Category Archives: Online Magazines

By Gandharv Bhatara, product marketing manager for OPC technologies, Mentor Graphics.

For nearly three decades, semiconductor density scaling has been supported by optical lithography. The ability of the exposure tools to provide shorter exposure wavelengths or higher numerical apertures have allowed optical lithography to play such an important role over such an extended time frame. However, due to technical and cost limitations, conventional optical lithography has reached a plateau with a numerical aperture of 1.35 and an exposure wavelength of 193nm.  Although intended for the 32nm technology node, it has been pushed into use for the 20nm technology node.

The continued use of 193nm optical lithography at the 20nm technology node brings with it significant lithography challenges – one of the primary challenges being the ability to provide sufficient process window to pattern the extremely tight pitches. Several innovations in computational lithography have been developed in order to squeeze every possible process margin out of the lithography/patterning process.  In this blog, I will talk about two specific advances that are currently in deployment at 20nm.

The first such innovation is in the area of double patterning. As the pitch shrinks to below 80nm, double patterning becomes a necessary processing/patterning technique. One of the impacts of double patterning on the manufacturing flow is that foundries now have to perform optical proximity correction (OPC) on two separate masks after the layout has been decomposed. There are two approaches available to do this. In the first approach, each mask undergoes a separate OPC process, independent of each other. In the second approach—developed, deployed, and recommended by Mentor Graphics—the two masks are corrected simultaneously. This approach allows critical information, like edge placement error and critical dimension, to be dynamically shared across the two masks. This concurrent double patterning approach (Figure 1) ensures the best quality optimal correction, good stitching across the two masks, and significantly reduces the risk of intra-mask bridging.

 

 

Caption: Concurrent double patterning OPC corrects the two decomposed masks at the same time, sharing information between them.

The second innovation is in the area of technical advances in OPC techniques. As the process margin gets tighter, traditional or conventional OPC may not be sufficient to process difficult-to-print layouts. These layouts are design rule compliant but require a more sophisticated approach in order to make them manufacturable. We developed two approaches to deal with this situation. The first is to perform a localized in-situ optimization. This is a computationally expensive approach, which precludes it from being a full chip technique that improves printing by enhancing the process margin for extremely difficult-to-print patterns (Figure 2).

Caption: Hotspot improvement with in-situ optimization. The simulated contour lines show an improvement in line width after optimization.

In-situ optimization is integrated within the OPC framework so it’s seamless from an integration standpoint.  The second approach is a technique for post-OPC localized printability enhancement. OPC at 20nm typically uses conventional OPC and simple SRAFs. We developed an inverse lithography technique in which the OPC and the SRAFs have greater degrees of freedom and can employ non-intuitive but manufacturable shapes. This is also a computationally expensive approach, but it allows for significant process window improvement for certain critical patterns and allows for the maximum possible lithography entitlement. In this approach, you first run OPC and identify lithography hotspots (difficult-to-print patterns), then apply the localized printability enhancement techniques on the hotspots. All the necessary tooling and the infrastructure to enable this approach for all major foundries are available.

Both these advances in computational lithography are critical enablers for the 20nm technology node. In my next blog, I will talk about extension of these techniques to the 14nm technology node.

Author biography

Gandharv Bhatara is the product marketing manager for OPC technologies at Mentor Graphics.

 

 

January 8, 2012 – Cymer has hired Klaus Schuegraf, former exec in Applied Materials’ semiconductor technology group, to lead its EUV engineering and development programs.

"Klaus’ deep industry experience and proven product development track record add significantly to the strength of our EUV management team, especially important as we transition from 3100 pilot sources to the first 3300 production sources," stated Cymer founder/CEO Bob Akins.

Schuegraf previously was corporate VP and CTO for AMAT’s Silicon Systems Group, responsible for overseeing the company’s semiconductor products technology roadmap. Prior to that was VP of technology at SanDisk where he similarly defined and executed their roadmaps for nonvolatile NAND flash and 3D memory. His prior work in product and technology development includes positions at Cypress Semiconductor, Conexant, and Micron Technology.

