Tag Archives: letter-wafer-top

By Christian G. Dieseldorff

This year, SEMI ISS covered it all – from a high-level semiconductor market and global geopolitical overview down to the neuro morphic and quantum level. Here are key takeaways from the Day 1 keynote and Economic Trends and Market Perspectives presentations.

In the opening keynote, Anne Kelleher from Intel pointed to the huge growth of data, with fabs collecting more than 5 billion sensor data points each day. The challenge, Kelleher noted, is to turn massive amounts of data into valuable information. Moore’s law is not dead. New models of computing benefit still from Moore’s law and advances in Si/CMOS technologies for conventional, deep learning, neuro morphic and quantum computing.

With customers expecting continual improvements in applications, the question is whether the chip industry is moving fast enough to meet these expectations, Kelleher said. A broad supply chain, equipment and materials innovations, and attracting the “best of the best” college graduates to fuel innovation is key, she said.

In the economic trends session, Nicholas Burns (ambassador ret.) from Harvard University pointed out that we will see a major shift in power. The U.S. will remain the major world power over the next 10 years, but we will see a major shift in power in the next coming decades as the gap with countries like China, Russia and India continues to narrow.

Duncan Meldrum from Hilltop Economics said that we are passing the peak growth of economic cycle. He warns that a more likely outlook is that a global growth recession is developing. Although semiconductor MSI growth will see a noticeable slowdown in 2019 and 2020, the semiconductor industry is still healthy over the longer term.

Bob Johnson from Gartner sees demand shifting from consumer to commercial applications with higher ROIs and budgets. AI, IoT and 5D are the major enablers. He sees structural changes in the semiconductor industry especially for memory but also for Moore’s law with increasing costs and fewer players.

The DRAM markets shows volatility and NAND market may be negative in 2019 but non-memory are expected to accelerate mainly because of increasing content and some price hikes.

Overall Gartner expects good long-term growth with a CAGR (2017 to 2022) of 5.1%, outpacing 2011 to 2016 CAGR of 2.6%. After a strong 2018 with 13.4% revenue, he forecasts a slower 2019 with 2.6% growth followed by a 8% growth in 2020 and negative growth rate in 2021.

Andrea Lati of VLSI went “Back to fundamentals” in his presentation about the industry. VLSI sees a downside bias due to slowing global economy, tariffs, and trade wars. Future drivers are data economy, cloud, AI and automotive.

As memory leads the 2019 slowdown, analog, power, logic and other sectors remain in positive territory. VLSI lowered its semiconductor equipment forecast for 2018 from 20% (Jan. 2018) to 14% (Dec. 2018) but increased its sales outlook from 8% to 15% in 2018. VLSI expects revenue to slow into the first half of 2019 but increase to over 4% in the second half of the year, resulting in total 2019 drop of 2.7%. Semiconductor equipment sales are expected to drop from 14% in 2018 to -10% in 2019.

Michael Corbett of Linz Consulting, covering wafer fab materials in the years of 3D scaling, sees these as good times for the industry. His outlook for wafer fab materials is bullish based on strong MSI and because wafer fab materials suppliers are getting bigger because of M&As.

In the Market Perspective session, Sujeet Chand of Rockwell Automation pointed out that as more and more data is generated, the problem is how to get value of all the data collected. There is a need to create the right architecture for machine learning and AI and big data is increasingly being replaced by contextual/structured data. He expects Industry 4.0 to drive foundries to become smaller, more flexible and more productive.

In the Technology and Manufacturing session, Aki Sekiguchi of TEL addressed process challenges in the age of co-optimization. The semiconductor industry continues to expand, driven by massive growth of interconnected devices, with heavy demand for processing power and storage. He expects an exponential increase of data from about 40ZB in 2018 to 50ZB in 2020 to 163 ZB in 2026.

Major technologies such as DRAM, 3D NAND and logic are dealing with scaling challenges. The density of DRAM (Mb/chip) is plateauing according to 2015 to 2020 trend data, with DRAM is in need of EUV. Memory capacity demand is leading to increasing layers and higher aspect ratios that is concern for 3D NAND and mainly for plasma etch. With Logic already implementing 3D structures, it appears to be in a solid position.

