Category Archives: Wafer Level Packaging

By using an x-ray technique available at the National Synchrotron Light Source II (NSLS-II), scientists found that the metal-insulator transition in the correlated material magnetite is a two-step process. The researchers from the University of California Davis published their paper in the journal Physical Review Letters. NSLS-II, a U.S. Department of Energy (DOE) Office of Science user facility located at Brookhaven National Laboratory, has unique features that allow the technique to be applied with stability and control over long periods of time.

“Correlated materials have interesting electronic, magnetic, and structural properties, and we try to understand how those properties change when their temperature is changed or under the application of light pulses, or an electric field” said Roopali Kukreja, a UC Davis professor and the lead author of the paper. One such property is electrical conductivity, which determines whether a material is metallic or an insulator.

If a material is a good conductor of electricity, it is usually metallic, and if it is not, it is then known as an insulator. In the case of magnetite, temperature can change whether the material is a conductor or insulator. For the published study, the researchers’ goal was to see how the magnetite changed from insulator to metallic at the atomic level as it got hotter.

In any material, there is a specific arrangement of electrons within each of its billions of atoms. This ordering of electrons is important because it dictates a material’s properties, for example its conductivity. To understand the metal-insulator transition of magnetite, the researchers needed a way to watch how the arrangement of the electrons in the material changed with the alteration of temperature.

“This electronic arrangement is related to why we believe magnetite becomes an insulator,” said Kukreja. However, studying this arrangement and how it changes under different conditions required the scientists to be able to look at the magnetite at a super-tiny scale.

The technique, known as x-ray photon correlation spectroscopy (XPCS), available at NSLS-II’s Coherent Soft X-ray scattering (CSX) beamline, allowed the researchers to look at how the material changed at the nanoscale–on the order of billionths of a meter.

“CSX is designed for soft x-ray coherent scattering. This means that the beamline exploits our ultrabright, stable and coherent source of x-rays to analyze how the electron’s arrangement changes over time,” explained Andi Barbour, a CSX scientist who is a coauthor on the paper. “The excellent stability allows researchers to investigate tiny variations over hours so that the intrinsic electron behavior in materials can be revealed.”

However, this is not directly visible so XPCS uses a trick to reveal the information.

“The XPCS technique is a coherent scattering method capable of probing dynamics in a condensed matter system. A speckle pattern is generated when a coherent x-ray beam is scattered from a sample, as a fingerprint of its inhomogeneity in real space,” said Wen Hu, a scientist at CSX and co-author of the paper.

Scientists can then apply different conditions to their material and if the speckle pattern changes, it means the electron ordering in the sample is changing. “Essentially, XPCS measures how much time it takes for a speckle’s intensity to become very different from the average intensity, which is known as decorrelation,” said Claudio Mazzoli, the lead beamline scientist at the CSX beamline. “Considering many speckles at once, the ensemble decorrelation time is the signature of the dynamic timescale for a given sample condition.”

The technique revealed that the metal-insulator transition is not a one step process, as was previously thought, but actually happens in two steps.

“What we expected was that things would go faster and faster while warming up. What we saw was that things get faster and faster and then they slow down. So the fast phase is one step and the second step is the slowing down, and that needs to happen before the material becomes metallic,” said Kukreja. The scientists suspect that the slowing down occurs because, during the phase change, the metallic and insulating properties actually exist at the same time in the material.

“This study shows that these nanometer length scales are really important for these materials,” said Kukreja. “We can’t access this information and these experimental parameters anywhere else than at the CSX beamline of NSLS-II.”

MRSI Systems (Mycronic Group) announces new demonstration capability at its sister company, Shenzhen Axxon Automation (Mycronic Group) facility in the Longhua district, Shenzhen, China. MRSI will be offering local demonstrations of its market leading MRSI-HVM3 die bonder and also die bonding applications using customer’s sample materials, by arrangement.

