Tag Archives: Top Story Right

With discussion increasingly focused on autonomous vehicles and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, demand is rising for electronic systems to support new, intelligent cars. Meanwhile, older, existing technology on high-end vehicles continues to migrate down to mid-range and low-end cars and technology-based aftermarket products are gaining momentum.

Given all the new electronic systems that have been added to automobiles in recent years, one might reason that this segment accounts for a large share of the total global electronic system sales. That’s simply not the case. On a worldwide basis, automotive electronics represented only 8.9% of the $1.42 trillion total 2015 worldwide electronic systems market, a slight increase from 8.6% in 2014. Automotive’s share of global electronic system production has increased only incrementally and is forecast to show only slight gains through 2019, when automotive electronics are forecast to account for 9.4% of global electronic systems sales. Despite the many new electronics systems that are being added in new vehicles, IC Insights believes pricing pressures on automotive ICs and electronic systems will prevent the automotive end-use application from accounting for much more than its current share of total electronic systems sales through 2019.

Figure 1 shows the quarterly market trends for the three largest automotive IC markets—Analog, MCU, and special-purpose logic. As shown, falling average selling prices in these three segments have largely offset unit growth over the past few years. In 2015, falling ASPs led to a 3% decline in the automotive IC market to $20.5 billion. Based on IC Insights’ forecast, the automotive IC market will return to growth in 2016, increasing 4.9% to $21.5 billion, as currency exchange rates stabilize and additional electronic systems (such as backup cameras) become mandatory equipment on new cars sold in the U.S. The automotive IC market is now forecast to reach $28.0 billion in 2019, which represents average annual growth of 5.8% from $21.1 billion in 2014. Based on IC Insights’ forecast, the 2019 automotive IC market will be 2.6x the size it was in 2009 when the market was only $10.6 billion—its low-point during the great recession.

Figure 1

Figure 1

Analog ICs and MCUs together accounted for 74% of the estimated $20.5 billion automotive IC market in 2015. Demand for automotive MCUs continues to expand as more vehicles are designed with embedded computer systems to address safety and efficiency issues demanded from legislators and consumers. As cars get smarter and more connected, demand is growing for memory and storage to support a wide array of applications, particularly those that require quick boot up times as soon as the driver turns the ignition key. DRAM and flash memory, which receive considerable attention in computing, consumer, and communication applications, are currently much less visible in the automotive IC market but memory ICs are expected to account for 12.0% of the 2019 automotive IC market, an increase from 7.8% in 2015.

By Lara Chamness, Industry Research and Statistics, SEMI

North America has a long and rich history of semiconductor manufacturing and innovation. As home to device manufacturers such as Intel, Texas Instruments, Micron, GLOBALFOUNDRIES, NXP (Freescale), Fairchild, Avago, Qorvo, Microchip, ON Semiconductor, significant operations of Samsung, and leading fabless companies such as Qualcomm, Broadcom, NVIDIA, AMD, Apple, Marvell, and Xilinx, North America continues to play an important role in advanced semiconductor manufacturing and in device and system design. SEMI’s Fab Forecast shows that North America accounts for 14 percent of Worldwide Installed Fab capacity (excluding discretes).

Source: SEMI (www.semi.org)

In terms of revenues, IC Insights recently announced, that companies headquartered in the United States continue to capture the bulk of IDM and Fabless IC Sales.

  • U.S. companies account for 51 percent of IDM Companies IC Sales in 2015
  • U.S. companies account for 62 percent of Fabless Companies IC Sales in 2015

Due to the presence of leading device manufacturers, North America represents a significant portion of the new equipment market, annual spending on average over the past five years has been in excess of $7 billion. Spending for new equipment is expected to be approach $6 billion this year.

Source: SEMI/SEAJ; Forecast, SEMI (www.semi.org)

With such a large installed fab base, North America also claims a significant portion of the wafer fab materials market.  Comparing global fab capacity to global wafer fab market share, North America represents 18 percent of the Wafer Fab Materials market compared to 14 percent of global fab capacity. This is due to the advanced device manufacturing that occurs in the region, which requires more process steps and advanced materials which fetch higher average selling prices.

Regional Wafer Fab Materials Markets

Source: SEMI (www.semi.org)

The equipment market is expected to increase about 10 percent in North America this year due to sizable investments by GLOBALFOUNDRIES, Intel and Samsung, while the Wafer Fab Materials Market is expected to remain flat this year relative to last year. As companies like Apple, Intel, Qualcomm continue to innovate, North America will remain an essential force in both device and systems design and in semiconductor manufacturing.

Plan to attend the SEMI/Gartner Market Symposium at SEMICON West 2016 on Monday, July 11, for an update on the semiconductor market outlook.