Buddy Nicoson of Micron talked about his 50 years in the industry and looked ahead to the next 50. The anchors – quality, cost, scale and speed – won’t change. It has been a great journey so far with unprecedented opportunities and challenges ahead of us. We are getting into a convergence (specialization, integration) and solution-based phase. We will see some inflection points in the coming years, with the best yet to come.

Christian G. Dieseldorff is senior principal analyst in the Industry Research and Analysis group at SEMI in California.

This story first appeared on the SEMI blog.

IC Insights is in the process of completing its forecast and analysis of the IC industry and will present its new findings in The McClean Report 2019, which will be published later this month.  Among the semiconductor industry data included in the new 400+ page report is an in-depth analysis of semiconductor capital spending.

The semiconductor industry is expected to allocate the largest portion of its capex spending for flash memory again in 2019, marking the third consecutive year that flash has led all other segments in spending (Figure 1).  Flash memory trailed the foundry segment in capex in 2016, but took an extra-large jump in 2017, growing 92% to $27.6 billion and increased another 16% to $31.9 billion in 2018 as manufacturers expanded and upgraded their production lines for 3D NAND to meet growing demand.  With much of the expansion now completed or expected to be wrapped up in 2019, flash capex is forecast to decline 18% this year to $26.0 billion, which still is a very healthy spending level.

Figure 1

•    In 2018, SK Hynix completed and opened M15 its new wafer fab facility in Cheongju, South Korea.  First devices produced from the factory were 72-layer 3D NAND flash.

•    Micron allocated significant resources to upgrade its two existing flash fabs in Singapore and broke ground on construction of a third NAND wafer fab there.

•    Toshiba Memory completed construction of a new 300mm wafer plant (Fab 6) at its Yokkaichi site in 1H18.  Operations at Phase 1 of the facility are expected to begin in early 2019.  Also, Toshiba announced that its next flash memory fab after Fab 6 would be located in Kitakami, Iwate.  The company broke ground on this fab in July 2018.

•    XMC/Yangtze River Storage Technology (YMTC), which is owned by Tsinghua Unigroup, completed construction of its new fab, installed equipment, and began small-volume production of 32-layer 3D NAND flash.

•    Samsung and all of the other “legacy” flash suppliers are well aware of the big plans that China has to be a player in the 3D NAND flash market.  Samsung will continue to invest heavily to stay far ahead of existing competitors or new startups and maintain its competitive edge against any who think they can wrestle marketshare away.  Samsung spent $13.0 billion on flash capex in 2017 and $9.0 billion in 2018, accounting for 28% of the total $31.9 billion in flash memory capital spending last year.  IC Insights estimates Samsung will spend another $7.0 billion for flash capex in 2019.

SEMI met with Dr. Jose Pozo, director of Technology and Innovation at EPIC (European Photonics Industry Consortium), to discuss how 3D packaging applications and heterogeneous integration trends are shaping the European technology landscape. The two spoke ahead of his presentation at the 3D & Systems Summit, 28-30 January, 2019, in Dresden, Germany. To register for the event, please click here.

SEMI: What is the EPIC mission and vision?

Pozo: EPIC is an industry association with 418 corporate members that promotes the sustainable development of organisations working in the field of photonics in Europe. Our main goal is to increase the growth of photonics companies. To do so, we organize around 30 business-to-business events every year and provide market reports to our members.

SEMI: Who are EPIC members and what is your role within the association?

Pozo: Our members encompass the entire value chain, from LED lighting, photovoltaic solar energy, photonics integrated circuits and optical components to lasers, sensors, imaging, displays, projectors, optic fiber, and other photonic-related technologies. In my role as CTO, I like to describe myself as the “Geek” of photonics. Thanks to my technical understanding of the industry, I constantly travel and visit our members to understand their needs, which are very specific to their businesses. Ruring 2018, EPIC visited 142 companies. My role is to understand the industry trends and provide what I call “constant access to network” and market intelligence.

SEMI: What particularly exciting initiative are you driving?

