Tag Archives: letter-wafer-top

The demise of Qualcomm’s pending $44 billion purchase of NXP Semiconductors in late July along with growing regulatory reviews of chip merger agreements, efforts by countries to protect domestic technology, and the escalation of global trade friction all suggest semiconductor acquisitions are hitting a ceiling in the size of doable deals.  It is becoming less likely that semiconductor acquisitions over $40 billion can be completed or even attempted in the current geopolitical environment and brewing battles over global trade.

IC Insights believes a combination of factors—including the growing high dollar value of major chip merger agreements, complexities in combining large businesses together, and greater scrutiny of governments protecting their domestic base of suppliers—will stifle ever-larger mega-transactions in the semiconductor industry in the foreseeable future.  Figure 1 ranks the 10 largest semiconductor merger and acquisition announcements and underscores the growth in size of these M&A transactions.  Eight of the 10 largest announcements occurred in the last three years with only the biggest deal (Qualcomm buying NXP) failing to be completed.

Figure 1

It is important to note that IC Insights’ M&A list only covers semiconductor suppliers, chipmakers, and providers of integrated circuit intellectual property (IP) and excludes acquisitions of software and system-level businesses by IC companies  (such as Intel’s $15.3 billion purchase of Mobileye, an Israeli-based developer of digital imaging technology for autonomous vehicles, in August 2017).  This M&A list also excludes transactions involving semiconductor capital equipment suppliers, material producers, chip packaging and testing companies, and design automation software firms.

Qualcomm’s $44 billion cash purchase of NXP would have been the largest semiconductor acquisition ever if it was completed, but the deal—originally announced in October 2016 at nearly $39 billion and raised to $44 billion in February 2018—was canceled in the last week of July because China had not cleared the transaction.  China was the last country needed for an approval of the merger, and it was believed to be close to clearing the purchase in 2Q18, but growing threats of tariffs in a brewing trade war with the U.S. and moves to block Chinese acquisitions of American IC companies caused China to taken no action on the $44 billion acquisition in time for a deadline set by Qualcomm and NXP.  U.S.-based Qualcomm canceled the acquisition on July 26 and quickly paid NXP in the Netherlands a $2 billion breakup fee so the two companies could move on separately.

Prior to Qualcomm’s failed $44 billion offer for NXP, the largest semiconductor acquisition was Avago Technologies’ $37 billion cash and stock purchase of Broadcom in early 2016.  Avago renamed itself Broadcom Limited after the purchase and launched a failed $121 billion hostile takeover bid for Qualcomm at the end of 2017.  It lowered the unsolicited bid to $117 billion in February 2018 after Qualcomm raised its offer for NXP to $44 billion.  In March 2018, U.S. President Donald Trump blocked Broadcom’s $117 billion takeover bid for Qualcomm after concerns were raised in the U.S. government about the potential loss of cellular technology leadership to Chinese companies, if the hostile acquisition was completed. After the presidential order, Broadcom executives said the company was considering other acquisition targets, with cash, that would be smaller and more focused.

The global semiconductor industry has been reshaped by a historic wave of mergers and acquisitions during the past three years, with about 100 M&A agreements being reached between 2015 and the middle of 2018 with the combined value of these transactions being more than $245 billion, based on data collected by IC Insights and contained within its Strategic Reviews database subscription service and in The 2018 McClean Report on the IC Industry.  A record-high $107.3 billion in semiconductor acquisition agreements were announced in 2015.  The second highest total for semiconductor M&A agreements was then reached in 2016 at $99.8 billion.   Semiconductor acquisition announcements reached a total value of $28.3 billion in 2017, which was twice the industry’s annual average of about $12.6 billion in the first half of this decade but significantly less than 2015 and 2016, when M&A was sweeping through the chip industry at historic levels.  In the first six months of 2018, semiconductor acquisition announcements had a total value of about $9.6 billion, based on IC Insights’ running tally of announced M&A deals.

By Walt Custer

2Q’18 Electronic Supply Chain Growth Update

  • Chart 1 is a preliminary estimate of global growth of the electronic supply chain by sector for 2Q’18 vs 2Q’17. Note the strong performance of semiconductors, SEMI capital equipment and passive components.
  • Chart 2 gives preliminary 2Q’18 world electronic equipment growth by type. Global electronic equipment sales rose an estimated 9%+ when consolidated into US dollars in the second quarter of this year compared to the same quarter in 2017.
  • Based on this, data global electronic equipment sales growth appears to have now peaked on a 3/12 growth basis for this present business cycle (Chart 3).

