Category Archives: Packaging

EV Group (EVG), a supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology and semiconductor markets, today announced that IHP – Innovations for High Performance Microelectronics (IHP), a German research institute for silicon-based systems, highest-frequency integrated circuits, and technologies for wireless and broadband communication, has purchased an EVG® ComBond® automated high-vacuum wafer bonding system for use in developing next-generation wireless and broadband communication devices.

The EVG ComBond features micron-level wafer-to-wafer alignment accuracy and room-temperature covalent bonding, which enables a wide variety of substrate and interconnect combinations for producing advanced engineered substrates, next-generation MEMS and power devices, stacked solar cells, and high-performance logic and “beyond CMOS” devices. The ability to conduct oxide-free aluminum-to-aluminum (Al-Al) direct bonding at low temperature is a unique capability of the EVG ComBond platform, and is among the new bonding applications that IHP will explore with the system.

The EVG ComBond® features micron-level wafer-to-wafer alignment accuracy and room-temperature covalent bonding, which enables a wide variety of substrate and interconnect combinations.

Covalent bonding enables wafer-level packaging and heterogeneous integration

Heterogeneous integration through wafer-level-packaging (WLP) — where multiple semiconductor components with different design nodes, sizes or materials are combined into a single package at the wafer level — is key to extending the semiconductor technology roadmap. Metal and hybrid wafer bonding are key process technologies for WLP and heterogeneous integration due to their ability to enable ultra-fine pitch interconnections between the stacked devices or components. The continuous drive to higher performance and functionality of these integrated systems requires constant reductions in the dimensions and pitch of the interconnects — which in turn drives the need for tighter wafer bond alignment accuracy.

In addition, for certain WLP applications, Al-Al direct bonding is a promising new method of metal-based bonding due to aluminum’s low cost coupled with its high thermal and electrical conductivities. However, conventional Al-Al thermo-compression bonding requires high temperatures and bond forces to provide reliable bonding interfaces — making it incompatible with heterogeneous integration efforts.

According to Paul Lindner, executive technology director at EV Group, “Combining different materials and device components into a single package has taken on greater importance in adding performance and value to electronic devices. The EVG ComBond facilitates the bonding of nearly ‘anything on anything’ in wafer form. This provides our customers with a powerful solution for researching new material combinations for future semiconductor devices. Its micron-level alignment capability also makes the EVG ComBond uniquely suited for use in high-volume manufacturing of emerging heterogeneous integration device designs.”

EVG’s breakthrough ComBond wafer activation technology and high-vacuum handling and processing allow the formation of covalent bonds at room or low temperature for fabricating engineered substrates and device structures. The EVG ComBond facilitates the bonding of heterogeneous materials with different lattice constants and coefficients of thermal expansion (CTE) as well as the formation of electrically conductive bond interfaces through a unique oxide-removal process. The EVG ComBond maintains a high-vacuum and oxide-free environment throughout the entire bonding process, enabling low-temperature bonding of metals, such as aluminum, that re-oxidize quickly in ambient environments. Void-free and particle-free bond interfaces and excellent bond strength can be achieved for all material combinations.

GLOBALFOUNDRIES and indie Semiconductor today announced the release of a new generation of customized microcontrollers on GF’s 55nm Low Power Extended (55LPx) automotive-qualified platform, which includes embedded non-volatile memory (SuperFlash®) technology. indie Semiconductor’s new Nigel products are based on ARM Cortex-M4 microcontroller cores, capable of supporting advanced functionalities in IoT, medical and automotive markets. indie Semi is already shipping products, manufactured on GF’s 55LPx process, to automotive customers in volume.

indie’s custom microcontrollers integrate in a single device mixed-signal functionality for sensing, processing, controlling and communicating. GF’s 55LPx platform, with SST’s SuperFlash® memory technology, enables the use of high-density memory and high-performance processing combined with mixed-signal functions in indie’s Nigel M4 controllers, delivering a highly integrated automotive solution at 55nm node.

“indie’s Nigel controller is designed to support high performance computing for automotive system architectures,” said Paul Hollingworth, executive vice president of sales and marketing at indie Semiconductor. “As automotive system requirements get more complex, our customers need solutions to perform complex processing while combining multiple functions into a single chip to minimize size and weight. We chose GF’s automotive-qualified 55LPx platform for its combination of density, performance and cost.”