Pozo: The interconnection with the European Commission is playing a big role for us, and we are currently cooperating with the European Commission to enable manufacturing of photonics in Europe. We have been working with our members to identify themes that hold the greatest interest with the European Commission. The Commission has funding available for the development of technologies it believes will enhance the European manufacturing landscape – the so called “Pilot Lines” – and enhance our everyday lives.

SEMI: Which pilot lines are of the greatest interest?

Pozo: There are three main directions for improvement:

  • Reduce costs
  • Enable the manufacturing of new photonic technologies in Europe, such as novel concepts for additive manufacturing, silicon photonics, freeform optics and biosensors
  • Enable volume production

One example of an EU-funded pilot line is “MIRPHAB,” which focuses on Mid-IR sensor manufacturing. Another, PIXAPP, enables the volume production of packaged Photonic Integrated Circuits (PICs) for established industries such as chemicals, telecommunications and medical.

SEMI: Your 3D & Systems Summit presentation will focus on European demand of new laser systems and processes, application markets and innovative laser technologies. What’s the future of these technologies?

Pozo: Europe should focus on networking because connectivity will help Europe become a leader in manufacturing. The constant development of laser material processing leads to process improvements for modifying materials at the sub-microscale level such as cutting, engraving, drilling and welding. At the core of laser is the so-called beam shape (or beam converter), an optical device that reshapes a light beam. Today, technological innovations based on laser materials processing enable the development of several applications that involve a precise control of the shape, power, and dynamics of the light beam.

SEMI: You have mentioned numerous company visits with industry leaders and experts. What did they say? Where is Europe going?

Pozo: Every company is a unique universe. Every company is so different. Two companies might belong to photonics and still develop different products and technologies – lasers can be the size of building or of a human hair! But there are some aspects of photonics that are much broader in scope. Take the automotive industry. The autonomous car of the future will be driven by photonics and lighting. How often do we hear about LiDAR? While automotive is a key markets for photonics, the technology is also important in driving advances in areas such as “environmental monitoring” and even “urban landscaping.”

SEMI: What are some key trends in photonics?

Pozo: One important trend is that high-powered lasers are required more and more in manufacturing. We are moving from 3 KW to 15 KW lasers, and many companies are now working hard to noto only increase power but to control the laser beam shape.

Another key trend is that MedTech is enabling early stage cancer diagnosis and reducing the number of related deaths, though there is so much room for improvement here!

A third trend is the rising adoption AR/VR solutions in gaming, medical, communication, transportation and many other industries as the technologies mature.

Photonics is also being used more in imaging cameras, microscopy, photography, SMART lighting and lasers and in antibacterial environments.

Come to Dresden to learn more and discuss trends during a coffee break!

SEMI: What are your expectations for 2019 3D & Systems Summit in Dresden, and why do you recommend your members and other industry leaders to attend?

Pozo: Laser-based manufacturing companies in the semiconductor industry should attend the summit. A wide variety of laser technologies that enable the development of innovative semiconductor manufacturing processes is available today. According to Yole Développement (Yole), the laser equipment market will grow at a 15 percent CAGR between 2016 and 2022 and should reach more than US$4 billion by 2022. Those figures are showing the massive adoption of laser technologies for semiconductor manufacturing processes.

Serena Brischetto is a marketing and communications manager at SEMI Europe.

IC Insights is in the process of completing its forecast and analysis of the IC industry and will present its new findings in The McClean Report 2019, which will be published later this month.  Among the semiconductor industry data included in the new 400+ page report is an in-depth analysis of the IC foundry market and its suppliers.

With the recent rise of the fabless IC companies in China, the demand for foundry services has also risen in that country.  In total, pure-play foundry sales in China jumped by 30% in 2017 to $7.6 billion, triple the 9% increase for the total pure-play foundry market that year.  Moreover, in 2018, pure-play foundry sales to China surged by an amazing 41%, over 8x the 5% increase for the total pure-play foundry market last year.

As a result of a 41% increase in the China pure-play foundry market last year, China’s total share of the 2018 pure-play foundry market jumped by five percentage points to 19% as compared to 2017, exceeding the share held by the rest of the Asia-Pacific region (Figure 1).  Overall, China was responsible for essentially all of the total pure-play foundry market increase in 2018!