As a caution these charts are based on a combination of actual company financial reports and estimates for companies that have not yet reported their calendar second quarter financial results. A number of large companies have yet to report but these early estimates have historically been close to final growth values.  We will update Chart 1 next month.

Semiconductor Capital Equipment Business Cycle

  • Semiconductor capital equipment sales are historically very volatile, with their growth fluctuating MUCH MORE than electronic equipment (Chart 4). However, both series appear to have peaked on a 3/12 basis for this current cycle.

  • Semiconductors, SEMI capital equipment and Taiwan chip foundry sales all are seeing slower growth. 3/12 values >1 still indicate an expansion but slower growth is indicated.

Supply chain performance in the second half of this year bears careful watching!

Walt Custer of Custer Consulting Group is an analyst focused on the global electronics industry.

Originally published on the SEMI blog.

IC Insights recently released its Mid-Year Update to The McClean Report 2018.  The update includes a revised forecast of the largest and fastest-growing IC product categories this year.  Sales and unit growth rates are shown for each of the 33 IC product categories defined by the World Semiconductor Trade Statistics (WSTS) organization in the Mid-Year Update.

The five largest IC product categories in terms of sales revenue and unit shipments are shown in Figure 1.  With forecast sales of $101.6 billion, (39% growth) the DRAM market is expected to be the largest of all IC product categories in 2018, repeating the ranking it held last year.  If the sales level is achieved, it would mark the first time an individual IC product category has surpassed $100.0 billion in annual sales. The DRAM market is forecast to account for 24% of IC sales in 2018.  The NAND flash market is expected to achieve the second-largest revenue level with total sales of $62.6 billion this year. Taken together, the two memory categories are forecast to account for 38% of the total $428.0 billion IC market in 2018.

Figure 1

For many years, the standard PC/server MPU category topped the list of largest IC product segments, but with ongoing increases in memory average selling prices, the MPU category is expected to slip to the third position in 2018.  In the Mid-Year Update, IC Insights slightly raises its forecast for 2018 sales in the MPU category to show revenues increasing 5% to an all-time high of $50.8 billion, after a 6% increase in 2017 to the current record high of $48.5 billion.  Helping drive sales this year are AI-controlled systems and data-sharing applications over the Internet of Things.  Cloud computing, machine learning, and the expected tidal wave of data traffic coming from connected systems and sensors is also fueling MPU sales growth this year.

Two special purpose logic categories—computer and peripherals, and wireless communications—are forecast to round out the top five largest product categories for 2018.

Four of the five largest categories in terms of unit shipments are forecast to be some type of analog device.  Total analog units are expected to account for 54% of the total 318.1 billion IC shipments forecast to ship this year.  Power management analog devices are projected to account for 22% of total IC units and are forecast to exceed the combined unit shipment total of the next three categories on the list.  As the name implies, power management analog ICs help regulate power usage and to keep ICs and systems running cooler, to manage power usage, and ultimately to help extend battery life—essential qualities for an increasingly mobile and battery-powered world of devices.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $117.9 billion during the second quarter of 2018, an increase of 6.0 percent over the previous quarter and 20.5 percent more than the second quarter of 2017. Global sales for the month of June 2018 reached $39.3 billion, an uptick of 1.5 percent over last month’s total of $38.7 billion, and a surge of 20.5 percent compared to the June 2017 total of $32.6 billion. Cumulatively, year-to-date sales during the first half of 2018 were 20.4 percent higher than they were at the same point in 2017. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Halfway through 2018, the global semiconductor industry continues to post impressive sales totals, notching its highest-ever quarterly sales in Q2 and record monthly sales in June,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Global sales have increased year-to-year by more than 20 percent for 15 consecutive months, and sales of every major product category increased year-to-year in June. Sales into the Americas market continue to be strong, with year-to-date totals more than 30 percent higher than at the same point last year.”

