manufacturing (HVM) of semiconductor devices, Gigaphoton has decided to provide its eTGM function, which allows up to 50% reduction of neon gas consumption, to its ArF immersion laser users free of charge during the time until the supply of neon gas has again reached normal levels. The eTGM function is a new technology developed by Gigaphoton to allow great reduction of neon gas consumption according to its EcoPhoton program. It closely monitors the laser running status, thereby allowing the injection amount and discharge amount of laser gas to be optimized. By incorporating the eTGM function into the laser unit, the consumption of neon gas can be cut by half without lowering the laser performance.

The eTGM function is provided as an option for Gigaphoton’s ArF immersion lasers, and can be incorporated into lasers already running in the field. Along with introduction of the eTGM function, a new “green monitoring” function is also provided as an upgrade for the paddle of the laser. This upgrade allows the user to monitor the consumption of laser gas in real time under a production environment.

“In order to support the stable high-volume manufacturing of semiconductor devices, we have decided to provide the eTGM function free of charge to ensure a reliable production environment as a major laser supplier,” commented Hitoshi Tomaru, President and CEO of Gigaphoton, “We are committed to proceeding with our EcoPhoton program to make further contributions to greening of the semiconductor industry.”

The improvements in random access memory that have driven many advances of the digital age owe much to the innovative application of physics and chemistry at the atomic scale.

Accordingly, a team led by UNL researchers has employed a Nobel Prize-winning material and common household chemical to enhance the properties of a component primed for the next generation of high-speed, high-capacity RAM.

The team, which published its findings in the Nov. 24 edition of the journal Nature Communications, engineered and tested improvements in the performance of a memory structure known as a ferroelectric tunnel junction.

The junction features a ferroelectric layer 100,000 times thinner than a sheet of paper, so thin that electrons can “tunnel” through it. This layer resides between two electrodes that can reverse the direction of its polarization — the alignment of positive and negative charges used to represent “0” and “1” in binary computing — by applying electric voltage to it.

The researchers became the first to design a ferroelectric junction with electrodes made of graphene, a carbon material only one atom thick. While its extreme conductivity makes graphene especially suited for small-scale electronics, the authors’ primary interest lay in how it accommodated nearly any type of molecule — specifically, ammonia — they placed between it and the ferroelectric layer.

A junction’s polarity determines its resistance to tunneling current, with one direction allowing current to flow and the other strongly reducing it. The researchers found that their graphene-ammonia combination increased the disparity between these “on” and “off” conditions, a prized outcome that improves the reliability of RAM devices and allows them to read data without having to rewrite it.

“This is one of the most important differences between previous technology that has already been commercialized and this emergent ferroelectric technology,” said Alexei Gruverman, a Charles Bessey Professor of physics who co-authored the study.

Ferroelectric materials naturally boast the quality of “non-volatility,” meaning they maintain their polarization — and can hence retain stored information — even in the absence of an external power source. However, the infinitesimal space between the positive and negative charges in a tunnel junction makes maintaining this polarization especially difficult, Gruverman said.

“In all memory devices, there is a gradual relaxation, or decrease, of this polarization,” he said. “The thinner the ferroelectric layer is, the more difficult it is to keep these polarization charges separate, as there is a stronger driving force in the material that tries to get rid of it.”

Gruverman said the team’s graphene-ammonia combination also shows promise for addressing this prevalent issue, significantly improving the stability of the junction’s polarization during the study.

Gruverman’s UNL co-authors included Haidong Lu and Dong Jik Kim, postdoctoral researchers in physics and astronomy; Alexey Lipatov, a postdoctoral researcher in chemistry; Evgeny Tsymbal, George Holmes University Professor of physics and astronomy; and Alexander Sinitskii, assistant professor of chemistry. The study was also authored by researchers from the University of Wisconsin-Madison and the Moscow-based Kurnakov Institute for General and Inorganic Chemistry.

The team’s research was conducted with the assistance of UNL’s Materials Research Science and Engineering Center — part of a nationwide network of MRSECs sponsored by the National Science Foundation — and also received support from the U.S. Department of Energy.