Active matrix organic light-emitting diode (AMOLED) displays are rising fast, thanks to lowering costs, wider use in end-market consumer electronics devices and the ramp-up of new manufacturing capacities.  While liquid crystal display (LCD) technology is still the dominant technology in the display industry, AMOLED display shipments will grow 40 percent, year over year, to reach 395 million units in 2016. AMOLED display revenue is expected to increase by 25 percent, to reach $15 billion in 2016, according to IHS Inc. (NYSE: IHS), a global source of critical information and insight.

“AMOLED is becoming the shiniest spot in the flat-panel display industry,” said David Hsieh, senior director, displays at IHS Technology. “AMOLED has a simpler structure than LCD, as well as a thinner and lighter form factor, better color saturation, greater contrast ratio, faster response time and easier integration with touch functions. In addition, AMOLED is formed on a polymer base substrate, allowing it to be flexible, bendable and even foldable. The organic electro-luminescence materials can be formed using a soluble printing process, which means AMOLED has the potential to be produced at a very low cost.”

Many of the obstacles to AMOLED development, such as production inefficiencies, yield-rate management issues, higher investment costs and a short lifetime for light emitting materials, were also resolved in 2015, improving the production. OLED has started to find its niche in many applications, especially in smartphones, smartwatches, automotive displays, home appliances, near-eye virtual reality (VR) devices and televisions. “Improvements in production and lowering costs are attracting more device makers to install AMOLED displays in their products,” Hsieh said.

For example, Samsung Electronics has been using AMOLED as an important differentiator in its proprietary Galaxy smartphones. Since the second half of 2015, more smartphone brands — especially manufacturers in China — have installed AMOLED displays in their devices, such as Google, Microsoft, Meizhu, Blackberry, Huawei, HTC, ZTE, Oppo and Coolpad. The 5-inch high-definition (HD), 5.5-inch full high definition (FHD), 5.5-inch and 6-inch wide quad high definition (WQHD) will be the major AMOLED smartphone display driving forces in 2016.

AMOLED penetration in smartphone displays is expected to rise from 17 percent in 2015 to 21 percent this year. Apple is reported to be considering AMOLED as a display source for its new iPhone in late 2017, replacing the current low-temperature polysilicon (LTPS) thin-film transistor (TFT) LCD display. “If Apple actually starts using AMOLED displays, the transition will be viewed as a milestone in flexible form factor development,” Hsieh said.

AMOLED_Chart_LG_IHS

According to the IHS OLED Display Market Tracker, OLED TV shipments will further expand in 2016, thanks to process improvements and production efficiency enhancements, as well as improvements in organic light emitting materials layers. In fact, LG Display is already expanding its AMOLED TV panels to 65 inches with ultra-high definition (UHD), which will bring AMOLED into the high-end TV segment. IHS expects OLED TV display shipments will grow 125 percent, year over year, to reach 900,000 units in 2016.

Tablet and notebook PCs is another important venue for AMOLED, for its slim and light form factor, and high resolution. We expect to see 8-inch and 9.7-inch quad extended graphics array (QXGA) displays and 12-inch AMOLED panels begin to emerge in the mobile PC arena this year. Many PC brands are planning to use AMOLED in notebook PCs and two-in-one convertible mobile PC models beginning in 2016. AMOLED mobile PC panels are expected to grow 63 percent year over year, to reach to 8.6 million units in 2016.

AMOLED is also leading other display technologies when it comes to response time and power consumption, which is extremely useful in near-eye display devices, including VR and augmented reality (AR) devices. AMOLED display and OLED on silicon projection displays, which are both used in near-eye displays are forecast to grow 119 percent, year over year, to reach 3.6 million units in 2016.

“The central information display in cars will also feature AMOLED within the next couple of years,” Hsieh said, “AMOLED displays provide features that are useful in automotive display applications, because of their high contrast ratio, flexible and curved form factors as well as better color gamut. Aside from these applications, AMOLED also presents great opportunities for industrial applications, home appliances, digital signage and broadcasting.”

AMOLED, as a rapidly emerging display technology, will be a key theme in the coming SID Display Week 2016 Business Track, which is co-organized by IHS and the Society for Information Display. For more information, visit SID Display Week.

IC Insights’ April Update to the 2016 McClean Report, to be released later this week, includes IC Insights’ final 2015 top 50 company rankings for total semiconductor and IC sales as well as rankings of the leading suppliers of DRAM, flash memory, MPUs, IC foundry services, etc.

Figure 1 ranks the top 13 IC foundries (pure-play and IDM) by foundry sales in 2015.

