Tag Archives: letter-wafer-top

China has been the largest consuming country for ICs since 2005, but large increases in IC production within China have not immediately followed, according to data presented in the new 500-page 2019 edition of IC Insights’ McClean Report—A Complete Analysis and Forecast of the Integrated Circuit Industry (released in January 2019).  As shown in Figure 1, IC production in China represented 15.3% of its $155 billion IC market in 2018, up from 12.6% five years earlier in 2013.  Moreover, IC Insights forecasts that this share will increase by 5.2 percentage points from 2018 to 20.5% in 2023.

Figure 1

Currently, China-based IC production is forecast to exhibit a very strong 2018-2023 CAGR of 15%.  However, considering that China-based IC production was only $23.8 billion in 2018, this growth is starting from a relatively small base.  In 2018, SK Hynix, Samsung, Intel, and TSMC were the major foreign IC manufacturers that had significant IC production in China.  In fact, SK Hynix’s 300mm China fab had the most installed capacity of any of its fabs in 2018 at 200,000 wafers per month (full capacity).

Intel’s 300mm fab in Dalian, China (Fab 68 that started MCU production in late October 2010), was idled in 3Q15 as the company switched the fab to 3D NAND flash manufacturing.  This conversion was completed in late 2Q16.  Intel’s China fab had an installed capacity of 70,000 300mm wafers per month in December of 2018 (full capacity).

In early 2012, Samsung gained approval from the South Korean government to construct a 300mm IC fabrication facility to produce NAND flash memory in in Xian, China.  Samsung started construction of the fab in September of 2012 and production began in 2Q14.  The company invested $2.3 billion in the first phase of the fab with $7.0 billion budgeted in total.  This facility was the primary fab for 3D NAND production for Samsung in 2017 with an installed capacity of 100,000 wafers per month as of December 2018 (the company plans to expand this facility to 200,000 wafers per month).

Significant increases in IC sales over the next five years are also expected from existing indigenous Chinese companies including pure-play foundries SMIC and Huahong Group and memory startups YMTC and ChangXin Memory Technologies (CXMT, formerly Innotron). DRAM startup JHICC is currently on hold pending the sanctions imposed on the company by the U.S.  Moreover, there are likely to be new companies looking to establish IC production in China like Taiwan-based Foxconn, which announced in December of 2018 that it intended to build a $9.0 billion fab in China to offer foundry services as well as produce TV chipsets and image sensors.

If China-based IC production rises to $47.0 billion in 2023 as IC Insights forecasts, it would still represent only 8.2% of the total forecasted 2023 worldwide IC market of $571.4 billion.  Even after adding a significant “markup” to some of the Chinese producers’ IC sales figures (since many of the Chinese IC producers are foundries that sell their ICs to companies that re-sell these products to the electronic system producers), China-based IC production would still likely represent only about 10% of the global IC market in 2023.

Even with new IC production being established by China-based startups such as YMTC and CXMT, IC Insights believes that foreign companies will continue to be a large part of the IC production base in China.  As a result, IC Insights forecasts that at least 50% of IC production in China in 2023 will come from foreign companies with fabs in China such as SK Hynix, Samsung, Intel, TSMC, UMC, GlobalFoundries, and Foxconn.

Given the sheer size of China’s investment plans over the next five years, it is likely that China will achieve some level of success with their strategy to become less reliant on IC imports.  However, given increased government scrutiny of Chinese attempts at purchasing foreign technology companies and the legal challenges that the Chinese startups are likely to face in the future, IC Insights believes that China’s current strategy with regard to the IC industry will fall far short of the level of success that China’s government has targeted with its “Made in China 2025” plan (i.e., 40% self-sufficiency by 2020 and 70% by 2025).

The semiconductor business is defined by rapid technological changes and the need to maintain high levels of investment in research and development for new materials, innovative manufacturing processes for increasingly complex chip designs, and advanced IC packaging technologies.

However, since the 1980s, the long-term trend has been toward a slowdown in the annual growth rate of research and development expenditures according to data presented in the new, 2019 edition of IC Insights’ McClean Report—A Complete Analysis and Forecast of the Integrated Circuit Industry (released in January 2019). Consolidation in the semiconductor industry has been a big factor contributing to lower growth rates for R&D expenditures so far this decade. In the most recent five-year span from 2013-2018, semiconductor R&D spending grew by CAGR of 3.6% per year, essentially unchanged from the 3.3% experienced from 2008-2013 (Figure 1).

Figure 1

IC Insights expects new challenges such as three-dimensional (3D) die-stacking technologies, growing complexities in end-use applications, and other significant manufacturing barriers to raise semiconductor R&D spending to a slightly higher growth rate of 5.5% per year in the 2018-2023 forecast period.

R&D spending trends discussed here cover expenditures by integrated device manufacturers (IDMs), fabless chip suppliers, and pure-play wafer foundries and do not include other companies and organizations involved in semiconductor-related technologies, such as production equipment and materials suppliers, packaging and test service providers, universities, government-funded labs, and industry cooperatives, such as IMEC in Belgium, the CAE-Leti Institute in France, the Industrial Technology Research Institute (ITRI) in Taiwan, and the U.S.-based Sematech consortium, which was merged into the State University of New York (SUNY) Polytechnic Institute in 2015.