This offers existing and prospective customers in China the opportunity to review the detailed performance capability of the MRSI-HVM3 in a local setting, supported by MRSI’s world-class local application engineers for a quick turn-around of product demonstration and die bonding sample building. The MRSI-HVM3 product family delivers industry-leading speed, future-proof high precision (< 3 micrometers), and superior flexibility for true multi-process, multi-chip, high-volume production. The superior performance is enabled by dual head, dual stage, integrated “on-the-fly” tool changer, ultrafast eutectic stage, and multi-levels of parallel processing optimizations.

The MRSI-HVM3 is designed for specific applications including Chip-on-Carrier (CoC), Chip-on-Submount (CoS), and Chip-on-Baseplate (CoB) assembly using eutectic and/or epoxy stamping die bonding. This also provides great opportunities to discuss with MRSI’s local process experts for solutions within the extended product configurations of HVM3e, HVM3P, H3TO, and H3LD. These configurations are based upon the same design as HVM3 but configured specifically for local top heating, inline conveyor CoB, AOC and gold-box packaging, WDM & EML TO-can packaging and high power laser diode packaging, respectively.

MRSI Systems Launches MRSI-HVM3P for New Applications

MRSI-H3TO Die Bonding Product Family Targeted at the 5G Wireless Network Supply Chain

MRSI-H3LD Die Bonder Targeted at the High Power Diode Laser Market

Semiconductor Research Corporation (SRC), today announced that SK hynix, a global leader in producing semiconductors including DRAM and NAND Flash memory, has signed an agreement to join SRC’s research consortium. SK hynix will participate in multiple SRC research initiatives including; Global Research Collaboration (GRC) and the New Science Team (NST) project.

GRC, a worldwide research program with 17 industrial sponsors is comprised of nine design and process technology disciplines. SK hynix will participate in SRC’s Nanomanufacturing Materials and Processes and Logic & Memory Devices research programs that focus on new device structures, memory alternatives, materials, and processes.

The NST project, a consortium consisting of 12 industrial sponsors and three government agencies is a 5-year, $300 million SRC initiative launched this January. NST consists of two complementary research programs: JUMP (Joint University Microelectronics Program) and nCORE (nanoelectronics Computing Research), which will advance new technologies focused on high- performance, energy-efficient microelectronics for communications, computing and storage needs for 2025 and beyond.

“The entire SRC team joins me in welcoming SK hynix to our distinguished membership of industry leaders from around the world”, said Ken Hansen, President and CEO of SRC. “SK hynix has an impressive history that showcases how ingenuity and innovative thinking can advance technology at a progressive pace. We look forward to a long, successful relationship with SK hynix as we push the limits of imagination and innovation.”

“SK hynix’s fundamental objective to surpass technological boundaries through propelling innovation has brought us to this association with SRC”, said Jinkook Kim, Head of R&D at SK hynix. “We recognize the significant impact that collaborative research programs such as those underway at SRC have in moving our industry forward. Strategic partnerships in research and development will help drive the Fourth Industrial Revolution with AI and autonomous vehicles leading the way.”

Today’s announcement is significant as the top 5 global semiconductor companies are now members of SRC. SK hynix represents the 8th non-U.S. headquartered company to join SRC as it seeks to expand its global presence. Industry sponsors are invited to explore the possibilities at SRC.

SEMI announced today that it has signed a new agreement with the U.S. Air Force Research Laboratory (AFRL) to expand the Nano-Bio Materials Consortium’s (NBMC) work in advancing human monitoring technology innovations for telemedicine and digital health. The program is designed to include $20 million in direct federal funding and $41 million overall in the next six years with additional contributions from state and industry sources. The grant guarantees $7 million of government funds for the first year’s launch of the renewed program.

Drawing on elements of nano-technology and biological research, nano-bio technology is at the core of the expanding field of human performance monitoring and augmentation (HPM/A). Human performance monitoring systems focus on using wearables and table-top devices that monitor blood pressure and glucose, the heart and brain, and other key features of human health to assess physical performance, identify anomalies and help prevent disease.

The expanded NBMC program will focus on research topics such as individual or mission customization, non-intrusive electronics, effects of extreme environments, new material integration (nano-materials, textiles, etc.), and regulatory considerations. Activities will consist of competitively bid research and development (R&D) projects, workshops, conferences, webinars, and extensive gap analysis exercises to determine market needs.