January 7, 2012 – As the annual Consumer Electronics Show and hordes of techie enthusiasts descends over Las Vegas this week, one display technology — 4K × 2K — is expected to grab most of the attention, says NPD DisplaySearch.

4K LCD TV shipments will exceed OLED TV shipments through 2015, the firm says, due to both delays by OLED TV makers and increased promotion of 4K LCD TVs. Many Chinese brands are currently launching their own products domestically. OLED TVs should start hitting the market in 2013, but with low volumes and high prices. Note that 4K technology can be applied to OLED TVs as well, and eventually will be introduced for some premium TV segments, the firm points out.

"The global TV market—and North America in particular—are experiencing either slow or negative growth in 2012, and brands are eager to demonstrate new technologies that might create a spike in demand," stated Paul Gagnon, Director for Global TV Research at NPD DisplaySearch. Gagnon added, “OLED TV was prominently featured during the previous two CES shows as the next-generation TV display technology, but the lack of market launch so far has caused several set makers to start emphasizing 4K×2K resolution TVs for premium market segments."

Forecast for OLED TV and 4K LCD TV. (Source: NPD DisplaySearch)

Overall TV demand is expected to fall in 2012, as consumers worldwide grapple with tough economic conditions and TV prices fall at only marginal rates. DisplaySearch estimates LCD TV shipments in 2012 were 205 million, slightly lower than in 2011, while plasma TV shipments sunk 24% to 13 million. The firm sees 2013 initially taking shape as a flat market due to persistent economic uncertainty, but ultimately smoothing into gradual growth as conditions improve and as price declines in the TV market accelerate.


TV shipment growth by technology. (Source: NPD DisplaySearch)

By Dr. Ravi Kanjolia, Chief Technology Officer, SAFC Hitech

We are in an age where chemistry is center stage in the race to advance Moore’s Law and More Than Moore. The continued drive towards smaller feature sizes, increased performance, and lower power consumption requires highly complex architectures using new materials and advanced process technologies. This is primarily true for processes in which physical vapor deposition (PVD) is being displaced by atomic layer deposition (ALD) and chemical vapor deposition (CVD). For example, materials are being developed to form high purity functional layers for applications in logic, memory, and interconnect areas, all within given thermal budgets. In many cases, the CVD process for extremely high-performance applications requires alternative chemistries to fabricate metal and dielectric layers at lower temperatures. All of this begins with the development of base chemistries for high-purity precursors and the R&D support to progress these materials to commercial maturity.  Additionally, the importance of further optimizing cost-of-ownership (COO) and efficiencies of high-purity materials used in semiconductor and LED manufacturing cannot be understated. In low-margin, high-volume product lines you compete on operational efficiency, not necessarily on innovation. This will require close collaboration between materials manufacturers, equipment suppliers, OEMS, IDMs, and foundries; the complexity of the products requires the entire value chain to work together.

While there is some industry-wide sentiment about lackluster CAPEX in 2013, we are positive about growth in the materials market segment. There has already been a noticeable increase in utilization rates across semiconductor manufacturing lines, as ever smaller feature sizes required for advanced CMOS and beyond CMOS technologies fall more on the shoulders of materials providers than equipment manufacturers. Therefore, demand for advanced chemistries is expected to increase even beyond that observed in 2012, and we expect much of that growth to come from Korea and the Chinese-speaking world.

Looking ahead to 2013 and beyond, the future is bright for the semiconductor materials market.  Roadmaps for advanced chemistries that will address the needs of next generation semiconductor manufacturing should reflect that.

The International Data Corporation (IDC) is forecasting that semiconductor revenues worldwide will improve by 4.9% to $319 billion in 2013 and log a compound annual growth rate (CAGR) of 4.1% from 2011-2016, reaching $368 billion in 2016. Bright spots for the semiconductor market include smartphones, tablets, set-top boxes, and automotive electronics, which IDC expects will continue to be key drivers of growth over the coming years.