With the value of more than 90 merger and acquisition agreements topping $250 billion since 2015, tremendous consolidation has been underway among semiconductor suppliers—many of them major IC companies—which have been cutting costs by hundreds of millions of dollars and leveraging “synergies,” meaning the elimination of overlapping expenditures (e.g., jobs, facilities, and R&D activities) in an attempt to achieve higher levels of productivity and greater profits. After rising just 1% in 2015 and 2016, total semiconductor R&D spending grew 6% in 2017 and increased 7% in 2018 to reach a new record- high level of $64.6 billion.

During the last 40 years (1978-2018), R&D expenditures have increased at a compound annual growth rate of 14.5%, slightly higher than the total semiconductor revenue CAGR of 12.0%. Since the year 2000, semiconductor R&D spending as a percent of worldwide sales has exceeded the 40-year historical average of 14.5% in all but four years (2000, 2010, 2017, and 2018). In these four years, lower R&D-to-sales ratios had more to do with the strength of revenue growth than weakness in research and development spending.

Vanguard International Semiconductor Corporation (VIS) and GLOBALFOUNDRIES (GF) today announced that VIS will acquire GF’s Fab 3E in Tampines, Singapore. The transaction includes buildings, facilities, and equipment, as well as IP associated with GF’s MEMS business. GF will continue to operate the facility through the end of 2019, providing a transition period to facilitate technology transfers for VIS and existing GF customers. Fab 3E currently manages a monthly capacity of approximately 35,000 8-inch wafers. The transaction amounts to $236 million USD and the transfer of ownership is set to be completed on December 31st, 2019.

VIS and GF have already reached consensus on the transfer of Fab 3E’s employees and customers. Both companies believe that employees are the most important assets of a company, so their interests should be put as the first priority during the transition; while ensuring no disruption to customers whose products are in production at the fab. Under this premise, VIS will extend employment offers to all employees currently working at Fab 3E, as well as continuously provide existing customers at Fab 3E with its foundry service, including MEMS customers.

“I appreciate the support of GF’s board and management team for this transaction, giving VIS an opportunity to continue expanding its capacity and reinforce momentum for future growth,” said Mr. Leuh Fang, Chairman of VIS. “Since its foundation, VIS has already had three separate experiences of successfully transforming a DRAM fab into a foundry fab. We believe this transaction is a win-win for both VIS and GF; and to VIS, it is also a decision that benefits all of our customers, employees, and shareholders. VIS will uphold its philosophy and principles to continue satisfying customers’ demands in capacity and technology, sustaining profitability and growth, and rewarding our shareholders.”

“This transaction is part of our strategy to streamline our global manufacturing footprint and increase our focus in Singapore on technologies where we have clear differentiation such as RF, embedded memory and advanced analog features,” said GF CEO Tom Caulfield. “Consolidating our 200mm operations in Singapore into one campus will also help reduce our operating costs by leveraging the scale of our gigafab facility in Woodlands. VIS is the right partner to leverage the Fab 3E asset going forward.”

VIS’s capacity has been fully utilized since 2018, and it is in the interests of its customers that VIS expands capacity to meet growing demands. The new fab is expected to contribute more than 400,000 8-inch wafers per year. This acquisition demonstrates the determination and commitment of VIS to accelerate capacity expansion.

Worldwide silicon wafer area shipments in 2018 increased 8 percent year-over-year to a record high, while 2018 worldwide silicon revenue jumped 31 percent during the same period, topping the $10 billion mark for the first time since 2008, reported the SEMI Silicon Manufacturers Group (SMG) in its year-end analysis of the silicon wafer industry.

Silicon wafer area shipments in 2018 totaled 12,732 million square inches (MSI), up from the previous market high of 11,810 million square inches shipped during 2017. Revenues totaled $11.38 billion, compared to the $8.71 billion posted in 2017.

“For the fifth year in a row, annual semiconductor silicon volume shipments reached record levels,” said Neil Weaver, chairman of SEMI SMG, and Director, Product Development and Applications Engineering, at Shin-Etsu Handotai America. “Despite strong demand and the impressive gain in revenues last year, the market still remains below the market high set in 2007.”

Annual Silicon* Industry Trends

2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
Area Shipments (MSI)
8,661
8,137
6,707
9,370
9,043
9,031
9,067
10,098
10,434
10,738
11,810
12,732
Revenues ($B)
12.1
11.4
6.7
9.7
9.9
8.7
7.5
7.6
7.2
7.2
8.7
11.4

Source: SEMI (www.semi.org), January 2019

*Total Electronic Grade Silicon Slices Excluding Non-Polished Wafers. Shipments are for semiconductor applications only and do not include solar applications.

*Shipments are for semiconductor applications only and do not include solar applications

All data cited in this release includes polished silicon wafers, such as virgin test wafers and epitaxial silicon wafers, as well as non-polished silicon wafers shipped to end users.