Apple TSMC sales

TSMC, by far, was the leader with $26.4 billion in sales last year.  In fact, TSMC’s 2015 sales were over 5x that of second-ranked GlobalFoundries (even with the addition of IBM’s chip business in the second half of 2015) and almost 12x the sales of the fifth-ranked China-based foundry SMIC.  As shown, there are only two IDM foundries in the ranking—Samsung and Fujitsu—after IBM and Magnachip fell from the list in 2015.  Despite losing a significant amount of Apple’s business, Samsung easily remained the largest IDM foundry last year, with more than 3x the sales of Fujitsu, the second-largest IDM foundry.

Illustrating the dramatic effect of exchange rate fluctuations on the IC sales numbers, TSMC’s 2015 growth rate was about half (6%) of what it was in its local currency (11%).  Thus, while the company met its stated goal of 10% or better growth in 2015 in NT dollars (840.5 billion), its growth rate in U.S. dollars was only 6%.

Driving home just how important Apple’s foundry business is, TSMC’s foundry sales increased by $1,464 million last year while its sales to Apple jumped by $1,990 million, representing more than 100% of TSMC’s total foundry sales increase in 2015.  As a result, without Apple, TSMC’s foundry sales would have declined by 2% last year, eight points less than the 6% increase it logged when including Apple.

Second ranked GlobalFoundries took over IBM’s IC business in early July of 2015.  It should be noted that besides $515 million in IDM foundry sales IBM made in 2014, the company also had about $1.0 billion of internal transfer IC revenue that year.  As a result, GlobalFoundries’ quarterly sales in 4Q15 were about $1.4 billion, an annual run-rate of $5.6 billion, about 12% greater than the company’s 2015 sales of $5.0 billion. However, without the addition of IBM’s sales in the second half of last year, GlobalFoundries’ sales would have declined by 2% in 2015.

Sales from the top 13 foundries’ shown in Figure 1 were $46.7 billion and represented 93% of the $50.3 billion in total foundry sales in 2015.  This share was two points higher than the 91% share the top 13 represented two years earlier in 2013.  With the barriers to entry (e.g., fab costs, access to leading edge technology, etc.) into the foundry business being so high and rising, IC Insights expects this “top 13” marketshare figure to continue to slowly rise in the future.

ams AG (SIX: AMS) today took a step forward in its long-term strategy of increasing manufacturing capacity for its high-performance sensors and sensor solution integrated circuits (ICs), holding a groundbreaking event at the site of its new wafer fabrication plant in Utica, New York.

An artist’s rendering of a semiconductor fab at the Marcy site.

The ceremony featured New York Lieutenant Governor Kathy Hochul, Utica Mayor Robert Palmieri, local dignitaries and senior executives from ams and SUNY Polytechnic Institute.

ams sensor solutions are relied upon globally by manufacturers of smartphones, tablets and other communications devices, automakers, audio and medical equipment manufacturers and others. ams sensors are used in hundreds of millions of devices to recognize light, color, gestures, images, motion, position, environmental and medical parameters and more.

With construction work now underway on the new fab, ams remains on track to reach its target for the first batches of wafers made at the plant in the first half of 2018.

Production capacity at the Utica fab will supplement ams’ existing 180nm and 350nm CMOS and SiGe fab at its headquarters near Graz, Austria. Adding this additional volume to its in-house chip manufacturing facilities positions ams to meet the forecasted growth in demand for its high-performance sensor solution ICs.

New York Governor Andrew Cuomo has made public-private partnerships an important part of this  Nano Utica initiative, which exceeds 4,000 projected jobs over the next decade. Designed to replicate the dramatic success of SUNY Poly’s Nanotech Megaplex in Albany, NANO Utica further cements New York’s international recognition as the preeminent hub for 21st century nanotechnology innovation, education, and economic development.

The Governor says the addition of ams and others to Nano Utica is creating an economic revolution around nano-technology in the Mohawk Valley region, and that the economy there is “gathering momentum unlike ever before.”

The new fab, which is being built to ams’s specifications and which ams will operate under a 20-year lease, is expected initially to offer capacity of at least 150,000 200mm-wafer equivalents per year. Planned expansion thereafter will eventually see the plant operating at a capacity of more than 450,000 200mm-wafer equivalents per year.

The new fab is located close to a campus of SUNY Polytechnic Institute in New York’s Tech Valley, the largest region focused on technology manufacturing in the US and home to other nanotechnology and semiconductor companies. The fab will be capable of producing wafers at the 130nm node, and more advanced nodes in the future.

Today’s celebratory event at the new fab site also marked the success of the partnership behind the project to build, equip and operate another high-technology manufacturing facility in the State of New York. This partnership has benefited from a wide-ranging collaboration between public sector bodies such as the New York governor’s office, the City of Utica and the State University of New York, and various private sector institutions including ams, the fab’s sole leaseholder.