The group said that 2012 saw a nominal growth of less than 1% reaching $304 billion, due to weakness in PC demand, DRAM and overall memory price deterioration, and semiconductor inventory rationalization. This was coupled with continued global macroeconomic uncertainty from lower global GDP growth, a slowdown in China, the Eurozone debt crisis and recession, Japan’s recession, and ongoing fear of fiscal cliff negotiations’ impact on IT spending by corporations.

IDC expects semiconductor inventories to come into balance with demand in the second quarter of 2013 with growth to resume in the second half of 2013. "We expect lower, but positive global GDP growth in 2013. Semiconductors for smartphones will see healthy revenue growth as appetite for data, multimedia processing, and multitasking will drive high-end smartphone demand in developed countries while an ongoing transition to 3G networks will accelerate smartphone adoption in developing regions. PC demand will continue to remain in a period of transition next year until more technology and design innovation begin to change the course of demand," said Mali Venkatesan, research manager for semiconductors at IDC.

Regionally, Japan and Europe continue to be the two weakest regions. Although GDP growth has slowed in China, India, and Brazil, demand for smartphones, tablets, and automotive electronics remains strong. In the U.S., 4G phones, mobile consumer devices (tablets and e-readers), network infrastructure, and set-top box deployments will drive a healthy semiconductor growth cycle over the next five years.

Other key findings from IDC’s Semiconductor Application Forecaster include:

  • Semiconductor revenues for the Computing industry segment will log year-over-year growth of 1.7% for 2013 and will show a muted CAGR of only 1.7% for the 2011-2016 forecast period. Semiconductor revenues from mobile PC demand will register 5.5% year-over-year growth in 2013, after declining 7.7% in 2012.
  • Semiconductor revenues for the Communications segment will grow 6.5% year over year in 2013 with a five-year CAGR of 5.5%. Semiconductor revenues for 4G phones will experience annual growth of 140.1% in 2013 and a CAGR of 103.4% for 2011-2016.
  • Media tablets, e-Readers, set-top boxes, and blu-ray players, will continue to see above average semiconductor revenue growth. Sales of traditional devices such as DVD players, DVD recorders, DVD players, portable media players, and game consoles will continue to erode. Overall, semiconductor revenues for the Consumer segment will record year-over-year growth of 9.8% in 2013 and a 2011-2016 CAGR of 6.0%.
  • Driven by strong global demand for automobiles and increased semiconductor content (i.e. applications such as in-vehicle infotainment, automobile body electronics, and driver safety systems), semiconductor revenues for the Automotive segment is expected to grow 5.9% (CAGR) for the five-year forecast period.
  • Regionally, Asia/Pacific will continue to grow its share of semiconductor revenues, with year-over-year growth of 5.5% in 2013 and a five-year CAGR of 5.3%.

IDC’s Worldwide Semiconductor Applications Forecaster database serves as the basis for all IDC semiconductor supply-side documents, including market forecasts and consulting projects. This database contains revenue data collected from the top 100 semiconductor companies for 2006-2011 and market history and forecasts for 2006-2016. Revenue for over twelve semiconductor device areas, four geographic regions, six industries, and more than 80 end-device applications are also included in the database.

January 4, 2012 – Global semiconductor sales in November 2012 were the largest monthly tally of the entire year, up about 2% vs. both the prior month and a year ago, according to updated data from the Semiconductor Industry Association (SIA). Total sales were $25.73 billion, marking the first year/year gain of the year.

The real boost in the SIA’s monthly tracking is in North America which shined with 5% monthly growth, and nearly a 10% spike vs. the same month a year ago — its largest year/year increase since April 2011. Other regions seeing a return to growth in November were Asia Pacific (2.7%) and Europe (0.4%), though Japan slipped slightly (-3.4%).