Silicon wafers are the fundamental building material for semiconductors, which, in turn, are vital components of virtually all electronics goods, including computers, telecommunications products, and consumer electronics. The highly engineered thin, round disks are produced in various diameters – from one inch to 12 inches – and serve as the substrate material on which most semiconductor devices, or chips, are fabricated.

The Silicon Manufacturing Group (SMG) is a sub-committee of the SEMI Electronic Materials Group (EMG) and is open to SEMI members involved in manufacturing polycrystalline silicon, monocrystalline silicon or silicon wafers (e.g., as cut, polished, epi, etc.). The purpose of the group is to facilitate collective efforts on issues related to the silicon industry including the development of market information and statistics about the silicon industry and the semiconductor market.

Annual semiconductor unit shipments, including integrated circuits and optoelectronics, sensors, and discrete (O-S-D) devices grew 10% in 2018 and surpassed the one trillion unit mark for the first time, based on data presented in the new, 2019 edition of IC Insights’ McClean Report—A Complete Analysis and Forecast of the Integrated Circuit Industry. As shown in Figure 1, semiconductor unit shipments climbed to 1,068.2 billion units in 2018 and are expected to climb to 1,142.6 billion in 2019, which equates to 7% growth for the year.  Starting in 1978 with 32.6 billion units and going through 2019, the compound annual growth rate for semiconductor units is forecast to be 9.1%, a very impressive growth figure over 40 years, given the cyclical and often volatile nature of the semiconductor industry.

Figure 1

Over the span of just four years (2004-2007), semiconductor shipments broke through the 400-, 500-, and 600-billion unit levels before the global financial meltdown caused a big decline in semiconductor unit shipments in 2008 and 2009.  Unit growth rebounded sharply with 25% growth in 2010, which saw semiconductor shipments surpass 700 billion devices. Another strong increase in 2017 (12% growth) lifted semiconductor unit shipments beyond the 900-billion level before the one trillion mark was achieved in 2018.

The largest annual increase in semiconductor unit growth during the timespan shown was 34% in 1984, and the biggest decline was 19% in 2001 following the dot-com bust.  The global financial meltdown and ensuing recession caused semiconductor shipments to fall in both 2008 and 2009; the only time that the industry experienced consecutive years in which unit shipments declined.  The 25% increase in 2010 was the second-highest growth rate across the time span.

The percentage split of total semiconductor shipments is forecast to remain heavily weighted toward O-S-D devices in 2019 (Figure 2).  O-S-D devices are forecast to account for 70% of total semiconductor units compared to 30% for ICs.  This percentage split has remained fairly steady over the years.  In 1980, O-S-D devices accounted for 78% of semiconductor units and ICs represented 22%.  Many of the semiconductor categories forecast to have the strongest unit growth rates in 2019 are those that are essential building-blocks for smartphones, automotive electronics systems, and devices that are used in computing systems essential to artificial intelligence, “big data,” and deep learning applications.

Figure 2

 

By Ajit Manocha

Last year the industry posted another remarkable double-digit revenue growth year. IC shipments eclipsed one trillion units for the first time and continued to enable an ever-expanding array of silicon intensive-applications.

2018 was also a pivotal year of transformation at SEMI. Setting our sights firmly on building more value for SEMI members, we doubled down on priorities I established this time last year. We advocated intensively on global trade policies, industry talent needs, and critical environment, health and safety (EHS) concerns. To underpin our efforts around talent, we took the bold step to reinvigorate the industry’s identity with a dynamic image campaign. Above all, we targeted critical industry-wide issues to help us realize the ambition of becoming a trillion-dollar industry in the next decade.

Workforce Development

Redefining our approach to talent development in 2018 was and remains a top priority. A diverse, highly skilled workforce is crucial to the industry’s ability to innovate. Last year we ramped up a number of  SEMI High Tech U (HTU) programs to inspire young people and attract them to careers in high-tech manufacturing. To date, more than 130,000 students have been touched by HTU – through student or teacher programs.

Over the past year, we designed a new university outreach program and established partnerships with 100 institutions. We established Workforce Pavilions at SEMICON events in Southeast Asia, the U.S., Taiwan, Europe and Japan for students to explore career opportunities and meet with recruiters. We thrilled at seeing sponsors hire young talent at SEMI events. This year, all SEMICONs worldwide will feature Workforce Pavilions.

SEMI also formalized its commitment to Diversity and Inclusion (D&I) with the establishment of a D&I council to shape new programs including the recently launched Spotlight on SEMI Women. To localize and fully optimize our D&I programs, we established regional workforce councils in every region we serve.

We unveiled the SEMI Mentoring Program to support students and young professionals on this journey by facilitating one-on-one mentoring relationships with industry professionals. Hundreds of mentees have enrolled. But we still need more mentors.  I urge you to join the program.

During the year, SEMI also expanded its workforce staff and developed a comprehensive workforce strategy with programs that engage students as early as elementary school and inspires them through high school and college. The program provides pathways to professional careers, building a pipeline to fill the short-term and long-term talent needs of the industry.