Nature Communications is the Nature Publishing Group’s multidisciplinary online journal of research in all areas of the biological, physical and chemical sciences.

A potential path to identify imperfections and improve the quality of nanomaterials for use in next-generation solar cells has emerged from a collaboration of University of Oregon and industry researchers.

To increase light-harvesting efficiency of solar cells beyond silicon’s limit of about 29 percent, manufacturers have used layers of chemically synthesized semiconductor nanocrystals. Properties of quantum dots that are produced are manipulated by controlling the synthetic process and surface chemical structure.

This process, however, creates imperfections at the surface-forming trap states that limit device performance. Until recently, improvements in production quality have relied on feedback provided by traditional characterization techniques that probe average properties of large numbers of quantum dots.

“We want to use these materials in real devices, but they are not yet optimized,” said co-author Christian F. Gervasi, a UO doctoral student.

In their study, detailed in the Journal of Physical Chemistry Letters, researchers investigated electronic states of lead sulfide nanocrystals. By using a specially designed scanning tunneling microscope, researchers created atomic-scale maps of the density of states in individual nanocrystals. This allowed them to pinpoint the energies and localization of charge traps associated with defects in the nanocrystal surface structure that are detrimental to electron propagation.

The microscope was designed in the lab of co-author George V. Nazin, a professor in the UO Department of Chemistry and Biochemistry. Its use was described in a previous paper in the same journal, in which Nazin’s lab members were able to visualize the internal structures of electronic waves trapped by external electrostatic charges in carbon nanotubes.

“This technology is really cool,” said Peter Palomaki, senior scientist for Voxtel Nanophotonics and co-author on the new paper. “When you really dig down into the science at a very fundamental level, this problem has always been an open-ended question. This paper is just the tip of the iceberg in terms of being able to understand what’s going on.”

The insight, he said, should help manufacturers tweak their synthesis of nanocrystals used in a variety of electronic devices. Co-author Thomas Allen, also a senior scientist at Voxtel, agreed. The project began after Allen heard Gervasi and Nazin discussing the microscope’s capabilities.

“We wanted to see what the microscope could accomplish, and it turns out that it gives us a lot of information about the trap states and the depths of trap states in our quantum dots,” said Allen, who joined Voxtel after completing the Industrial Internship Program in the UO’s Materials Science Institute. “The information will help us fine-tune the ligand chemistry to make better devices for photovoltaics, detectors and sensors.”

The trap states seen by the microscope in this project may explain why nanoparticle-based solar cells have not yet been commercialized, Nazin said.

“Nanoparticles are not always stable. It is a fundamental problem. When you synthesize something at this scale you don’t necessarily get the same structure for all of the quantum dots. Working at the atomic scale can produce large variations in the electronic states. Our tool allows us to see these states directly and allow us to provide feedback on the materials.”

After graphene was first produced in the lab in 2004, thousands of laboratories began developing graphene products worldwide. Researchers were amazed by its lightweight and ultra-strong properties. Ten years later, scientists now search for other materials that have the same level of potential.

“We continue to work with graphene, and there are some applications where it works very well,” said Mark Hersam, the Bette and Neison Harris Chair in Teaching Excellence at McCormick, who is a graphene expert. “But it’s not the answer to all the world’s problems.”

Part of a family of materials called transition metal dichalcogenides, molybdenum disulfide (MoS2) has emerged as a frontrunner material for exploration in Hersam’s lab. Like graphene, it can be exfoliated into atomically thin sheets. As it thins to the atomic limit, it becomes fluorescent, making it useful for optoelectronics, such as light-emitting diodes, or light-absorbing devices, such as solar cells. MoS2 is also a true semiconductor, making it an excellent candidate for electronics, and it historically has been used in catalysis to remove sulfur from crude oil, which prevents acid rain.

Hersam’s challenge was to find a way to isolate atomically thin sheets of this promising material at a larger scale. For the past six years, his lab has developed methods for exfoliating thin layers of graphene from graphite, using solution-based methods.