For the three-month moving average — basically fall months vs. summer, as the industry ramped up to meet projected holiday demand — growth in the Americas was even more sparkling at 20%, its largest such increase in the past decade, according to the SIA. Overall 3-mo. growth for all regions was almost 6%.

"The global semiconductor industry navigated difficult macroeconomic conditions in 2012, but encouraging growth led by the Americas in recent months has the industry pointed in the right direction heading into 2013," stated SIA president/CEO Brian Toohey. "To ensure that the industry’s momentum continues, Congress should remove ongoing economic uncertainty by enacting long-term, reliable fiscal policies that boost America’s economic strength and global competitiveness."

Digging into the SIA’s results, Barclays analyst CJ Muse sees "relative outperformance" in NAND (17% M/M and 25% Y/Y), with DSP (-33% Y/Y) seeing the biggest decline. By end markets, communications rose for a third consecutive month (51% Y/Y) and consumer soared 43%, while computing "remained weak" (-15% Y/Y) which suggests "subdued Windows 8 sales, he says. The autos end-market also declined -24%, due mainly to ASP declines, he said.

John Pitzer from Credit Suisse pointed to three-month averages for November, with logic (10%) and flash (5%) doing well, declines by micro (-9%) and DSP (-29%), and ASICs overall performing better (4%) than the broader semi sector (2%).

November’s chip sales numbers might have been good, but 1Q13 still looks like a trough for semi shipments which are "now tracking well below end demand," notes Muse.

For all of 2012, the SIA has endorsed the WSTS’ year-end forecast update which projected a -3% decline, but a bounce back to 4%-5% annual growth in 2013 and 2014.

By Adrienne Downey, Director of Technology Research, Semico Research

In February 2012, Semico forecast 2012 semiconductor capex to reach $59.8 billion.  In December 2012, that forecast was virtually unchanged at $59.9 billion, down 5.6% from 2011.  After two years of double-digit growth (98% in 2010 and 26.2% in 2011), the semiconductor industry needed to back off and regroup.  Most concerning is that the gap between the big spenders and the small has expanded.  The top ten spenders for 2012 made up 81% of the total; this figure is up from the 76% of the total in 2011.  Overall, the top ten combined spent $48.2 billion, which is only 0.3% up from 2011.  Meanwhile, the rest of the companies went from spending $15.3 billion in 2011 to $11.7 billion in 2012, a decline of 24%.  Some of the decline can be attributed to companies like SanDisk, which, along with its partner Toshiba, delayed fab expansion projects until 2013.  Other companies like ST and TI made capacity improvements over the past few years, so spending in 2012 was mainly for maintenance.

In December 2012, most companies have still not announced capex plans for the following year.  This year is no different.  However, a handful of companies have given some indication of what they might spend next year.  For example, TSMC is forecasting 2013 capex to be slightly up compared to 2012.  Most of the other companies that have given a hint of 2013’s capex have indicated flat to down spending compared to 2012.  These companies include GLOBALFOUNDRIES, Avago, Fairchild, Micron, ON Semiconductor, SMIC, Spansion, and STMicroelectronics.  GLOBALFOUNDRIES announced its “Vision 2015” initiative to expand 300mm capacity in Singapore, but no budget was announced for the project. 

That being said, there are several construction projects that may give some indication of spending in 2013.  Samsung is retrofitting its Austin fab to switch from NAND to logic production, with mass production beginning in the second half of next year.  This is a $4 billion project spread out over 2012-2013.  Intel’s D1X and Fab 42 construction will wrap up in 2013; the company will also begin production at 14nm by the end of this year.  Samsung, TSMC, and GLOBALFOUNDRIES are also working on the 14nm and 20/22nm nodes.  UMC has Fab 12A Phases 5 and 6 under construction, with production schedule to begin in 2014.  SanDisk and Toshiba will probably increase their spending to complete the ramp of Fab 5, which they said would be complete by the end of 2013. 