“GF is pleased to be working with indie Semiconductor, a leader in state-of-the-art SoC technology,” said Rajesh Nair, vice president of mainstream offering management at GF. “indie Semiconductor joins our rapidly growing client base for GF’s 55LPx platform, which offers a combination of superior low-power logic, embedded non-volatile memory, extensive IP, and superior reliability for consumer, industrial and automotive grade 1 applications.”

The 55LPx RF-enabled platform provides a fast path-to-product solution that includes silicon-qualified RF IP and Silicon Storage Technology’s (SST) highly reliable embedded SuperFlash® memory. The platform is in volume production on GF’s 300mm line in Singapore. In addition to Nigel, indie Semiconductor is currently developing several products on the technology, many of which are for automotive applications.

Process design kits and an extensive offering of silicon proven IP are available now. For more information on GF’s mainstream CMOS solutions, contact your GF sales representative or go to

By using an x-ray technique available at the National Synchrotron Light Source II (NSLS-II), scientists found that the metal-insulator transition in the correlated material magnetite is a two-step process. The researchers from the University of California Davis published their paper in the journal Physical Review Letters. NSLS-II, a U.S. Department of Energy (DOE) Office of Science user facility located at Brookhaven National Laboratory, has unique features that allow the technique to be applied with stability and control over long periods of time.

“Correlated materials have interesting electronic, magnetic, and structural properties, and we try to understand how those properties change when their temperature is changed or under the application of light pulses, or an electric field” said Roopali Kukreja, a UC Davis professor and the lead author of the paper. One such property is electrical conductivity, which determines whether a material is metallic or an insulator.

If a material is a good conductor of electricity, it is usually metallic, and if it is not, it is then known as an insulator. In the case of magnetite, temperature can change whether the material is a conductor or insulator. For the published study, the researchers’ goal was to see how the magnetite changed from insulator to metallic at the atomic level as it got hotter.

In any material, there is a specific arrangement of electrons within each of its billions of atoms. This ordering of electrons is important because it dictates a material’s properties, for example its conductivity. To understand the metal-insulator transition of magnetite, the researchers needed a way to watch how the arrangement of the electrons in the material changed with the alteration of temperature.

“This electronic arrangement is related to why we believe magnetite becomes an insulator,” said Kukreja. However, studying this arrangement and how it changes under different conditions required the scientists to be able to look at the magnetite at a super-tiny scale.

The technique, known as x-ray photon correlation spectroscopy (XPCS), available at NSLS-II’s Coherent Soft X-ray scattering (CSX) beamline, allowed the researchers to look at how the material changed at the nanoscale–on the order of billionths of a meter.

“CSX is designed for soft x-ray coherent scattering. This means that the beamline exploits our ultrabright, stable and coherent source of x-rays to analyze how the electron’s arrangement changes over time,” explained Andi Barbour, a CSX scientist who is a coauthor on the paper. “The excellent stability allows researchers to investigate tiny variations over hours so that the intrinsic electron behavior in materials can be revealed.”

However, this is not directly visible so XPCS uses a trick to reveal the information.

“The XPCS technique is a coherent scattering method capable of probing dynamics in a condensed matter system. A speckle pattern is generated when a coherent x-ray beam is scattered from a sample, as a fingerprint of its inhomogeneity in real space,” said Wen Hu, a scientist at CSX and co-author of the paper.

Scientists can then apply different conditions to their material and if the speckle pattern changes, it means the electron ordering in the sample is changing. “Essentially, XPCS measures how much time it takes for a speckle’s intensity to become very different from the average intensity, which is known as decorrelation,” said Claudio Mazzoli, the lead beamline scientist at the CSX beamline. “Considering many speckles at once, the ensemble decorrelation time is the signature of the dynamic timescale for a given sample condition.”

The technique revealed that the metal-insulator transition is not a one step process, as was previously thought, but actually happens in two steps.

“What we expected was that things would go faster and faster while warming up. What we saw was that things get faster and faster and then they slow down. So the fast phase is one step and the second step is the slowing down, and that needs to happen before the material becomes metallic,” said Kukreja. The scientists suspect that the slowing down occurs because, during the phase change, the metallic and insulating properties actually exist at the same time in the material.

“This study shows that these nanometer length scales are really important for these materials,” said Kukreja. “We can’t access this information and these experimental parameters anywhere else than at the CSX beamline of NSLS-II.”

MRSI Systems (Mycronic Group) announces new demonstration capability at its sister company, Shenzhen Axxon Automation (Mycronic Group) facility in the Longhua district, Shenzhen, China. MRSI will be offering local demonstrations of its market leading MRSI-HVM3 die bonder and also die bonding applications using customer’s sample materials, by arrangement.