All of the major pure-play foundries registered double-digit sales increases to China last year, but the biggest increase by far came from pure-play foundry giant TSMC.  Following a 44% jump in 2017, TSMC’s sales into China surged by another 61% in 2018 to $6.0 billion.  The China market was responsible for essentially all of TSMC’s sales increase last year with China’s share of the company’s sales doubling from 9% in 2016 to 18% in 2018.

A great deal of TSMC’s sales surge into China in 2018 was driven by increased demand for custom devices going into the cryptocurrency market.  While TSMC enjoyed a great ramp up in sales for its cryptocurrency business through 2Q18, the company encountered a slowdown for this business in the second half of last year, which was apparent in its slower sales to China in 3Q18 and 4Q18.  The 2018 plunge in the price of Bitcoins (from over $15K per Bitcoin in January of 2018 to less than $4K in December of 2018) and other cryptocurrencies lowered the demand for these ICs.

Figure 1

With China’s share of the pure-play foundry market quickly growing (going from representing 11% of the total pure-play foundry market in 2015 to a 19% share in 2018) it comes as no surprise that many of the pure-play foundries are planning to locate or expand IC production in Mainland China.  Notably, each of the top seven pure-play foundries has plans for increasing China-based wafer fabrication production, including the five non-Chinese foundries of TSMC, GlobalFoundries, UMC, Powerchip, and TowerJazz

By Cherry Sun

“We are living in a digital world where semiconductors are taken for granted, AI is bringing semiconductors back into the deserved spotlight, and now we are witnessing the dawn of the Cognitive Era enabled by semiconductors,” SEMI president and CEO Ajit Manocha said to an audience of more than 500 during his presentation – Rebirth of the Semiconductor Industry – at the First Global IC Entrepreneur Conference.

Speaking at the Shanghai event in mid-December, Manocha recalled how, when he first entered the semiconductor industry in the 1980s, semiconductors revenue topped out at about $10 billion. Now, with sales having swelled to a staggering $450 billion, the industry is on a much faster growth track. Revenue could reach $500 billion by the end of 2020 and trillions of dollars by 2030.

Over the past two decades, chips have given rise to social media and e-commerce powerhouses such as Google, Facebook, and Alibaba. All rely on heavily on chips, the engines of data centers across all industries. Wave after wave of technology innovation have been powered by semiconductors – from mainframe computers in the 1970s, personal computers in the 1980s, the Internet in the 1990s, and mobile and social networking in the early 20th century, to the current shining stars of technology such as IoT, big data, new memory, virtual reality, autonomous driving and artificial intelligence, Manocha said. New applications across areas such as smart manufacturing and digital healthcare are stoking the latest round of semiconductor growth.

The rise of AI, like all the technologies before it, has renewed the semiconductor industry once again with its promise to drive growth of all industries worldwide, Manocha said. Five years ago, IoT was but a gleam in a technologist’s eye, more hype than reality with doubt about its viability running deep. Today, with about 60 percent of people in the world connected to the Internet, the enormous promise and potential of IoT is flowering.

Industry growth will explode as the melding of AI and IoT birth countless applications and innovations in SMART transportation (0 emissions; 0 fatalities; 0 congestion), smart sensors (agriculture, infrastructure, healthcare) and SMART “Everything” (people, devices, homes, cities, industries, and the list goes on). Indeed, AI is now widely recognized as a chief growth driver of the semiconductor industry well into the future, with semiconductor technology at the core of AI innovation, he said.

Semiconductors are thrusting the fifth industrial revolution into the fast lane. China’s much-anticipated rise as an industry powerhouse over the next few years will only accelerate industry growth, turning current disruptions into future opportunities as SEMI China continues to cultivate connection, collaboration and innovation in China’s fast-growing semiconductor sector.

Cherry Sun is a marketing manager at SEMI China. 

Total fab equipment spending in 2019 is projected to drop 8 percent, a sharp reversal from the previously forecast increase of 7 percent as fab investment growth has been revised downward for 2018 to 10 percent from the 14 percent predicted in August, according to the latest edition of the World Fab Forecast Report published by SEMI.