Industry Image Campaign

As we developed the comprehensive workforce development program, we knew we had to refresh the industry’s image and appeal to the next generation through contemporary media and communications channels. So we recently launched a bold, innovative campaign to raise industry awareness and attract students and recent graduates to careers in semiconductor manufacturing.

Our You’re Welcome campaign is a novel, creative approach that blends entertainment, media and storytelling to excite students about the industry. The campaign went viral immediately and within weeks had more than 5.5 million social media impressions and 2.3 million video views.

Trade Policy Advocacy

Rising trade tensions between the U.S. and China catapulted global trade policy to the forefront of industry concerns in 2018. Since the tariffs have taken force, semiconductor companies have faced higher costs, greater uncertainty, and difficulty selling products abroad. The tariffs have forced many SEMI member companies to pause or rethink their investment strategies.

SEMI quickly engaged U.S. policymakers and provided resources for SEMI members. We formed a member trade task force, staged trade compliance seminars in China, and convened meetings with over 110 U.S. congressional, agency and administration officials, and provided testimony on the importance of the free trade to the industry.

SEMI continues to educate policymakers about the critical importance of free and fair trade, open markets, and respect and enforcement of IP for all players in the global electronics manufacturing supply chain. As part of this initiative, we distributed “10 Principles for the Global Semiconductor Supply Chain in Modern Trade Agreements” and encouraged their adoption in various trade negotiations. These principles outline the primary considerations for balanced trade rules that benefit SEMI members around the world, strengthen innovation and perpetuate the societal benefits of affordable microelectronics.

Environment, Health and Safety

Environmental regulations are proliferating globally even as advanced semiconductor manufacturing technology relies increasingly on a host of new materials. With dozens of new fabs and fab line upgrades, our industry must align on best practices, sensibly respond to materials restrictions, and renew efforts toward sustainable manufacturing.

That’s why the revitalization of SEMI EHS efforts became another priority in 2018. Two months ago, we hosted the inaugural EHS Summit at SEMI Headquarters. Fully, 70 EHS professionals and company executives met to form the basis for the future SEMI EHS program.

The Year Ahead

Despite a softening in the market, compounded by Apple’s first-ever announcement of a revenue decline in 16 years, a geopolitical whirlwind on trade and an extended shutdown of much of the U.S. government, the future is bright.

At SEMI’s annual Industry Strategy Symposium (ISS 2019) in Half Moon Bay, Calif. in early January,  the sense of optimism was palpable. In her keynote address, Dr. Ann Kelleher, Sr. VP and General Manager, Technology and Manufacturing Group, at Intel, observed that data is powering the fourth industry revolution and the expansion of compute. With customers expecting continual improvements in applications, Kelleher highlighted the tremendous opportunity for the chip industry to meet these expectations.

At ISS 2019, we announced a Memorandum of Understand between SEMI and imec. The MOU will enable us to accelerate our members’ engagement in SEMI’s Smart vertical market platforms, in particular Smart MedTech and Smart Transportation. Our partnership with imec will also allow us to boost SEMI Standards activities in non-CMOS technologies, deepen technology roadmap efforts and augment our SEMI Think Tank initiative in thought leadership at a global level.

Over the course of this coming year, will we begin our global rollout of key building blocks of our comprehensive workforce development program to engage schoolchildren as young as 10 and learners all the way to veterans who return to the workforce. We are now able, with the invaluable help of our Workforce Development Council and the passionate engagement of many SEMI member companies, to offer a solution to the talent crisis in our industry.

We will continue to be the leading voice for our members and the end-to-end semiconductor supply chain across Talent, Trade, Tax and Technology as we work to ensure free, fair trade that protects IP while preserving vital access to markets to grow the supply chain.

Vertical Market Platforms

Our vertical market platforms are an important part of this growth. For example, in Smart MedTech, SEMI looks forward to working with the Nano-Bio Materials Consortium to advance human monitoring technology for telemedicine and digital health after winning $7 million to fund the renewed program. In Smart Transportation, we will leverage the Global Automotive Advisory Council (GAAC) we formed last year to represent the full automotive supply chain and the Smart Transportation and Smart Automotive forums featured at all our SEMICON events to enable the industry to identify and seize opportunities in autonomous driving.

At ISS 2019, Sujeet Chand of Rockwell Automation noted that “digitization will grow faster in the next 10 years than it did in the past 50,” a trend calling for semiconductor fab architectures that transform data into business value. We will continue to bring the industry together at our Smart Manufacturing venues to help uncover ways to deploy deep learning, edge computing and other Smart technologies to deliver this value and meet the challenges of automation as artificial intelligence’s (AI) sprawling influence reshapes industries including manufacturing.

I am filled with optimism and thrilled about the opportunities I see on the horizon for our members as we build on our 2018 accomplishments to enable your prosperity in 2019 and beyond. My heartfelt thanks to all of you for your participation in our programs and events.

I look forward to another successful year as we connect, collaborate and innovate together!

Ajit Manocha is president and CEO of SEMI. 