“You would think it would be easy to do the same thing for molybdenum disulfide,” he said. “But the problem is that while the exfoliation is similar to graphene, the separation is considerably more challenging.”

Hersam’s research is described in the paper “Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted gradient ultracentrifugation,” which was published in the Nov. 13 issue of Nature Communications.

To sort graphene layers, Hersam used centrifugal force to separate materials by density. To do this, he and his group added the material to a centrifuge tube along with a gradient of water-based solution. Upon centrifugation, the denser species move toward the bottom, creating layers of densities within the centrifuge tube. Graphene sorts into single layer sheets toward the top, then bilayer sheets, trilayer, and so on. Because graphene has a relatively low density, it easily sorts compared to higher density materials.

“If I use the exact same process with molybdenum disulfide, its higher density will cause it to crash out,” Hersam said. “It exceeds the maximum density of the gradient, which required an innovative solution.”

Hersam needed to take the inherently dense material and effectively reduce its density without changing the material itself. He realized that this goal could be achieved by tuning the density of the molecules used to disperse MoS2. In particular, the use of bulkier polymer dispersants allowed the effective density of MoS2 to be reduced into the range of the density gradient. In this manner, the sheets of MoS2 floated at layered positions instead of collecting as the bottom of the centrifuge tube. This technique works not just for MoS2, but for other materials in the transition metal dichalcogenides family.

“Now we can isolate single layer, bilayer, or trilayer transition metal dichalcogenides in a scalable manner,” Hersam said. “This process will allow us to explore their utility in large-scale applications, such as electronics, optoelectronics, catalysis, and solar cells.”

Silicon is the second most-abundant element in the earth’s crust. When purified, it takes on a diamond structure, which is essential to modern electronic devices–carbon is to biology as silicon is to technology. A team of Carnegie scientists led by Timothy Strobel has synthesized an entirely new form of silicon, one that promises even greater future applications. Their work is published in Nature Materials.

Although silicon is incredibly common in today’s technology, its so-called indirect band gap semiconducting properties prevent it from being considered for next-generation, high-efficiency applications such as light-emitting diodes, higher-performance transistors and certain photovoltaic devices.

Metallic substances conduct electrical current easily, whereas insulating (non-metallic) materials conduct no current at all. Semiconducting materials exhibit mid-range electrical conductivity. When semiconducting materials are subjected to an input of a specific energy, bound electrons can move to higher-energy, conducting states. The specific energy required to make this jump to the conducting state is defined as the “band gap.” While direct band gap materials can effectively absorb and emit light, indirect band gap materials, like diamond-structured silicon, cannot.

In order for silicon to be more attractive for use in new technology, its indirect band gap needed to be altered. Strobel and his team–Carnegie’s Duck Young Kim, Stevce Stefanoski and Oleksandr Kurakevych (now at Sorbonne) –were able to synthesize a new form of silicon with a quasi-direct band gap that falls within the desired range for solar absorption, something that has never before been achieved.

The silicon they created is a so-called allotrope, which means a different physical form of the same element, in the same way that diamonds and graphite are both forms of carbon. Unlike the conventional diamond structure, this new silicon allotrope consists of an interesting open framework, called a zeolite-type structure, which is comprised of channels with five-, six- and eight-membered silicon rings.

They created it using a novel high-pressure precursor process. First, a compound of silicon and sodium, Na4Si24, was formed under high-pressure conditions. Next, this compound was recovered to ambient pressure, and the sodium was completely removed by heating under vacuum. The resulting pure silicon allotrope, Si24, has the ideal band gap for solar energy conversion technology, and can absorb, and potentially emit, light far more effectively than conventional diamond-structured silicon. Si24 is stable at ambient pressure to at least 842 degrees Fahrenheit (450 degrees Celsius).

“High-pressure precursor synthesis represents an entirely new frontier in novel energy materials,” remarked Strobel. “Using the unique tool of high pressure, we can access novel structures with real potential to solve standing materials challenges. Here we demonstrate previously unknown properties for silicon, but our methodology is readily extendible to entirely different classes of materials. These new structures remain stable at atmospheric pressure, so larger-volume scaling strategies may be entirely possible.”