Entering 2018, the semiconductor industry was expected to show a rare fourth consecutive year of equipment investment growth in 2019. But the SEMI World Fab Forecast Report, tracking more than 400 fabs and lines with major investment projects, forecast in August a slowdown in the second half of 2018 and into the first half of 2019. Now, with recent industry developments, a steeper downturn in fab equipment is expected (Figure 1).

Figure 1

The report shows overall spending down 13 percent in the second half of 2018 and 16 percent in the first half of 2019 with a strong increase in fab equipment spending expected in the second half of 2019.

Plunging memory prices and a sudden shift in companies’ strategies in response to trade tensions are driving rapid drops in capital expenditures, especially among leading-edge memory manufacturers, some fabs in China, and some projects for mature nodes such as 28nm. Industry sectors expecting record-breaking growth in 2019, such as memory and China, are now leading the decline.

Following a sharp fall in NAND flash pricing earlier this year, DRAM prices in the fourth quarter of 2018 began to soften, seemingly ending the two-year DRAM boom. Inventory corrections and CPU shortages continue, prompting predictions of even steeper price declines.

Memory makers have quickly responded to changing market conditions by adjusting capital expenditures (capex), and tool orders have been put on hold. DRAM spending may see an even deeper correction in 2019 while NAND flash-related investment could also suffer a double-digit decline next year.

A review of spending by industry sector reveals that, while memory capital expenditures were expected to grow by 3 percent in 2019, they are now forecast to drop by 19 percent year-over-year (YOY). DRAM is hit the hardest with a fall of 23 percent, while 3D NAND will contract 13 percent in 2019.

China and Korea are suffering the largest drops in spending since the August report.

China fab spending falls

Projections for equipment spending in China in 2019 have been revised from US$17 billion in August to US$12 billion, with multiple factors at play including a slowing memory market, trade tensions, and delays in some project timelines.

SK Hynix is expected to slow DRAM expansion in 2019. GLOBALFOUNDRIES reconsidered its plan for the Chengdu fab, delaying the ramp. SMIC and UMC are slowing spending. The Fujian Jinhua DRAM project has been put on hold.

Korea fab spending down

In August, SEMI forecast that Korea fab equipment spending would decline by 8 percent, to US$17 billion, in 2019 – a projection that has now been slashed to US$12 billion, a drop of 35 percent YoY. Samsung began to reduce equipment investments in the fourth quarter of 2018, and the spending cuts are expected to continue into the first half of 2019. Samsung’s largest projects to be hit are P1 (slowdown) and the ramp of P2 Phase 1 (delayed). Adjustments to the S3 schedule are also expected.

Not all memory makers cut capital expenditures

While SEMI’s detailed, fab-level data show that some memory makers will scale back capital expenditures for 2019, one company stands out. Micron will increase capex for FY19 to US$10.5 billion, up about 28 percent, or $8.2 billion, from FY18. Micron plans to expand and upgrade facilities, invest less in NAND in FY19 than in FY18, and anticipates no new wafer starts.

Outlook still upbeat for mature technologies

In other sectors, especially for non-leading-edge and specialty technologies, some fabs are still increasing investments (Figure 2).

Figure 2

Opto – especially CMOS image sensors – shows strong growth, surging 33 percent to US$3.8 billion in 2019. Micro (MPU, MCU and DSP) is expected to grow more than 40 percent in 2019 to US$4.8 billion. Analog and mixed signal investments also show strong growth – 19 percent – in 2019, bringing spending to US$660 million. The foundry sector, the second largest product segment in total investments at US$13 billion, shows a 10 percent rise in 2019.

The recent three-year boom in the semiconductor market was chiefly driven by the memory sector (e.g. DRAM and 3D NAND flash). One company, Samsung, invested at unprecedented levels, lifting the entire industry. Other memory makers rode the wave of the boom cycle by boosting investments. And China’s profile rose with its huge investments. The industry was poised for four consecutive years of revenue growth – a streak not seen since the 1990s.

Now the industry faces well-known threats of inventory correction and the trade war. Both phenomena could slow growth significantly and if both unfold in full force in tandem, the impact could be serious. The data in SEMI’s latest publication of the World Fab Forecast show that the four-year growth streak will not materialize.