By Rohit Sharma

Constant coverage of an invigorating topic like machine intelligence in the media often urges us to consider its use in EDA technology. As is often the case, there are many myths and falsehoods that consume our time and effort when trying to apply machine intelligence to EDA. This article aims to uncover the myths and to provide helpful advice on applying machine intelligence to your EDA project or product.

Value Proposition

First, there needs to be a clear value proposition for adding machine intelligence to an EDA product. Using machine intelligence to create a me-too product adds no value. EDA customers are too busy to understand or care about an EDA tool’s underlying technology. They just want to use the tool and get results. If the tool delivers value, if it delivers tangible benefits, then they’ll use it. Otherwise, they won’t.

Currently, EDA tool developers are already experimenting with AI and machine intelligence without considering this fundamental truth – without a higher-end objective. AI must deliver something better or new, whether a speed advantage, a performance advantage, new features, new insights, or perhaps even something pleasantly surprising. Before you write a single line of AI-enhanced code, you need to clearly understand how AI will enhance the product. What is the value proposition?

Use Model

There’s a major barrier to customer adoption of AI and machine intelligence technology for EDA tools: EDA users are averse to make decisions based on probabilistic results. Instead, half a century of EDA tool use has conditioned them to expect deterministic outcomes from their tools.

Back in 2003, a prominent visionary and EDA investor was quoted in an interview, saying: “If I open my eyes five years from now, all static analysis in VLSI will be statistical.” Many EDA luminaries have been proven wrong over time for betting that EDA users will accept statistical results. As enthusiastic as I am about using machine intelligence to improve EDA tools, I must urge caution based on the history of EDA failures that employed a probabilistic use model. Decision-makers and EDA tool users want to see deterministic answers to questions about yield or slack, not probabilistic ones.

Our experiences at Paripath in developing the PASER (Paripath Accelerated Simulation Environment) tool also bear this out. We discovered that delivering results 50x faster but with 92% accuracy was simply not good enough for end users. EDA users only started to use PASER when its answers became 98+% accurate. To be adopted in the production flow, the tool had to deliver 99% accuracy.

Data Engineering

There are specific ways to achieve these accuracy goals. The first is data engineering. Machine intelligence is a new approach to EDA tool development and it needs to be trained on a data set. If the data is poor or incomplete, training will create an inaccurate model. Fundamental software-development rules still apply. Garbage in, garbage out.

Without good training data, there’s no way for you to build good neural-network models. If you train a model with garbage data, you’ll get a garbage model. You must cleanse the data before you use it for training. Otherwise, the model will draw inaccurate conclusions and customers will not use your tool. The model is not to blame here. The model’s not wrong. The problem lies in poor data engineering, poor data cleansing, and a lack of discipline to prepare input data.

High Dimensionality

Next, machine intelligence has a unique ability to quickly solve problems of high dimensionality. Pure EDA problems often have high dimensionality. Over the years, EDA developers have perfected the art of segmenting the problems into sequencing solutions with lower dimension. Machine intelligence technology can handle problems with thousands of dimensions, but you need to be careful when tackling problems that have high dimensionality. Too many dimensions can produce confused or inaccurate results with AI and deep-learning technology.

It helps to visualize the problem and to analyze the data set before using the data to train an AI-enhanced EDA tool. Several visualization methods can help. For example, t-SNE (t-Distributed Stochastic Neighbor Embedding) lets you reduce a data set’s dimensionality from a very large number to a much lower number. Figure 1 shows a high-dimension dataset with a dimensionality of 2000, which has been reduced to a low dimensionality of 3.

Figure 1: Visualizing the Data Set with Lower Dimensionality

Reducing the dimensionality of a data set to 3 using t-SNE and visualization allows you to quickly see whether the data set defines an easy or a difficult problem. If the problem is difficult, you’ll likely need to lower the problem’s and the data set’s dimensionality before using the data to train a neural network.

Technology Selection

One factor that determines whether it will be easy or difficult to incorporate machine intelligence into your EDA tool is your choice of AI development tools. AI researchers have developed a long list of frameworks, libraries, and languages that they use to develop AI and machine-learning software. Frameworks and libraries such as TensorFlow, Caffe and MXNet are most popular for developing deep-learning models.

However, these tools are not yet popular with the EDA development community. The languages of choice in the EDA community are traditionally C and C++ for development and Tcl for prototyping and creating user interfaces. The rest of the software world has moved on to newer development languages such as Python, Java, R, and such. Moreover, machine-learning development segments into two distinct processes: training (i.e. generating the model) and inference (i.e. using the model).

Another question to consider is where to generate the model – at the vendor site or the customer site?

Consequently, fitting AI and deep-learning development into EDA development environments can feel like fitting a square peg into a round hole. You may need to create corners in your hole.

EDA is a very small player in the overall software market. Relatively few software developers are familiar with writing EDA tools. It’s best to select AI and deep-learning development tools that can provide some sort of interface that’s compatible with EDA’s development tools of choice. Some AI frameworks have lower-level C and C++ interface layers that provide a familiar entry point for experienced EDA developers.