Regionally, sales increased compared to June 2017 in China (30.7 percent), the Americas (26.7 percent), Europe (15.9 percent), Japan (14.0 percent), and Asia Pacific/All Other (8.6 percent). Sales also were up compared to last month in China (3.2 percent), Japan (1.3 percent), the Americas (1.2 percent), and Asia Pacific/All Other (0.5 percent), but down slightly in Europe (-0.8 percent).

For comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, consider purchasing the WSTS Subscription Package. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2018 SIA Databook.

Leti, a research institute at CEA Tech, and CMP, a service organization that provides prototyping and low-volume production of ICs and MEMS, today announced the integrated-circuit industry’s first multi-project-wafer (MPW) process for fabricating emerging non-volatile memory OxRAM devices on a 200mm foundry base-wafer platform.

Available on Leti’s 200mm CMOS line, the MPW service provides a comprehensive, very low-cost way to explore techniques designed to achieve miniaturized, high-density components. Including Leti’s Memory Advanced Demonstrator (MAD) future mask set with disruptive OxRAM (oxide-based resistive RAM) technology, Leti’s integrated silicon memory platform is developed for backend memories and non-volatility associated with embedded designs. The new technology platform will be based on HfO2/Ti (titanium-doped hafnium oxide) active layers.

Emerging OxRAM non-volatile memory is one of the promising technologies to be implemented for classical embedded memory applications on advanced nodes like micro-controllers or secure products, as well as for AI accelerators and neuromorphic computing.

Leti’s MAD platform is dedicated to advanced non-volatile memories, bringing both versatility and robustness for material and interface assessment, and allowing in-depth exploration of memory performance from technology and design perspectives.

The full platform’s highlights:

  • 200mm STMicroelectronics HCMOS9A base wafers in 130nm node
  • All routing is made on ST base wafers from M1 to M4 (included)
  • Leti’s OxRAM memory module is fabricated on top
  • One level of interconnect (i.e. M5) plus pads are fabricated in Leti’s cleanroom.

“Leti has developed during the past 20 years deep expertise in non-volatile memory (NVM) devices covering flash evolutive solutions and disruptive technologies,” said Etienne Nowak, head of the Leti’s Advanced Memory Lab. “This MPW capability, combined with our Memory Advanced Demonstrator platform, is based on a broad tool box that enables customized research with our partners, and provides a benchmark between different NVM solutions.”

The MPW service with integrated silicon OxRAM addresses all the key steps of advanced memory development. These include material engineering and analysis, developing critical memory modules, evaluation of memory cells coupled with electrical tests, modeling and innovative design techniques to comply with circuit design opportunities and constraints. This technology offer comes with a design kit, including layout, verification and simulation capabilities. Libraries are provided with a comprehensive list of active and passive electro-optical components. The design kit environment is compatible with all offers through CMP.

Providing access to a non-volatile memory process from Leti is a major achievement in development work at CMP. Since 2003, the organization has participated in national and European projects for developing access to NVM technologies (Mag-SPICE, Calomag, Cilomag, Spin, and Dipmem). With this new offer in place, the CMP users’ community can have the benefits and advantages of using this process through this close collaboration between CMP and Leti.

“CMP has a long experience providing smaller organizations with access to advanced manufacturing technologies, and there is very strong interest in the CMP community in designing and prototyping ICs using this process,” said Jean-Christophe Crébier, director of CMP. “It is an opportunity for many universities, start-ups and SMEs in France, Europe,North America and Asia to take advantage of this new technology and MPW service.”

By Jay Chittooran, Public Policy Manager, SEMI 

Two months after opposing $34 billion in U.S. trade tariffs on behalf of the U.S. semiconductor manufacturing industry, Jonathan Davis, global vice president of industry advocacy at SEMI, this week spoke out against an additional $16 billion duties on Chinese goods. Testifying before the same U.S. interagency panel mulling the merits of the tariffs, Davis called for the removal of 29 tariff lines covering items critical to semiconductor manufacturing including machines and spare parts used to make, wafers, flat panel displays and masks.

In his testimony to the panel, Davis stressed that while SEMI supports stronger protections against the theft of valuable intellectual property (IP), tariffs do little to address U.S. concerns over IP loss. Over the past month, SEMI has also submitted written comments and opposed the tariffs in public testimony. The panel includes representatives from the U.S. Trade Representative (USTR), Departments of Treasury, Commerce, State and Defense, and the Council of Economic Advisers.