Since its August 2018 publication, more than 260 updates have been made to the World Fab Forecast. The report now includes more than 1,280 records of current and 115 future front-end semiconductor facilities from high-volume production to research and development. The report covers data and predictions through 2019, including milestones, detailed investments by quarter, product types, technology nodes and capacities down to fab and project level.

The SEMI World Fab Forecast examines capital expenditure plans of individual front-end device manufacturers, while the SEMI bi-annual Semiconductor Equipment Sales Forecast is based on year-to-date data collected from equipment manufacturers and modeled off of announced capital expenditure plans of both front-end and back-end equipment manufacturers.

IC Insights is in the process of revising its forecast and analysis of the IC industry and will present its new findings in The McClean Report 2019, which will be published in January 2019.  Among the revisions is a complete update of forecast growth rates of the 33 main product categories classified by the World Semiconductor Trade Statistics organization (WSTS) through the year 2023.

Topping the chart of fastest-growing products for 2018 is DRAM, which comes as no surprise given the strong rise of average selling prices in this segment over the past two years (Figure 1).  The 2018 DRAM market is expected to show an increase of 39%, a solid follow-up to the 77% growth in 2017. The number-one position is not unfamiliar territory for the DRAM market.  It was also the fastest-growing IC segment in 2013 and 2014.

Figure 1

Remarkably, DRAM has been at the top and near the bottom of this list over the past six years, demonstrating its very volatile and cyclical nature.  IC Insights forecasts that DRAM will rank nearly last in terms of market growth in 2019, with a 1% decrease in total sales.  After two strong years of growth, Samsung, SK Hynix, and Micron—the world’s three primary DRAM suppliers—have expanded their manufacturing capacity and are beginning to ramp up production, bringing some much needed relief to strained supplies, especially for high-performance DRAM devices. At the same time, shipments of large-scale datacenter servers, which were a primary catalyst for much of the recent DRAM market surge, have begun to ease as uncertain economic and trade conditions factor into decisions about continuing with the strong build out.

NAND flash joins DRAM as another memory segment that has enjoyed very strong growth over the past two years (Figure 2).  Solid-state computing, particularly, has been a key driver for high-density, high-performance NAND flash even as mobile applications continue to be a significant driver. Meanwhile, automotive and computing special purpose logic devices have also been strong performers the past two years.  The top five IC markets listed for 2018 are the only product categories that are expected to surpasses the 17% growth rate of the total IC market this year.

Figure 2

The full list of IC product rankings and forecasts for the 2019-2023 timeperiod is included in The McClean Report 2019, which will be released in January 2019.

By Walt Custer

Global growth by electronic sector

Now that most companies in our sector analyses have reported their calendar third quarter 2018 financial results, we have final or 3Q’18/2Q’17 growth estimates for the world electronic supply chain (Chart 1). We estimate electronic equipment grew 6.7% on a U.S. dollar-denominated basis.

Source: Custer Consulting Group based on consolidated financial reports of public companies

Electronic equipment growth has peaked for this current business cycle (Chart 2), dropping from +11.1% in the second quarter to 6.7% in the third quarter. Most of the supply chain is responding to this slowing.

Semiconductors, SEMI equipment an Taiwan chip foundries

While the most recent growth rates in Charts 1 & 2 are for the third quarter, October and November growth is included in Chart 3.  Foundry growth was +4.6% in November, world semiconductor shipments eased to +12.7% in October and SEMI capital equipment slipped to +10% also in October. The days of the +30% growth rates are behind us for this current business cycle!

Sources: SIA; SEMI; financial reports of Taiwan listed foundry companies

Global semiconductor growth outlook for 2019

The World Semiconductor Trade Statistics Organization in conjunction with the SIA just updated the chip shipment forecasts for 2018 and 2019 (Chart 4). World semiconductor shipments were estimated to have climbed 15.9% (in U.S. dollars) in 2018 but are predicted to slow to a +2.6% rate in 2019.

Source: www.wsts.org, www.semiconductors.org

Looking forward

The Global Manufacturing PMI (Chart 5) leveled out in November but remained well below its December 2017 high.  This translates to a slower but still positive world expansion in the short term. By region (Chart 6), U.S. growth remains robust, Japan picked up, Europe continues to decelerate, China is near zero growth and Taiwan and South Korea are contracting.