This offers existing and prospective customers in China the opportunity to review the detailed performance capability of the MRSI-HVM3 in a local setting, supported by MRSI’s world-class local application engineers for a quick turn-around of product demonstration and die bonding sample building. The MRSI-HVM3 product family delivers industry-leading speed, future-proof high precision (< 3 micrometers), and superior flexibility for true multi-process, multi-chip, high-volume production. The superior performance is enabled by dual head, dual stage, integrated “on-the-fly” tool changer, ultrafast eutectic stage, and multi-levels of parallel processing optimizations.

The MRSI-HVM3 is designed for specific applications including Chip-on-Carrier (CoC), Chip-on-Submount (CoS), and Chip-on-Baseplate (CoB) assembly using eutectic and/or epoxy stamping die bonding. This also provides great opportunities to discuss with MRSI’s local process experts for solutions within the extended product configurations of HVM3e, HVM3P, H3TO, and H3LD. These configurations are based upon the same design as HVM3 but configured specifically for local top heating, inline conveyor CoB, AOC and gold-box packaging, WDM & EML TO-can packaging and high power laser diode packaging, respectively.

MRSI Systems Launches MRSI-HVM3P for New Applications

MRSI-H3TO Die Bonding Product Family Targeted at the 5G Wireless Network Supply Chain

MRSI-H3LD Die Bonder Targeted at the High Power Diode Laser Market

Semiconductor Research Corporation (SRC), today announced that SK hynix, a global leader in producing semiconductors including DRAM and NAND Flash memory, has signed an agreement to join SRC’s research consortium. SK hynix will participate in multiple SRC research initiatives including; Global Research Collaboration (GRC) and the New Science Team (NST) project.

GRC, a worldwide research program with 17 industrial sponsors is comprised of nine design and process technology disciplines. SK hynix will participate in SRC’s Nanomanufacturing Materials and Processes and Logic & Memory Devices research programs that focus on new device structures, memory alternatives, materials, and processes.

The NST project, a consortium consisting of 12 industrial sponsors and three government agencies is a 5-year, $300 million SRC initiative launched this January. NST consists of two complementary research programs: JUMP (Joint University Microelectronics Program) and nCORE (nanoelectronics Computing Research), which will advance new technologies focused on high- performance, energy-efficient microelectronics for communications, computing and storage needs for 2025 and beyond.

“The entire SRC team joins me in welcoming SK hynix to our distinguished membership of industry leaders from around the world”, said Ken Hansen, President and CEO of SRC. “SK hynix has an impressive history that showcases how ingenuity and innovative thinking can advance technology at a progressive pace. We look forward to a long, successful relationship with SK hynix as we push the limits of imagination and innovation.”

“SK hynix’s fundamental objective to surpass technological boundaries through propelling innovation has brought us to this association with SRC”, said Jinkook Kim, Head of R&D at SK hynix. “We recognize the significant impact that collaborative research programs such as those underway at SRC have in moving our industry forward. Strategic partnerships in research and development will help drive the Fourth Industrial Revolution with AI and autonomous vehicles leading the way.”

Today’s announcement is significant as the top 5 global semiconductor companies are now members of SRC. SK hynix represents the 8th non-U.S. headquartered company to join SRC as it seeks to expand its global presence. Industry sponsors are invited to explore the possibilities at SRC.

Pinnacle Imaging Systems, a developer of high dynamic range (HDR) Image Signal Processors (ISP) and HDR video solutions and ON Semiconductor, a provider of HDR capable image sensors, today jointly announced a new lower cost HDR video surveillance solution capable of capturing high contrast scenes (120 dB) with 1080p and 30 frames per second (fps) output. The new HDR video platform, running on the Xilinx Zynq 7030 SoC, meets the requirements to capture the highlight and shadow details of high contrast scenes, providing the market’s most-expansive dynamic range for surveillance and machine vision applications. The new surveillance solution will be demonstrated during the VISION trade fair (November 6-9, 2018). Camera, AI developers and media interested in seeing live product demonstrations can visit Avnet Silica /Avnet EMG GmbH booth (Hall 1 Stand 1C82) and talk to Pinnacle Imaging representatives.