“SEMI is eager to renew NBMC programs and begin working with AFRL, commercial organizations, and universities to identify technology needs, fund research and development, and execute this public/private collaboration,” said Melissa Grupen-Shemansky, Ph.D, NBMC executive director and SEMI CTO. “The NBMC’s continued work will give SEMI members a first-hand understanding of how medical technology innovations will be shaped by advanced electronics and provide the platform for collaboration on R&D projects leading to new products and enabling personalized medicine.”

“Since its inception, NBMC has enabled new industrial and academic communities to engage and team up with AFRL and our mission to deliver new and innovative human monitoring capabilities to the airmen,” said Jeremy W. Ward, Ph.D., NBMC Government Program Manager. “We are eager to continue fostering and growing this community of innovators and to focus R&D on emerging nano-bio materials and technologies for human monitoring to enable solutions for the future monitoring and diagnostic needs of the United States Air Force’s Aeromedical En Route Care mission.”

AFRL awarded the cooperative agreement to SEMI after reviewing competitive responses to a Request for Information followed by a Request for Proposals. Twelve organizations joined SEMI to write the comprehensive proposal: Binghamton University, Brewer Science, Cambridge Display Technology, Dublin City University, GE, Lockheed Martin, Molex, NextFlex, Qualcomm Life Sciences, UCLA Medical School, UES, and the University of Arizona. SEMI and its FlexTech Group have been collaborating with AFRL and its Materials and Manufacturing Directorate to manage NBMC since its launch in 2013.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $122.7 billion during the third quarter of 2018, an increase of 4.1 percent over the previous quarter and 13.8 percent more than the third quarter of 2017. Global sales for the month of September 2018 reached $40.9 billion, an uptick of 2.0 percent over last month’s total and 13.8 percent more than sales from June 2017. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Three-quarters of the way through 2018, the global semiconductor industry is on pace to post its highest-ever annual sales, comfortably topping last year’s record total of $412 billion,” said John Neuffer, president and CEO, Semiconductor Industry Association. “While year-to-year growth has tapered in recent months, September marked the global industry’s highest-ever monthly sales, and Q3 was its top-grossing quarter on record. Year-to-year sales in September were up across every major product category and regional market, with sales into China and the Americas continuing to lead the way.”

Regionally, sales increased compared to September 2017 in China (26.3 percent), the Americas (15.1 percent), Europe (8.8 percent), Japan (7.2 percent), and Asia Pacific/All Other (2.4 percent). Sales were up compared to last month in the Americas (6.0 percent), China (1.8 percent), and Europe (1.2 percent), but down slightly in Asia Pacific/All Other (-0.1 percent) and Japan (-0.6 percent).

For comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, consider purchasing the WSTS Subscription Package. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2018 SIA Databook.

September 2018
Billions
Month-to-Month Sales
Market Last Month Current Month % Change
Americas 8.68 9.20 6.0%
Europe 3.53 3.57 1.2%
Japan 3.39 3.37 -0.6%
China 14.10 14.35 1.8%
Asia Pacific/All Other 10.43 10.42 -0.1%
Total 40.12 40.91 2.0%
Year-to-Year Sales
Market Last Year Current Month % Change
Americas 7.99 9.20 15.1%
Europe 3.28 3.57 8.8%
Japan 3.14 3.37 7.2%
China 11.36 14.35 26.3%
Asia Pacific/All Other 10.18 10.42 2.4%
Total 35.95 40.91 13.8%
Three-Month-Moving Average Sales
Market Apr/May/Jun Jul/Aug/Sept % Change
Americas 8.34 9.20 10.2%
Europe 3.67 3.57 -2.7%
Japan 3.39 3.37 -0.8%
China 13.59 14.35 5.6%
Asia Pacific/All Other 10.32 10.42 1.0%
Total 39.31 40.91 4.1%

“2017 was an unprecedented year for semiconductor industry,” commented Santosh Kumar, Director of Packaging, Assembly and Substrates at Yole Korea, part of Yole Développement (Yole). “The market grow by 21.6% year-to-year to reach record of almost US$412 billion.”