Also testifying, Joe Pon, corporate vice president at Applied Materials, explained that the proposed tariffs will harm small and midsized companies and other U.S. business interests. Describing the tariffs as a tax on exports of high-value U.S. goods, Pon said the duties give non-U.S. firms an unfair competitive advantage.

In a parallel push to Davis’s testimony, SEMI, with more than 10 representatives from six member companies, met with 16 congressional offices this week to underscore the damage the tariffs would wreak on the U.S. semiconductor industry. The fallout would include higher operating costs, fewer exports and slower innovation. The tariffs would also curb industry growth and put thousands of high-paying, high-skill jobs at risk. SEMI pressed congressional leaders to reject the tariffs and support a push for congress to re-assert itself on trade policy.

Tariffs to cost U.S. SEMI members more than $500 million

SEMI estimates that the second list of proposed tariffs, covering about $16 billion in Chinese goods, will cost its 400 U.S. members more than $500 million annually in additional duties.

The tariffs on $34 billion in Chinese goods, which took effect July 6, impact products such as test and inspection equipment as well as spare parts that enter the U.S. from China. That round of tariffs will cost SEMI member companies and estimated tens of millions of dollars annually.

SEMI public policy team asks members to review tariff list

Looking ahead, SEMI encourages members to review the newly released $200 billion tariff list, determine any impact to their businesses and share their findings with SEMI’s public policy team.

The U.S. Trade Representative (USTR) has published the exclusion process for products subject to the China 301 tariffs. If your company’s products are subject to tariffs, you can request an exclusion.

In evaluating product exclusion requests, the USTR will consider whether a product is available from a source outside of China, whether the additional duties would cause severe economic harm to the requestor or other U.S. interests, and whether the product is strategically important or related to Chinese industrial programs (such as “Made in China 2025”).

The deadline for submitting product exclusion requests to USTR is October 9, 2018. Approved exclusions will be effective for one year upon approval and retroactive to July 6, 2018.

More information including the process for submitting the product exclusion request can be found here.

Any SEMI members with questions should contact Jay Chittooran, Public Policy Manager at SEMI, at [email protected].

Semiconductor Research Corporation (SRC), today announced the release of $26 million in added research funding for its New Science Team (NST) Joint University Microelectronics Program (JUMP). JUMP will fund 24 additional research projects spanning 14 unique U.S. universities. The new projects will be integrated into JUMP’s six existing research centers. NST will continue to distribute funds over its five-year plan, and industrial sponsors are welcome to join to further accentuate those plans.

The awards have been given to 27 faculty and will enhance the program’s expertise in technical areas such as atomic layer deposition (ALD), novel ferroelectric and spintronic materials and devices, 3D and heterogeneous integration, thermal management solutions, architectures for machine learning and statistical computing, memory abstractions, reconfigurable RF frontends, and mmWave to THz arrays and systems for communications and sensing.

“The goal of the NST project is not only to extend the viability of Moore’s Law economics through 2030, but to also change the research paradigm to one of co-optimization across the design hierarchy stack through multi-disciplinary teams,” said Ken Hansen, President and CEO of Semiconductor Research Corporation. “Our strategic partnerships with industry, academia, and government agencies foster the environment needed to realize the next wave of semiconductor technology innovations.”

“A new wave of fundamental research is required to unlock the ultimate potential of autonomous vehicles, smart cities, and Artificial Intelligence (AI),” said Dr. Michael Mayberry, Senior Vice President and Chief Technology Officer of Intel and the elected Chairman of the NST Governing Council. “Such advances will be fueled by novel and far-reaching improvements in the materials, devices, circuits, architectures, and systems used for computing and communications.”

The JUMP program, a consortium consisting of 11 industrial participants and the Defense Advanced Research Projects Agency (DARPA), is one of two complementary research programs for the NST project—a 5-year, greater than $300 million SRC initiative launched this January. JUMP and its six thematic centers will advance a new wave of fundamental research focused on the high-performance, energy-efficient microelectronics for communications, computing, and storage needs for 2025 and beyond.

Semiconductor revenues are expected to increase 12.8% in 2018 as a result of continued strong memory prices. Units are expected to grow 7.2%. The forecast is based on moderate smartphone sales with a possible return to lower memory prices in the second half of the year. This, among other market issues, will push 2018 wafer demand to over 115 million units in 300mm equivalents according to Semico Research’s newest report, Semico Wafer Demand Update Q2 2018 (MA111-18).