The Pinnacle Imaging Systems Denali-MC HDR ISP IP Core has been ported to run on Xilinx technology and paired with ON Semiconductor’s AR0239 CMOS image sensor, maximizing the capability of the sensor’s unique three-exposure HDR. The Xilinx hardware-programmable SoC architecture enabled Pinnacle Imaging to develop a new custom sensor interface to support the AR0239 at a fraction of the cost and development time of other SoC or ASIC-based ISPs. Denali-MC’s advanced motion compensation algorithms minimize motion artifacts often associated with multi-exposure HDR capture and Pinnacle’s locally adaptive tone mapping algorithms accurately reproduce color and tonal gradations of high contrast scenes. With Pinnacle Imaging’s proprietary Ultra HDRTM technology, camera placement is no longer a concern. These powerful capabilities also provide camera and AI developers more accurate image data, increasing recognition system accuracy, making the solution ideal for surveillance cameras and machine vision systems, intelligent traffic systems, smart city, autonomous surveillance systems and more.

“As a technology partner, ON Semiconductor has been instrumental in providing the critical support necessary to bring this project to fruition,” said Alfred Zee, CEO of Pinnacle Imaging Systems. “The high dynamic range capabilities of the ON Semiconductor AR0239 sensor, coupled with the performance of the Xilinx Zynq SoC, make an ideal foundation for our Ultra HDR Surveillance Platform. Working closely with the ON Semiconductor team, we’ve been able to achieve the best possible HDR and low light performance from the AR0239 CMOS image sensor.”

Pinnacle Imaging also worked closely with the ON Semiconductor engineers to develop a new sensor interface to support the three-exposure HDR capture mode of the AR0239 CMOS image sensor.

“Pinnacle Imaging’s HDR merge and locally adaptive tone mapping IP achieve the best results from our AR0239 sensor not just in dynamic range but also with respect to accurate color and contrast reproduction,” said Gianluca Colli, VP and General Manager, Consumer Solutions Division of Intelligent Sensing Group at ON Semiconductor. “The flexibility of the Xilinx hardware programmable SoC architecture enabled them to be first-to-market to support our new three-exposure sensor design and serves as an important reference design going forward.”

The Pinnacle Imaging team further optimized its Denali-MC HDR ISP IP to fit into the smaller, cost-optimized Xilinx Zynq 7030 SoC, enabling competitive new markets for smart security and surveillance cameras.

“To be able to offer best in class solutions to our customers we evaluate many ISPs from different vendors. Pinnacle Imaging System’s Denali-MC ISP demonstrated exceptional image quality and HDR tone mapping results and we are excited to have Pinnacle using Xilinx,” said Christoph Fritsch, Senior Director, Industrial IoT Scientific and Medical Business Unit, Xilinx.

SkyWater Technology Foundry, the industry’s most advanced U.S.- based and U.S.-owned Trusted Foundry, today announced that Tom Legere has been appointed as Senior Vice President of Operations. In this role Legere will focus on evolving and enhancing SkyWater’s operations as they drive world-class foundry efficiency and customer support in support of the company’s long-term growth objectives.

“I’m extremely excited to have Tom join us at SkyWater as we accelerate our technology foundry transformation and work to blend best-in-class operational efficiency with a highly differentiated technology portfolio.” said Thomas Sonderman, President, SkyWater Technology Foundry. “Tom brings a unique set of operations leadership experiences across the semiconductor industry and the industry segments we serve. This deep understanding of our customers will be critical as we look to scale our business in 2019 and beyond.”

Legere brings an ideal combination of leadership and operational talent to the SkyWater executive team with extensive industry experience in aerospace and defense, life sciences, security, MEMS, renewable energy and semiconductors. He has led both mature and start-up organizations with extensive implementation experience in Design for Manufacturability (DFM), lean and six sigma principles, supply chain management and customer engagement. Over the last three decades Legere has held senior operational roles at a diverse range of companies, most notably Aurora Semiconductor, Sonavation, eSolar, SVTC, Cypress Semiconductor and Atmel.

Added Legere, “SkyWater brings a truly differentiated proposition to semiconductor industry, blending innovative advanced technology development with the ability to manufacture at scale. I’m excited to join the team as we look to further scale the business with an operationally efficient, customer-first approach.”

Renesas Electronics Corporation (TSE:6723, “Renesas”), a supplier of advanced semiconductor solutions, today announced that it has resolved at the Meeting of Board of Directors held on October 31, 2018 to consolidate its wholly-owned subsidiary Renesas Semiconductor Package & Test Solutions Co, Ltd. (“Renesas Semiconductor Package & Test Solutions”) through an absorption-type merger (“Merger”).Certain disclosure items and details have been omitted due to the Merger being an absorption-type merger of a wholly-owned subsidiary.