Based on current indications, capital spending would seem to be flat in 2013.  However, Semico predicts healthy revenue growth this year, which may encourage more spending, particularly in the second half of the year.  This may bring total capex for 2013 into the positive range. 

January 3, 2012 – SK Hynix has entered into new eight-year patent licensing agreements with Tessera Inc. and Invensas, making it the first DRAM maker to gain access to both companies’ patents, according to the firms.

The Korean chipmaker will make a one-time payment and pay running royalties Financial terms of the deals were not disclosed, but Tessera said in a statement that its recurring royalty revenues from SK Hynix would increase starting in 2Q13 (because it reports royalties one quarter in arrears) and that the two sides have dismissed an antitrust lawsuit pending in a California state court.

"Multi-year agreements like these benefit our customers with secure pricing and provide us with running royalties that fund new innovations," said Robert A. Young, president/CEO of parent company Tessera Technologies Inc. He added that SK Hynix now has access to more than 1200 issued patents combined from the portfolios of Tessera Inc. (the subsidiary) and Invensas.

By Mark Thirsk, Managing Partner, Linx Consulting LLC.

Past contributors have often noted a correlation between the semiconductor market growth and global GDP.  With careful correction this correlation can be used to forecast future IC market trends, although the process is not straightforward.

The consensus forecast for global GDP 2013 is now below trend at 2.6%, only a slight improvement over 2012, and less than the 3.2% seen in 2011.  The US approach to solving fiscal Cliff is an excellent example of the difficulty governments are having in developing strategies to address unprecedented economic problems, although political solutions, however imperfect, helps to stabilize expectations, and solidify financial markets.  In Europe, mild recession will continue through most of 2013, and Asia (excepting Japan) will likely show the best overall growth rates in the coming 12 months as measures to cool the Chinese economy are relaxed.

These extraordinary conditions in the global economy lead to wide variations in economic forecasts with an upside as high as 3.5 % growth, and a pessimistic case as low as 1%.  Against this backdrop, meaningful macroeconomic demand-side forecasts are difficult to develop.

Linx has worked with Hilltop Consulting to implement a proven macroeconomic forecasting tool that takes into account the global economic shocks and volatility to develop an Silicon area forecast for the global semiconductor industry.  Predictions for 2013 show several notable trends: 

  1. Overall Si area growth for 2013 should average approximately 6%. 
  2. The first quarter and the second half are likely to show slower growth than the second quarter.  This trend is part of a seasonality which has been swamped by economic volatility over the last 3 to 4 years. 
  3. The modest growth forecast for 2013 is predominantly demand driven since inventory levels have not shown a significant spike in 2012.

The overall picture of Si area growth breaks down into the expected performance of device segments and technology nodes.  Despite the shift to consumer electronics and mobile platforms we expect growth to be concentrated in CMOS products at ≤ 65nm with a continuing slowing of unit growth and analog and discrete devices.  Strongest growth will remain with flash memories, and advanced foundry logic devices targeted at tablets and phones.

In contrast to advanced memory and logic processing, approximately 56% of the Si production continues at design dimensions in excess of 90 nm on wafer sizes of 200 mm or smaller.  This market segment is extremely sensitive to economic volatility and has declined somewhat in the last four years.  Manufacturers of these devices are often capital constrained and extremely cost sensitive, leading to little process innovation and limited capacity expansion.

On a technology basis, despite tight capital budgets, the introduction of devices at 28 and 22 nm half pitches continues apace, and significant process challenges are driving increased complexity and resultant challenges in patterning, cleaning, and deposition throughout the device manufacturing process.  2012 is forecast to have produced more silicon area at 32 nm than any other node, and the introduction of low 20 nm half pitches and flash has continued to grow startling rates.  Significant challenges also exist in the in the advanced device markets due to geometric constraints and physical limits in scaling planar devices.  At a time when lithography is unable to scale continuing device shrinks results in added complexity in critical patterning steps and demands the addition of multiple lithography steps to achieve a single pattern level.