Source: www.markiteconomics.com

ll eyes are on the global economy, Brexit, trade wars and bizarre political wrangling. 2019 could be a very volatile year!

Walt Custer of Custer Consulting Group is an analyst focused on the global electronics industry.

Releasing its Year-End Total Equipment Forecast at the annual SEMICON Japan exposition, SEMI, the global industry association representing the electronics manufacturing supply chain, today reported that worldwide sales of new semiconductor manufacturing equipment are projected to increase 9.7 percent to $62.1 billion in 2018, exceeding the historic high of $56.6 billion set last year. The equipment market is expected to contract 4.0 percent in 2019 but grow 20.7 percent to reach $71.9 billion, an all-time high.

The SEMI Year-end Forecast predicts wafer processing equipment will rise 10.2 percent in 2018 to $50.2 billion. The other front-end segment – consisting of fab facilities equipment, wafer manufacturing, and mask/reticle equipment – is expected to increase 0.9 percent to $2.5 billion this year. The assembly and packaging equipment segment is projected to grow 1.9 percent to $4.0 billion in 2018, while semiconductor test equipment is forecast to increase 15.6 percent to $5.4 billion this year.

In 2018, South Korea will remain the largest equipment market for the second year in a row. China will rise in the rankings to claim the second spot for the first time, dislodging Taiwan, which will fall to the third position. All regions tracked except Taiwan, North America, and Korea will experience growth. China will lead in growth with 55.7 percent, followed by Japan at 32.5 percent, Rest of World (primarily Southeast Asia) at 23.7 percent, and Europe at 14.2 percent.

For 2019, SEMI forecasts that South Korea, China, and Taiwan will remain the top three markets, with all three regions maintaining their relative rankings. Equipment sales in South Korea is forecast to reach $13.2 billion, in China $12.5 billion, and in Taiwan $11.81 billion. Japan, Taiwan and North America are the only regions expected to experience growth next year. The growth picture is much more optimistic in 2020, with all regional markets expected to increase in 2020, with the market increasing the most in Korea, followed by China, and Rest of World.

The following results are in terms of market size in billions of U.S. dollars:

The Equipment Market Data Subscription (EMDS) from SEMI provides comprehensive market data for the global semiconductor equipment market. A subscription includes three reports:

  • Monthly SEMI Billings Report, an early perspective of the trends in the equipment market
  • Monthly Worldwide Semiconductor Equipment Market Statistics (SEMS), a detailed report of semiconductor equipment bookings and billings for seven regions and over 22 market segments
  • SEMI Mid-Year Forecast, an outlook for the semiconductor equipment market

Ever-growing data generation driven by mobile devices, the cloud, the IoT , and big data, as well as novel AI applications, all part of the megatrends, requires continuous advancements in memory technologies. Emerging NVM takes benefit of this dynamic ecosystem.

After more than 15 years in development, PCM, one of the emerging NVM technologies, has finally taken off thanks to the strong involvement of two leading companies, Micron and Intel, announces Yole Développement (Yole). The growth mainly arises from stand-alone applications. “Although momentum is building around emerging NVM for embedded applications, stand-alone memories will be the dominant market, which will be mainly driven by SCM enterprise and client applications,” comments Simone Bertolazzi, PhD, Technology & Market Analyst at Yole.

The market research and strategy consulting company Yole proposes today a technology & market survey dedicated to the emerging non-volatile memory technologies and markets, Emerging Non-Volatile Memory.

Yole and its partners System Plus Consulting and Knowmade, deeply investigate the memory business. The Group set up this year valuable memory services and reports to deliver world class research, data and insight. The emerging NVM report is part of them.

“With our memory activities including a dedicated webcasts program covering DRAM & NAND and emerging NVM, Yole Group of Companies provides valuable expertise and knowledge to its clients and allow them to understand the evolution of this competitive industry,” asserts Emilie Jolivet, Director, Semiconductor & Software from Yole.