Under this dynamic context, the advanced packaging industry is playing a key role, offering huge opportunities of innovation for the companies involved. According to Yole’s analyst, Santosh Kumar, the advanced packaging market should reach about US$ 39 billion in 2023.

The market research and strategy consulting company Yole, releases this month, its famous report, Status of the Advanced Packaging Industry. Santosh Kumar, with the help of the advanced packaging team at Yole, proposes today an impressive 2018 edition with key market trends, the description of technology evolution, a detailed analysis of the competitive landscape.

For the 1st time, this technology & market report includes a specific section dedicated to the advanced packaging technologies in the new semiconductor era. It offers a short term and long term outlook, with detailed roadmaps. It also details the impact of front-end scaling on advanced packaging. In addition Yole’s team points out the competitive landscape, with disruption and opportunities, detailed supply chain, production splits by manufacturers.

“This report is part of our key advanced packaging technology & market analyses,” asserts Emilie Jolivet, Director, Semiconductor & Software at Yole. “Thanks to this report, we built a strong reputation and became step by step one of the major consulting companies in this area.”

To highlight results of this new advanced packaging report, Yole combines the release of this report with the relevant interview of a key advanced packaging player, Amkor Technology. OSATs clearly play a significant role in the evolution of the industry and Ron Huemoeller, Corporate Vice President, Head of WWRD & Technology Strategy and Christopher A. Chaney, IRC, Vice President, Investor Relations, both at Amkor Technology agreed to share their vision with @Micronews readers: More.

Between 2017 and 2023, the total packaging market’s revenue will grow at 5.2% CAGR . In parallel, over the same period, the advanced packaging market will grow at 7% CAGR. On the other hand, the traditional packaging market will grow at a lower CAGR of 3.3%.

Of the different advanced packaging platforms, 3D TSV and fan-out will grow at rates of 29% and 15%, respectively. Flip-chip, which constitutes the majority of the advanced packaging market, will grow at CAGR of almost 7%. Meanwhile, fan-in WLP will grow at a 7% CAGR from 2017 – 2023, mainly led by mobile.

“Advanced packages will continue their important role of addressing high-end logic and memory in computing and telecom, with further penetration in analog and RF in high-end consumer/mobile segments,” analyses Santosh Kumar from Yole. All of this while eyeing opportunities in the growing automotive and industrial segments.

What’s happened in 2017? According to Yole, two advanced packaging roadmaps are foreseen:
•  Scaling: going to sub10 nm nodes
•  And functional: staying above 20nm nodes.

In parallel, the semiconductor industry is developing products on both of them. Under this favorable context, advanced semiconductor packaging is seen as a way to increase the value of a semiconductor product, adding functionality, maintaining/increasing performance while lowering cost.
Both roadmaps hold more multi-die heterogeneous integration including SiP and higher levels of package customization in the future. A variety of multi-die packaging is developing in both high and low end, for consumer, performance and specialized applications. Heterogeneous integration has created opportunities for both the substrate and WLP based SiP.

2017 also show the merger of 3 competitive areas that will continue to develop: PCB vs. substrate, substrate vs. Fan-Out and Fan-Out vs. 2.5D/3D.

It will be difficult to repeat 2017 performances and Yole’s Semiconductor & Software team went further in its investigation this year again, to propose you today a comprehensive analysis of this evolution. Lot of questions are still pending and the Status of the Advanced Packaging industry will give you a deep understanding of the megatrends impacting this industry, the related business opportunities and technical innovations. A detailed description of this report is available on i-micronews.com, advanced packaging reports section.

North America-based manufacturers of semiconductor equipment posted $2.09 billion in billings worldwide in September 2018 (three-month average basis), according to the September Equipment Market Data Subscription (EMDS) Billings Report published today by SEMI. The billings figure is 6.5 percent lower than the final August 2018 level of $2.37 billion, and is 1.8 percent higher than the September 2017 billings level of $2.05 billion.

“Quarterly global billings of North American equipment suppliers experienced their typical seasonal weakening in the most recent quarter,” said Ajit Manocha, president and CEO of SEMI. “Relative to the third quarter, we expect investment activity to improve for the remainder of the year.”