Manufacturers of logic and memory alike are working to develop substitute technologies for planar transistors, MIM capacitors and floating gate structures.  The broad introduction of metal gate finFETs, new types of storage cells, and three-dimensional memory stacks is still several years away, and this is driving interest in the adoption of three-dimensional packaging technologies such as through silicon vias to continue delivering increasing functionality in a package.

Despite the headwinds of increasing layer counts to compensate for the lack of high resolution lithography, and the need for new deposition technologies needed for novel processes and device architectures, we expect a small group of wafer makers to continue to chase these advanced technologies, while also pushing to implement 450 mm wafers.  Few of these technologies will see implementation in 2013, but they will be the focus of headlines as new breakthroughs are made, while the semiconductor industry continues its trend of remarkable success.

 

By Jean-Christophe Eloy, President & CEO, Yole Développement

Sensors and optoelectronics will continue to grow faster than the mainstream semiconductor market. We currently expect 9%-13% growth in these sectors in 2013, accompanied by rapid changes in technology and  market structures as well, as the specialty markets become increasingly mature. 

MEMS and image sensors will continue to ride the smart phone and tablet wave, while declining LED bulb prices will start to push the technology towards wider adoption. Demand for power electronics will pick up after its 2012 plunge.

We expect the MEMS market to continue its steady double digit growth with an ~9-11% increase to around $12 billion in 2013, driven of course by increasing adoption of the sensors in the expanding smart phone and tablet business. We expect the penetration of accelerometers into mobile phones and tablets will approach 65% by the end of 2013, with magnetometers nearing 54% and gyroscopes flirting with 34%. Growth will begin to transition from discrete sensors to combinations of two sensors in one package with a single ASIC to reduce costs, and to increasingly sophisticated software solutions that translate the sensor data into usable functions.  These trends are driving changes in the competitive landscape, with a crowd of new players targeting the key 3-axis gyroscope market, others introducing other new MEMS applications for the mobile market, chipset and software suppliers taking over the sensor management tasks, and a diversification of business models as the industry evolves. Healthy increases in the smart phone applications—and in other consumer products increasingly enabled by these low cost, easy to integrate product—will be somewhat countered by slower growth in mature TV and printer applications.

The smart phone and tablet market is also driving healthy growth in CMOS image sensors.  We expect ~11-13% growth to $7.5B in 2013.  Backside illumination and 3D wafer-level packaging technologies will continue to rapidly gain market share, and new stacked sensor architectures will likely follow soon.  These technological changes are bringing changing business models as well, as IDMs who are not vertically integrated up through the systems level will increasingly turn to outsourcing production to foundries. 

In the high brightness LED market, the TV backlighting market has slowed and the solid state lighting market has yet to really take off, but we still expect respectable ~10% growth for packaged LED devices in 2013, as rapidly improving technology, and an excess supply of devices from the backlight side, will drive down LED bulb prices to start to drive wider adoption. We expect LED penetration of the lighting market across all segments  (residential, industrial, outdoor and commercial) to reach about 8% of all lamps sold in 2013, to occupy about 2% of all lamp sockets. As in most of these non CMOS chip sectors, however, demand for more die doesn’t necessarily translate into demand for more manufacturing equipment.  We expect sales of front end equipment in 2013 to recover about 30% from its 2012 dropoff, but not back to peak levels of the boom years. Companies will start adding capacity again in the second half of the year for the ramp up in wafer area needed for the volume lighting market.  But some of that capacity will come from stronger producers acquiring struggling suppliers and their underutilized equipment.

We expect recovering demand for discrete power devices to drive ~10%  growth in power electronics to some $20 billion in 2013, after what we estimate was a ~20% drop  in 2012 as China cut back on its big investments in railroad, solar power and wind power systems.  Going forward, green tech demand from hybrid/electric vehicles, wind and PV systems should again help spur sales in 2014-2015, and then support stable 6%-7% long term growth after 2016.