“Semiconductor manufacturers are rolling out new products targeted at artificial intelligence applications. Products require both the most advanced technologies for AI training functions as well as potentially high-volume products for edge devices,” says Joanne Itow, Manager Manufacturing Research for Semico. “On the other side of the technology spectrum, mature processes for sensors and analog products such as biometric sensors, RF and power management continue to be in high demand aided by growth in Internet of Things (IoT) applications along with more ‘smart devices’ that are beginning to build in algorithms that are the precursor to full-fledged AI devices.”

Key findings include:

  • 2018 NAND revenues are expected to increase 18.9%.
  • MCU revenues are expected to exceed $17 billion in 2018.
  • Total Communication MOS Logic wafer demand is expected to increase 4.0% in 2018.
  • Sensor units are expected to grow 20.4% in 2018.

After a quiet period due to the saturation of the mobile handset industry, the GaAs wafer market wakes up.  The technical choice made by Apple creates a real and vast enthusiasm for GaAs solutions. 3D sensing in mobile phone as well as LiDAR’s applications are giving a new breath for GaAs substrates suppliers.

Under its new technology & market report “GaAs Wafer & Epiwafer Market: RF, Photonics, LED and PV applications”, Yole Développement (Yole) announces a 15% CAGR between 2017 and 2023 (in volume), with an impressive 37%, especially for photonics applications (1).

GaAs analysis from Yole proposes a comprehensive overview of the GaAs wafer and epi wafer industry. This report outlines Yole’s understanding of the industrial landscape, its evolution as well as the technical challenges. The analysts are offering a relevant technical description of GaAs wafer and epiwafer growth. Market size and forecasts are also delivered in four big applicative markets: RF, Photonics, LED, and PV. Photonics applications are driving the GaAs wafer and epiwafer market into a new era. Yole’s analysts invite you to discover the latest GaAs technology and market trends.

Figure 1

 As one of the most mature compound semiconductors, GaAs has been ubiquitous as the building block of power amplifiers in every mobile handset. In 2018, GaAs RF business represents more than 50% of the GaAs wafer market. However, market growth has slowed down in the past couple years due to the handset market’s gradual saturation and shrinking die size. “At Yole, we expect GaAs to remain the mainstream technology for sub-6 GHz instead of CMOS, owing to GaAs’ high power and linearity performance as required by carrier aggregation and MIMO technology,” explains Dr. Hong Ling, Technology and Market Analyst at Yole.

Since 2017, GaAs wafer has been particularly notable in photonics applications. When Apple introduced its new iPhone X with a 3D sensing function using GaAs-based lasers, it paved the way for a significant boost in the GaAs photonics market. GaAs wafers market segment for photonics applications should reach US$150 million by 2023.

“GaAs-based ROY and infrared LED applications have also caught our attention”, asserts Dr. Ezgi Dogmus, Technology & Market Analyst at Yole. “We estimate, 2017-2023 CAGR achieves 21% (in units) for the total GaAs LED market, surpassing more than half of GaAs wafer volume by 2023.”

In terms of the wafer and epiwafer businesses, each application requires a different size and quality when determining wafer and epiwafer prices. As a new entrant, photonics applications will impose new specification requirements compared to the well-established RF and LED wafer and epiwafers, creating significant ASP diversity.

From a value chain point of view, the GaAs photonics market’s remarkable growth potential will offer plenty of opportunities for wafer, epiwafer, and MOCVD equipment suppliers, as well as for investors.
GaAs wafer supply: Sumitomo Electric, Freiberger Compound Materials, and AXT, involved in GaAs wafer supply, lead the market with about 95% of market share collectively. And since new laser applications have very high specification requirements for GaAs wafer that are constantly evolving, Yole analysts’ expect the top players to maintain their technical advantage for at least another 3 – 5 years.

Regarding GaAs epiwafer production, Yole’s analysts identified different business models. The GaAs LED market is principally vertically integrated, with very well-established IDMs like Osram, San’an, Epistar, and Changelight. In parallel, GaAs RF businesses outsource significantly from well-established epihouses.