The SEMI Billings report uses three-month moving averages of worldwide billings for North American-based semiconductor equipment manufacturers. Billings figures are in millions of U.S. dollars.

Billings
(3-mo. avg.)
Year-Over-Year
April 2018
$2,689.9
25.9%
May 2018
$2,702.3
19.0%
June 2018
$2,484.3
8.0%
July 2018
$2,377.9
4.8%
August 2018 (final)
$2,236.8
2.5%
September 2018 (prelim)
$2,091.9
1.8%

Source: SEMI (www.semi.org), October 2018

SEMI publishes a monthly North American Billings report and issues the Worldwide Semiconductor Equipment Market Statistics (WWSEMS) report in collaboration with the Semiconductor Equipment Association of Japan (SEAJ).

By Jay Chittooran

Last week, the Office of the U.S. Trade Representative (USTR), on instruction from President Trump, notified Congress that the administration intends to begin bilateral trade negotiations with Japan, the European Union (EU), and the United Kingdom.

SEMI stands strong for free trade and open markets, and roundly supports efforts to increase market access and tap into more foreign economies, especially economies like Japan and the EU, both of which are central to the semiconductor industry. The semiconductor industry, which enables the $2 trillion electronics market, is built on global commerce. SEMI members rely on a vast network of supply chains that span the globe, bringing together components and tools made all around the world and assembled into a single sub-system that is then integrated into a larger tool used in the chipmaking process.

These free trade agreements will reduce tariffs, which will result in cost savings and productivity gains, and allow SEMI members to expand and grow. But the benefits of modern free trade agreements extend well beyond tariff reduction. Indeed, these trade deals will establish and enhance global trade rules that enable companies to innovate and compete fairly on a level playing field. Trade agreements strengthen certainty and further business continuity.

While the exact nature and negotiation timelines for the talks remain unclear, SEMI will engage the administration, urging it to maintain high standards in these agreements, such as:

  • Maintain strong respect for intellectual property and trade secrets through robust safeguards and significant penalties for violators
  • Remove tariffs and non-tariff barriers on semiconductor products as well as products that depend on semiconductors
  • Simplify and harmonize the customs and trade facilitation processes
  • Combat any attempts of forced technology transfer
  • Prevent use of data localization measures and enable the free flow of cross-border data flows
  • End discriminatory and/or burdensome regulatory practices
  • Ensure standards in all forms are market-oriented
  • Create rules for state-owned enterprises to ensure fair and non-discriminatory treatment of all companies

According to Trade Promotion Authority (TPA), the U.S. law that guides trade votes in Congress, negotiations with each country can only begin 90 days after last week’s notification. During that period, there will be intensive consultation with Congress and stakeholders. This means, at the earliest, talks can start on January 14, 2019. (Bear in mind that discussions with the UK can only begin in earnest once the UK has formally left the European Union on March 29, 2019.)

The Trump administration’s announcement comes after the U.S. imposed or threatened tariffs on imports on all trading partners, including the EU and China. All told, the U.S. has imposed tariffs on more than $300 billion worth of goods. SEMI has weighed in on the detrimental nature of tariffs, arguing that tariffs on China will ultimately do nothing to address the concerns with China’s trade practices. This sledgehammer approach will introduce significant uncertainty, impose greater costs, and potentially lead to a trade war, ultimately undercutting the ability of semiconductor companies to sell overseas, stifling innovation and curbing U.S. technological leadership.

Elsewhere, the Comprehensive and Progressive Agreement for Trans-Pacific Partnership, the multilateral trade deal that links 11 Asia-Pacific economies, is well on its way to taking force. Canada will be taking its final steps to ratify the deal, joining Mexico, Japan and Singapore. The deal, formerly known as the Trans-Pacific Partnership, should take effect by the first half of 2019.

SEMI will continue tracking ongoing trade developments. Any SEMI members with questions should contact Jay Chittooran, Public Policy Manager at SEMI, at [email protected].

IC Insights’ September Update to The McClean Report shows that as a result of a 51% forecasted increase in the China pure-play foundry market this year (Figure 1), China’s total share of the 2018 pure-play foundry market is expected to jump by five percentage points to 19%, exceeding the share held by the rest of the Asia-Pacific region. Overall, China is forecast to be responsible for 90% of the $4.2 billion increase in the total pure-play foundry market in 2018.