At Paripath, we chose TensorFlow for exactly this reason. TensorFlow has a lower-level C/C++ interface. Although the resulting development path becomes a longer one using this approach, it’s a more familiar path for EDA developers and therefore it’s a path that can ultimately lead your EDA development team to success. An elaborate study of comparing these frameworks has been published in the book Machine Intelligence in Design Automation.

Integration into Legacy Systems

When you understand the value that you expect machine intelligence to add to your new EDA tool, when you’ve cleansed and then analyzed the data set, and when you have selected an appropriate set of development tools, you’re finally ready to add machine intelligence to your EDA development. There are two use models for AI-enhanced EDA tools. The first uses a trained model to guide the EDA tool’s decision-making. In this use case, the trained neural network doesn’t change. The software’s accuracy doesn’t improve with use unless the company that developed the EDA tool retrains the underlying neural network. This use case follows the familiar, existing use case associated with EDA tools developed using deterministic algorithms.

For the second use case, the end user is able to retrain the underlying neural network, which allows the EDA tool to produce better, more accurate results over time. This use case produces a win/win situation because end users are able to hone their tools and improve them over time, without help from the EDA tool vendor’s application engineers. If the retrained models are also sent back to the EDA developer for incorporation into newer versions of the tool, all users benefit from other users’ training data.

It’s not clear how you’d support this second use case in the current EDA business environment where most data sets are proprietary and are carefully guarded. Most large EDA tool customers want to keep their data in house under tight control. Even with this somewhat restrictive situation, however, EDA tools benefit from the incorporation of machine intelligence because each EDA tool customer can customize the tool and improve its results.

Machine intelligence has much to add to EDA tools’ capabilities. Only time will tell if the customers want and will accept these new capabilities.

Rohit Sharma, founder and CEO of Paripath Inc., is an engineer, author and entrepreneur. He has published many papers in international conferences and journals. He has contributed to electronic design automation domain for over 20 years learning, improvising and designing solutions. He is passionate about many technical topics including machine learning, analysis, characterization, and modeling. It led him to architect guna – an advanced characterization software for modern nodes. 

Sharma has written a book titled “Machine Intelligence for Design Automation.” You can download code examples and other information here.

This originally appeared on the SEMI blog.

IC Insights is in the process of completing its forecast and analysis of the IC industry and will present its new findings in The McClean Report 2019, which will be published later this month.  Among the semiconductor industry data included in the new 400+ page report is an analysis of semiconductor merger and acquisition agreements.

The historic flood of merger and acquisition agreements that swept through the semiconductor industry in 2015 and 2016 slowed significantly in 2017 and then eased back further in 2018, but the total value of M&A deals reached in the last year was still nearly more than twice the annual average during the first half of this decade.  Acquisition agreements reached in 2018 for semiconductor companies, business units, product lines, and related assets had a combined value of $23.2 billion compared to $28.1 billion in 2017, based on data compiled by IC Insights.  The values of M&A deals struck in these years were significantly less than the record-high $107.3 billion set in 2015 (Figure 1).

Figure 1

The original 2016 M&A total of $100.4 billion was lowered by $41.1 billion to $59.3 billion because several major acquisition agreements were not completed, including the largest proposed deal ever in semiconductor history—Qualcomm’s planned purchase of NXP Semiconductor for $39 billion, which was raised to $44 billion before being canceled in July 2018.  Prior to the explosion of semiconductor acquisitions that erupted four years ago, M&A agreements in the chip industry had a total annual average value of $12.6 billion in the 2010-2014 timeperiod.

The two largest acquisition agreements in 2018 accounted for about 65% of the M&A total in the year.  In March 2018, fabless mixed-signal IC and power discrete semiconductor supplier Microsemi agreed to be acquired by Microchip Technology for $8.35 billion in cash.  Microchip said the purchase of Microsemi would boost its position in computing, communications, and wireless systems applications.  The transaction was completed in May 2018.  Fabless mixed-signal IC supplier Integrated Device Technology (IDT) agreed in September 2018 to be purchased by Renesas Electronics for $6.7 billion in cash.  Renesas believes the IDT acquisition will strengthen its position in automotive ICs for advanced driver-assistance systems and autonomous vehicles.  The IDT purchase is expected to be completed by June 2019.

Just two other semiconductor acquisition announcements in 2018 had values of more than $1 billion.  In October 2018, memory maker Micron Technology said it would exercise an option to acquire full ownership of its IM Flash Technology joint venture from Intel for about $1.5 billion in cash. Micron has started the process of buying Intel’s non-controlling interest in the non-volatile memory manufacturing and development joint venture, located in Lehi, Utah.  The transaction is expected to be completed in 2H19.  In September 2018, China’s largest contract manufacturer of smartphones, Wingtech Technology, began acquiring shares of Nexperia, a Dutch-based supplier of standard logic and discrete semiconductors that was spun out of NXP in 2017 with the financial backing of Chinese investors.   Wingtech launched two rounds of share purchases from the Chinese owners of Nexperia with a combined value of nearly $3.8 billion.  The company hopes to take majority ownership of Nexperia (about 76% of the shares) in 2019.