Purpose of Merger

With an aim to build a business structure that can generate consistent profitability, Renesas reorganized its domestic manufacturing subsidiaries and business units in April 2014 to simplify and boost the efficiency of its organization and these efforts have steadily delivered tangible results. Nevertheless, Renesas must build a flexible production system based on quick decision-making to be able to respond to the rapid changes in the semiconductor industry. Renesas therefore decided to consolidate Renesas Semiconductor Package & Test Solutions, which is responsible overall for the back-end production business, effective January 1, 2019, to further simplify the organization and decision-making process within the semiconductor production business and enable rapid and consistent decision-making. The Merger will enable Renesas to build a manufacturing structure optimized for responding to changes in the business environment and accelerate further growth.

3D NAND is poised to become the dominant NAND flash technology and promises both enhanced performance and capacity. The Innodisk 3D NAND solid state drive (SSD) series is designed to fulfill the more stringent requirements for ruggedness and endurance seen in the industrial market.

The series uses pure industrial-grade Toshiba 3D TLC NAND flash with a rated P/E cycle number of 3000, ensuring solid longevity, while the fully in-house designed firmware is geared towards industrial usage. The SSDs uses direct write, and avoids using SLC cache which eventually causes an SSD performance drop and bloated P/E cycle numbers. Furthermore, the firmware can be customized to a large degree to suit any specialized requirement.

The series includes two product lines: the DRAM-less 3TE7 and the 3TG6-P with integrated DRAM using a Marvell controller. The product lines are available in capacities up to 1TB and 2TB respectively. They can both be fitted with Innodisk’s trio of power stabilizing technologies iCell™, iPower Guard™ and iData Guard™ to further strengthen data integrity in areas susceptible to power fluctuations.

The 3D NAND SSDs also use End-to-End Power Path Protection that ensures error correction at every data transfer point with the host and within the drives themselves. For more sensitive data, drives that utilize AES encryption are available with in-house designed software for easier deployment and management.

pSemiTM Corporation (formerly Peregrine Semiconductor), a Murata company focused on semiconductor integration, announces volume production of the PE43508 digital step attenuator (DSA). This mmWave product is the world’s first single-chip silicon-on-insulator (SOI) DSA to support the entire 9 kHz to 55 GHz frequency range. Ideal for 5G test and measurement applications, the PE43508 exemplifies pSemi’s high-performance capabilities at mmWave frequencies. The 55 GHz DSA maintains a monotonic response across the entire frequency range and features low insertion loss, low attenuation error and good return loss.

“At the IMS 2018 exhibition in June, we introduced the newest product in the pSemi high-frequency portfolio—a mmWave digital step attenuator,” says Jim Cable, CEO at pSemi. “As we announce volume production, I am excited to share that we are extending the operating frequency range of the PE43508 to 55 GHz. After additional testing, we concluded the original 50 GHz DSA name was selling this impressive product short. The PE43508 delivers exceptional performance beyond 50 GHz, further supporting pSemi’s claim that RF SOI can deliver a high-performing and reliable solution at high frequencies. It also demonstrates pSemi’s superior engineering talents and process capabilities in mmWave design.”

The 55 GHz DSA joins pSemi’s high-frequency portfolio which includes a 40 GHz switch (PE42524) and two 60 GHz switches (PE42525 and PE426525) based on the same UltraCMOS® technology platform. These monolithic ICs are ideal for applications, such as test and measurement and 5G wireless infrastructure, and can be used in more traditional high-frequency applications, such as very small aperture satellite terminals.

Features, Packaging, Pricing and Availability
The PE43508 is a 6-bit, 50-ohm DSA that offers wideband support from 9 kHz to 55 GHz. The PE43508 covers a 31.5 dB attenuation range in 0.5 dB and 1 dB steps, and it is capable of maintaining 0.5 dB and 1 dB monotonicity through 55 GHz. The PE43508 also delivers glitch-safe attenuation state transitions, meaning no increased power spike during a state transition.

The PE43508 has an extended temperature range from −40°C to +105°C, an HBM ESD rating of 1 kV and an easy-to-use digital control interface supporting both serial addressable and parallel programming. The DSA supports 1.8 V control signals and has an optional VSS_EXT bypass mode.

Offered as a flip-chip die, volume-production parts, evaluation kits and samples are available now. For 1K-quantity orders, each PE43508 is $50 USD.