Within the GaAs photonics market, the epi business is still applications-dependent. GaAs datacom market segment is mostly epi-integrated, with dominant IDMs like Finisar, Avago, and II-VI. For 3D sensing in smartphones, epi outsourcing is significant.

In 2017, Apple’s supplier Lumentum used IQE as its VCSEL epi supplier. This resulted in an almost 10x increase in IQE’s stock price. Other leading GaAs epihouses are in qualification or ramping up. Yole expects the photonic epiwafer market to behave similar to the GaAs RF epiwafer market.

By Cherry Sun

Storage and memory chipmaker and SEMI China member Tsinghua Unigroup is gearing up to meet burgeoning product demand with huge investments in its manufacturing plants. But the high-tech enterprise under Tsinghua University is eyeing a much bigger prize – growth of the region’s semiconductor industry and the realization of its ambition to become a more prominent force on the global stage.

Inspired by the national strategy, the Tsinghua Unigroup’s big spends include USD 24 billion in Wuhan (Yangtze Memory Technologies Co., Ltd.,) USD 30 billion in Chengdu, USD 30 billion in Nanjing and USD 100 billion in Chongqing, said Liu Hongyu, senior vice president of Tsinghua Unigroup, speaking at the SEMI China Equipment and Materials Committee meeting last month.

Advanced packaging is another rich vein of opportunity the region is tapping for expansion, said Liu Hongjun, vice president of China Wafer Level CSP Co., Ltd., another SEMI China member attending the event, hosted by NAURA in Beijing. Hongjun sees strong growth for Fan-in, Fan-out, FCBGA, 2.5D and 3DIC, with Fan-out out front.

Liang Sheng, administrative commission director at BDA, a business advisory firm supporting high-technology manufacturing in the E-Town economic development zone, pointed to 5G chips and smart, networked electric automobiles as drivers of the next growth phase of Beijing’s integrated circuit (IC) industry.

Global tailwinds are lifting China’s semiconductor industry and the region’s hopes, with SEMI and major industry analysts raising their semiconductor industry growth projects for 2018 to between 9 percent and 16 percent. According to SEMI’s latest market report, global semiconductor industry manufacturing equipment revenue reached USD 17 billion in the first quarter of 2018, logging all-time highs after jumping 12 percent from the previous quarter and 30 percent year-over-year. Korea was the top-performing region at USD 6.26 billion, followed by China at USD 2.64 billion.

Tighter integration with the rest of the global semiconductor industry is critical to the growth of China’s chip sector, and SEMI China is squarely focused on this assimilation, said SEMI China president Lung Chu. The spearhead of this effort is the SEMI Innovation Investment Platform (SIIP) China, established by SEMI China last year to help grow China’s pool of skilled workers, promote advanced technology, generate industry capital, and expand China’s semiconductor industry while developing stronger connections with chip sectors in other regions.

To strengthen ties with other regions, SIIP China will stage a number of innovation and investment forums this year including Chinese Night at SEMICON West (July 10-12) and a SIIP China Forum in Silicon Valley (July 15). In August, representatives from the Korea chip industry will visit counterparts in China (August), and a China delegation will travel to Japan for meetings (October). SIIP China is also strengthening the region’s links with Germany and Israel as SEMI serves as a crucial bridge between China’s semiconductor sector and the global industry.

At the invitation of Shanghai authorities and the Ministry of Commerce of the People’s Republic of China, SEMI China in November will join the China International Export & Import Exposition in Shanghai, an event that will underscore China’s commitment to the openness and cooperation of its semiconductor industry with the international chip community. As part of the exposition, SEMI will work with the Ministry of Commerce and domestic chip manufacturers to begin development of a special integrated circuit (IC) zone. SEMI China members are welcome to participate.

With workforce development no less vital to the future of China’s semiconductor industry, the Equipment & Materials Committee offered potential solutions to the industry’s talent gap. Measures included targeting university students and engineers with industry lectures and courses in key cities, campus recruiting, talent training that members said they are willing to help SEMI coordinate and stage and, much like the push to better integrate China with the global semiconductor industry, mobilizing member resources around a campaign to polish the image of the industry to make it more attractive to students and young workers.

Storage and memory chipmaker and SEMI China member Tsinghua Unigroup is gearing up to meet burgeoning product demand with huge investments in its manufacturing plants.

Cherry Sun is a marketing manager at SEMI China. 

Originally published on the SEMI blog.