Worldwide PC shipments totaled 68.6 million units in the fourth quarter of 2018, a 4.3 percent decline from the fourth quarter of 2017, according to preliminary results by Gartner, Inc. For the year, 2018 PC shipments surpassed 259.4 million units, a 1.3 percent decline from 2017. Gartner analysts said there were signs for optimism in 2018, but the industry was impacted by two key trends.

“Just when demand in the PC market started seeing positive results, a shortage of CPUs (central processing units) created supply chain issues. After two quarters of growth in 2Q18 and 3Q18, PC shipments declined in the fourth quarter,” said Mikako Kitagawa, senior principal analyst at Gartner. “The impact from the CPU shortage affected vendors’ ability to fulfill demand created by business PC upgrades. We expect this demand will be pushed forward into 2019 if CPU availability improves.”

“Political and economic uncertainties in some countries dampened PC demand,” Ms. Kitagawa said. “There was even uncertainty in the U.S. — where the overall economy has been strong — among vulnerable buyer groups, such as small and midsize businesses (SMBs). Consumer demand remained weak in the holiday season. Holiday sales are no longer a major factor driving consumer demand for PCs.”

The top 3 vendors boosted their share of the global PC market as Lenovo, HP Inc. and Dell accounted for 63 percent of PC shipments in the fourth quarter of 2018, up from 59 percent in the fourth quarter of 2017 (see Table 1).

Lenovo surpassed HP Inc. to move into the No. 1 position in the global PC market in the fourth quarter of 2018. A major factor for Lenovo’s share gain was credited to a joint venture with Fujitsu formed in May 2018. Lenovo also had a strong quarter in the U.S. The company has recorded three consecutive quarters of double-digit year-over-year shipment growth, despite the stagnant overall market.

Table 1. Preliminary Worldwide PC Vendor Unit Shipment Estimates for 4Q18 (Thousands of Units)

Company 4Q18 Shipments 4Q18 Market Share (%) 4Q17 Shipments 4Q17 Market Share (%) 4Q18-4Q17 Growth (%)
Lenovo 16,628 24.2 15,697 21.9 5.9
HP Inc. 15,380 22.4 16,092 22.4 -4.4
Dell 10,915 15.9 10,763 15.0 1.4
Apple 4,920 7.2 5,112 7.1 -3.8
ASUS 4,211 6.1 4,716 6.6 -10.7
Acer Group 3,861 5.6 4,726 6.6 -18.3
Others 12,710 18.5 14,590 20.3 -12.9
Total 68,626 100.0 71,696 100.0 -4.3

Notes: Data includes desk-based PCs, notebook PCs and ultramobile premiums (such as Microsoft Surface), but not Chromebooks or iPads (see “Market Definitions and Methodology: PCs, Ultramobiles and Mobile Phones”). All data is estimated based on a preliminary study. Final estimates will be subject to change. The statistics are based on shipments selling into channels.
Numbers may not add up to totals shown due to rounding.
*Lenovo’s results include Fujitsu units starting in 2Q18 to reflect the joint venture that closed in May 2018.

Source: Gartner (January 2019)

The fourth quarter of 2018 was a challenging one for HP Inc. The company experienced a shipment decline after four consecutive quarters of growth. HP Inc.’s shipments declined in most key regions, except Asia/Pacific and Japan. Dell registered positive growth as the company outperformed in EMEA and Japan, but it experienced a decline in Asia/Pacific and Latin America.

In the U.S., PC shipments totaled 14.2 million units in the fourth quarter of 2018, a 4.5 percent decline from the fourth quarter of 2017 (see Table 2). Four of the top six vendors experienced a decline in U.S. PC shipments in the fourth quarter of 2018. Lenovo’s growth was well above the U.S. average while Dell’s shipments increased slightly compared with a year ago. The overall decline in the U.S. was attributed to weak consumer demand despite holiday season sales as well as SMBs.

“The fourth quarter is typically a buying season for small office/home office (SOHO) and small business buyers in the U.S. as they want to use up the untouched budget before the tax year ends,” said Ms. Kitagawa. “Our early indicator showed that SOHO and small business buyers held off on some new PC purchases due to uncertainties around the political and economic conditions.”

Table 2. Preliminary U.S. PC Vendor Unit Shipment Estimates for 4Q18 (Thousands of Units)

Company 4Q18 Shipments 4Q18 Market Share (%) 4Q17 Shipments 4Q17 Market Share (%) 4Q18-4Q17 Growth (%)
HP Inc. 4,738 33.4 5,130 34.6 -7.6
Dell 3,645 25.7 3,613 24.3 0.9
Lenovo 2,150 15.2 1,743 11.7 23.4
Apple 1,762 12.4 1,800 12.1 -2.1
Microsoft 472 3.3 542 3.7 -12.9
Acer Group 458 3.2 587 4.0 -21.9
Others 953 6.7 1,430 9.6 -33.3
Total 14,178 100.0 14,843 100.0 -4.5

Notes: Data includes desk-based PCs, notebook PCs and ultramobile premiums (such as Microsoft Surface), but not Chromebooks or iPads. All data is estimated based on a preliminary study. Final estimates will be subject to change. The statistics are based on shipments selling into channels.