“This is an excellent example of experimental and theoretical collaboration,” said Kim. “Advanced electronic structure theory and experiment have converged to deliver a real material with exciting prospects. We believe that high-pressure research can be used to address current energy challenges, and we are now extending this work to different materials with equally exciting properties.”

This work was supported DARPA and Energy Frontier Research in Extreme Environments (EFree), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

Researchers from North Carolina State University have developed a new way to transfer thin semiconductor films, which are only one atom thick, onto arbitrary substrates, paving the way for flexible computing or photonic devices. The technique is much faster than existing methods and can perfectly transfer the atomic scale thin films from one substrate to others, without causing any cracks.

At issue are molybdenum sulfide (MoS2) thin films that are only one atom thick, first developed by Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State. MoS2 is an inexpensive semiconductor material with electronic and optical properties similar to materials already used in the semiconductor industry.

“The ultimate goal is to use these atomic-layer semiconducting thin films to create devices that are extremely flexible, but to do that we need to transfer the thin films from the substrate we used to make it to a flexible substrate,” says Cao, who is senior author of a paper on the new transfer technique. “You can’t make the thin film on a flexible substrate because flexible substrates can’t withstand the high temperatures you need to make the thin film.”

Cao’s team makes MoS2 films that are an atom thick and up to 5 centimeters in diameter. The researchers needed to find a way to move that thin film without wrinkling or cracking it, which is challenging due to the film’s extreme delicacy.

“To put that challenge in perspective, an atom-thick thin film that is 5 centimeters wide is equivalent to a piece of paper that is as wide as a large city,” Cao said. “Our goal is to transfer that big, thin paper from one city to another without causing any damage or wrinkles.”

Existing techniques for transferring such thin films from a substrate rely on a process called chemical etching, but the chemicals involved in that process can damage or contaminate the film. Cao’s team has developed a technique that takes advantage of the MoS2’s physical properties to transfer the thin film using only room-temperature water, a tissue and a pair of tweezers.

MoS2 is hydrophobic – it repels water. But the sapphire substrate the thin film is grown on is hydrophilic – it attracts water. Cao’s new transfer technique works by applying a drop of water to the thin film and then poking the edge of the film with tweezers or a scalpel so that the water can begin to penetrate between the MoS2 and the sapphire. Once it has begun to penetrate, the water pushes into the gap, floating the thin film on top. The researchers use a tissue to soak up the water and then lift the thin film with tweezers and place it on a flexible substrate. The whole process takes a couple of minutes. Chemical etching takes hours.

“The water breaks the adhesion between the substrate and the thin film – but it’s important to remove the water before moving the film,” Cao says. “Otherwise, capillary action would case the film to buckle or fold when you pick it up.

“This new transfer technique gets us one step closer to using MoS2 to create flexible computers,” Cao adds. “We are currently in the process of developing devices that use this technology.”

Rochester Electronics, a fully-authorized manufacturer and distributor of semiconductors, will launch 2015 with the re-introduction of many popular processors from Freescale and Intel.

According to the official release, the Freescale 68020 processor is now available, and the full military version of the 68020 will be in production the first quarter of 2015. The 68020 processor was sampled in 2014 and will ramp up production in the first quarter of 2015. Plans are in the works for the rest of the 8-bit NMOS family of products featuring the 6821, 6840, and 6850 in addition to the 6809. Anyone who is interested in these should contact their Rochester representative.

“In addition to these products, the 68HC000 family and the 68882 are also in development. Many Freescale microcontrollers, such as the 68HC05 and 68HC11, are scheduled for development in 2015,” said Paul Gerrish, President at Rochester Electronics.

“Intel products such as the 80C186EA, EB, EC, XL, and the 80C188EA, EB, EC and XL are all into fabrication now. The EB is currently ready for qualification. Also in the development pipeline for 2015 are the Intel 8X196KB, KC, and KD microcontrollers.”

These processors, microcontrollers and more, will be offered throughout 2015.