Figure 1

With the recent rise of the fabless IC companies in China, the demand for foundry services has also risen in that country.  In total, pure-play foundry sales in China jumped by 26% last year to $7.5 billion, almost triple the 9% increase for the total pure-play foundry market.  Moreover, in 2018, pure-play foundry sales to China are forecast to surge by an amazing 51%, more than 6x the 8% increase expected for the total pure-play foundry market this year.

Although all of the major pure-play foundries are expected to register double-digit sales increases to China this year, the biggest increase by far is forecast to come from pure-play foundry giant TSMC.  Following a 44% jump in 2017, TSMC’s sales into China are forecast to surge by another 79% in 2018 to $6.7 billion. As a result, China is expected to be responsible for essentially all of TSMC’s sales increase this year with China’s share of the company’s sales more than doubling from 9% in 2016 to 19% in 2018.

As shown in Figure 2, much of TSMC’s sales surge into China has come over the past year, with 2Q18 sales into the country being almost double what they were in 3Q17.  A great deal of the company’s recent sales surge into China has been driven by increased demand for custom devices going into the cryptocurrency market.  It turns out that many of the large cryptocurrency fabless design firms are based in China and most of them have been turning to TSMC to produce their advanced chips for these applications.  It should be noted that TSMC includes its cryptocurrency business as part of its High-Performance Computing segment.

Figure 2

While TSMC has enjoyed a great ramp up in sales for its cryptocurrency business over the past year, the company has indicated that a slowdown is expected for this business in the second half of this year.  It appears that the demand for cryptocurrency devices is highly dependent upon the price for the various cryptocurrencies (the most popular of which is Bitcoin).  As a result, the recent plunge in the price for Bitcoins (going from over $15K per Bitcoin in January of this year to less than $7K in September), and other cryptocurrencies as well, is lowering the demand for these ICs.  Moreover, since TSMC realized from the beginning that the cryptocurrency market was going to be volatile, the company did not adjust its capacity plans based on the recent strong cryptocurrency demand and does not incorporate cryptocurrency business assumptions into its forecasts for future long-term growth.

In its Mid-Year Update to the 2018 McClean Report, IC Insights updated its forecast of sales growth for each of the 33 major IC product categories defined by WSTS (Figure 1).  IC Insights now projects that seven product categories will exceed the 16% growth rate expected from the total IC market this year. For the second consecutive year, the DRAM market is forecast to top all IC product segments with 39% growth. Overall, 13 product categories are forecast to experience double-digit growth and 28 total IC product categories are expected to post positive growth this year, down slightly from 29 segments in 2017.

Rising average selling prices for DRAM continued to boost the DRAM market through the first half of the year and into August.  However, IC Insights believes the DRAM ASP (and subsequent market growth) is at or near its peak, as a big rise in DRAM capital expenditures for planned capacity upgrades and expansions is likely put the brakes on steep market growth beginning in 2019.

In second place with 29% growth is the Automotive—Special-Purpose Logic market, which is being lifted by the growing number of onboard electronic systems now found on new cars. Backup cameras, blind-spot (lane-departure) detectors, and other “intelligent” systems are mandated or are being added across all new vehicles—entry level to luxury—and are expected to contribute to the semiconductor content per new car growing to more than $540 per vehicle in 2018.

Wireless Comm—Application-Specific Analog is forecast to grow 23% in 2018, as the world becomes increasingly dependent on the Internet and demand for wireless connectivity continues to rise. Similarly, demand for medical/health electronics systems connectivity using the Internet will help the market for Industrial/Other Application-Specific Analog outpace total IC market growth in 2018.

Among the seven categories showing better than total IC market growth this year, three are forecast to be among the largest of all IC product categories in terms of dollar volume. DRAM (#1 with $101.6 billion in sales), NAND Flash (#2 with $62.6 billion), Computer and Peripherals—Special Purpose Logic (#4 with $27.6 billion) prove that big markets can still achieve exceptional percentage growth.

Figure 1