Source: Gartner (January 2019)

PC shipments in EMEA totaled 20.9 million units in the fourth quarter of 2018, a 3.8 percent decline year over year. There were some positive signs, such as in Western Europe’s demand for desktops and ultramobiles that fueled SMB shipments, while the government sector also benefited from further Windows 10 renewals. Demand in Russia continued to recover, and some parts of Eastern Europe, such as the Czech Republic and Hungary. However, demand was not strong enough to offset declining shipments to consumers.

The Asia/Pacific PC market totaled 24.2 million units in the fourth quarter of 2018, a 4.6 percent decline from the fourth quarter of 2017. Due to uncertainties of the U.S.-China trade relations, and the volatile equity market, there was cautionary demand, especially among consumers and the SMB segment. In the fourth quarter of 2018, PC shipments in China declined 2.5 percent year over year, but shipments grew 5.6 percent sequentially.

Seventh Consecutive Year of Worldwide PC Shipment Decline

For the year, worldwide PC shipments totaled 259.4 million units in 2018, a 1.3 percent decrease from 2017 (see Table 3). This was the seventh consecutive year of global PC shipment decline, but it was less steep compared with the past three years.

“The majority of the PC shipment decline in 2018 was due to weak consumer PC shipments. Consumer shipments accounted for approximately 40 percent of PC shipments in 2018 compared with representing 49 percent of shipments in 2014,” Kitagawa said. “The market stabilization in 2018 was attributed to consistent business PC growth, driven by Windows 10 upgrade.”

Table 3. Preliminary Worldwide PC Vendor Unit Shipment Estimates for 2018 (Thousands of Units)

Company 2018

Shipments

2018 Market

Share (%)

2017

Shipments

2017 Market Share (%) 2018-2017 Growth (%)
Lenovo 58,467 22.5 54,669 20.8 6.9
HP Inc. 56,332 21.7 55,179 21.0 2.1
Dell 41,911 16.2 39,793 15.1 5.3
Apple 18,016 6.9 18,963 7.2 -5.0
Acer Group 15,729 6.1 17,087 6.5 -7.9
ASUS 15,537 6.0 17,952 6.8 -13.5
Others 53,393 20.6 59,034 22.5 -9.6
Total 259,385 100.0 262,676 100.0 -1.3

Notes: Data includes desk-based PCs, notebook PCs and ultramobile premiums (such as Microsoft Surface), but not Chromebooks or iPads. All data is estimated based on a preliminary study. Final estimates will be subject to change. The statistics are based on shipments selling into channels.

Source: Gartner (January 2019)

These results are preliminary. Final statistics will be available soon to clients of Gartner’s PC Quarterly Statistics Worldwide by Region program. This program offers a comprehensive and timely picture of the worldwide PC market, allowing product planning, distribution, marketing and sales organizations to keep abreast of key issues and their future implications around the globe.

IC Insights is in the process of completing its forecast and analysis of the IC industry and will present its new findings in The McClean Report 2019, which will be published later this month.  Among the semiconductor industry data included in the new 400+ page report is an analysis of the top-50 semiconductor suppliers.

Research included in the new McClean Report shows that the world’s leading semiconductor suppliers significantly increased their marketshare over the past decade.  The top 5 semiconductor suppliers accounted for 47% of the world’s semiconductor sales in 2018, an increase of 14 percentage points from 10 years earlier (Figure 1).  In total, the 2018 top 50 suppliers represented 89% of the total $514.0 billion worldwide semiconductor market last year, up seven percentage points from the 82% share the top 50 companies held in 2008.

As shown, the top 5, top 10, and top 25 companies’ share of the 2018 worldwide semiconductor market increased 14, 15, and 11 percentage points, respectively, as compared to 10 years earlier in 2008.  With additional mergers and acquisitions expected over the next few years, IC Insights believes that the consolidation could raise the shares of the top suppliers to even loftier levels.

There was a wide 66-percentage point range of year-over-year growth rates among the top 50 semiconductor suppliers last year, from +56% for Nanya to -10% for Fujitsu.  Nanya rode a surge of demand for its DRAM devices to post its great full-year results.  However, evidence of a cool down in the memory market last year was evident in the company’s quarterly sales results, which saw its sales drop from $826 million in 2Q18 to $550 million in 4Q18 (a 33% plunge).  Overall, four of the top seven growth companies last year—Nanya, SK Hynix, Micron, and Samsung—were major memory suppliers.  Although Nanya registered the highest percentage increase, Samsung had the largest dollar volume semiconductor sales increase, a whopping one-year jump of $17.0 billion!

In total, only nine of the top 50 companies registered better growth as compared to the 2018 worldwide semiconductor market increase of 16%, with five companies logging increases of ≥30%.  In contrast, only three of the top 50 semiconductor companies logged a decline in sales last year, with Fujitsu being the only company to register a double-digit sales drop.

Figure 1