The emerging NVM report is a comprehensive analysis of the semiconductor memory ecosystem with the following technologies (STT-) MRAM, RRAM and PCM, plus an introduction to standard memory, flash NAND, DRAM, NVDIMMs. It provides a deep understanding of the NVM applications and details the related market forecasts until 2023. NVM technologies are well described with the companies involved. In this new report, Yole’s Semiconductor & Software team highlights the competitive landscape with supply chain, market positioning and market shares analysis.
What is the status of the emerging NVM business? Yole Group of Companies invite you to enter in the memory world.

Since its latest edition, Yole’s analysts point out today market evolution and technical innovations. According to Yann de Charentenay, Senior Technology & Market Analyst at Yole, DRAM scaling will continue in the next five years, though at slower pace. NAND density will keep increasing thanks to continuous advancements in 3D integration approaches. And emerging NVM will not replace NAND and DRAM but they will rather complement them in “combined” memory solutions. In addition, SCM will be the main emerging NVM market and will be dominated by 3DXPoint for the next 5 years.
From a technology point of view, (STT-) MRAM is gaining momentum for embedded MCU applications since all big foundries are getting involved in this area. Stand-alone RRAM will try to catch market share to PCM on SCM applications. And emerging NVM sales will grow by more than one order of magnitude in the next three years, thanks to SCM applications.

In parallel, Yole’s team identified an increased foundry involvement in (STT-) MRAM and RRAM market segment. Key players such as GlobalFoundries, TSMC, UMC, SMIC and Samsung Foundry Services develop a strong expertise with related capabilities to offer attractive services. This trend is showing a growing foundries’ interest in memory business. As an example, the leading semiconductor company, TSMC announced possible acquisition of a memory company. Moreover, analysts point out the growing number of players including Chinese companies.

In the stand-alone business, emerging NVMs will not replace DRAM and NAND but will be used in combination with them inside memory modules, e.g. SSDs, DIMMs, and NVDIMMs. In 2023, PCM will maintain its lead in the stand-alone memory market thanks to the increasing adoption of 3D XPoint as an enterprise and client SCM. It is worth noting that Samsung and Toshiba took a different strategic path by developing 3D NAND-based SCM solutions such as Z-NAND (Samsung) and XL-Flash (Toshiba, showcased in August 2018). However, these technologies will be used in enterprise SSDs and will not compete with DDR4-compatible Optane DIMMs, which we expect will represent more than 50% of overall 3D XPoint sales.

RRAM was expected to be the first stand-alone technology to compete with 3D XPoint, but it has suffered repeated delays due to technical challenges. We presume that RRAM could return in the race for SCM after 2020, and possibly start competing with NAND for mass storage applications. STT-MRAM, thanks to its high speed and high endurance, is promising for enterprise storage SCM. However, its success will be much lower compared to stand-alone PCM due to higher costs, greater fabrication complexity, and challenging scalability.

Compared to stand alone, the embedded emerging NVM market is relatively small, representing ~3% of the emerging NVM market in 2017. The market is dominated today by RRAM, since only a few RRAM based MCUs are available on the market. However, all top foundries are now getting ready with 28/22nm technology processes for STTMRAM whereas RRAM adoption has been delayed by approximately two years by SMIC and UMC.

Therefore, we expect that STT-MRAM will be the first to take-off in the coming years and will lead the embedded emerging NVM market, especially MCUs, which represent the most important embedded segment. Emerging memory will first replace eFlash, which is facing major scaling challenges due to rising fabrication complexity/costs for technology nodes ≤ 28nm. The adoption of STT-MRAM as an embedded cache memory (SRAM or eDRAM) in high-end processors and mobile application processors (AP) will occur later due to more strict scalability requirements (≤ 14nm).

AI on the edge is the most innovative application for embedded emerging NVM. Crossbar recently demonstrated various AI applications, i.e. face recognition, through the use of RRAM chips. We expect that such RRAM-based AI devices will enter the market after 2021.

Yole Group of Companies leverage decades of industry experience while partnering with its clients to make sure they are consistently well-informed on this dynamic memory market. These years were indeed impressive, not only in terms of revenues, but also in pricing and capital expenditure. Mike Howard, VP of DRAM & Memory Research and Walt Coon, VP of NAND & Memory Research at Yole describe in a dedicated interview published last week, the memory ecosystem and its players, highlighting the latest technology advancements and the future evolutions of the market: click Memory business: what’s next?.