Approximately 250 people gathered at the construction site to see Lt. Governor Hochul and ams CEO Alexander Everke break ground for the foundation of what will be, on completion in 2018, one of the world’s largest analog wafer fabs.

“Building this new wafer fab enables ams to achieve its plans for growth and to meet the increasing demand for sensor solutions produced at advanced manufacturing nodes. Our decision to locate the facility in New York was motivated by the availability of a highly skilled workforce, the proximity to prestigious educational and research institutions, and the favorable business environment, backed by public and private partners,” Mr. Everke said. “What we will create together in Utica will be the most productive ‘More than Moore’ fab worldwide,” he added.

By David W. Price, Douglas G. Sutherland and Kara L. Sherman

Author’s Note: The Process Watch series explores key concepts about process control—defect inspection and metrology—for the semiconductor industry. Following the previous installments, which explored the 10 fundamental truths of process control, this new series of articles highlights additional trends in process control, including successful implementation strategies and the benefits for IC manufacturing. For this article, we are pleased to include insights from our guest author, Kara Sherman.

As we celebrate Earth Day 2016, we commend the efforts of companies who have found ways to reduce their environmental impact. In the semiconductor industry, fabs have been building Leadership in Energy and Environmental Design (LEED)-certified buildings [1] as part of new fab construction and are working with suppliers to directly reduce the resources used in fabs on a daily basis.

As IC manufacturers look for more creative ways to reduce environmental impact, they are turning to advanced process control solutions to reduce scrap and rework, thereby reducing fab resource consumption. Specifically, fabs are upgrading process control solutions to be more capable and adding additional process control steps; both actions reduce scrap and net resource consumption per good die out (Figure 1).

Figure 1. The basic equation for improving a fab’s environmental performance includes reducing resource use and increasing yield. Capable process control solutions help fabs do both by identifying process issues early thereby reducing scrap and rework.

Figure 1. The basic equation for improving a fab’s environmental performance includes reducing resource use and increasing yield. Capable process control solutions help fabs do both by identifying process issues early thereby reducing scrap and rework.

Improved process control performance

Process control is used to identify manufacturing excursions, providing the data necessary for IC engineers to make production wafer dispositioning decisions and to take the corrective actions required to fix process issues.

For example, if after-develop inspection (ADI) data indicate a high number of bridging defects on patterned wafers following a lithography patterning step, the lithography engineer can take several corrective actions. In addition to sending the affected wafers back through the litho cell for rework, the engineer will stop production through the litho cell to fix the underlying process issue causing the yield-critical bridging defects. This quick corrective action limits the amount of material impacted and potentially scrapped.

To be effective, however, the quality of the process control measurement is critical. If an inspection or metrology tool has a lower capture rate or higher total measurement uncertainty (TMU), it can erroneously flag an excursion (false alarm), sending wafers for unnecessary rework, causing additional consumption of energy and chemicals and production of additional waste. Alternatively, if the measurement fails to identify a true process excursion, the yield of the product is negatively impacted and more dies are scrapped—again, resulting in less desirable environmental performance.

The example shown in Figure 2 examines the environmental impact of the process control data produced by two different metrology tools in the lithography cell. By implementing a higher quality metrology tool, the quality of the process control data is improved and the lithography engineers are able to make better process decisions resulting in a 0.1 percent reduction in unnecessary rework in the litho cell. This reduced rework results in a savings of approximately 0.5 million kWh of power and 2.4 million liters of water for a 100k WSPM fab—and a proportional percentage reduction in the amount of resist and clean chemicals consumed.

Figure 2. Higher quality process control tools produce better process control data within the lithography cell, enabling a 0.1 percent reduction in unnecessary rework that results in better environmental performance.

Figure 2. Higher quality process control tools produce better process control data within the lithography cell, enabling a 0.1 percent reduction in unnecessary rework that results in better environmental performance.

As a result of obtaining increased yield and reduced scrap, many fabs have upgraded the capability of their process control systems. To drive further improvements in environmental performance, fabs can benefit from utilizing the data generated by these capable process control systems in new ways.

Traditionally, the data generated by metrology systems have been utilized in feedback loops. For example, advanced overlay metrology systems identify patterning errors and feed information back to the lithography module and scanner to improve the patterning of future lots. These feedback loops have been developed and optimized for many design nodes. However, it can also be useful to feed forward (Figure 3) the metrology data to one or more of the upcoming processing steps [2]. By adjusting the processing system to account for known variations of an upcoming lot, errors that could result in wafer scrap are reduced.

For example, patterned wafer geometry measurement systems can measure wafer shape after processes such as etch and CMP and the resulting data can be fed back to help improve these processes. But the resulting wafer shape data can also be fed forward to the scanner to improve patterning [3-5]. Likewise, reticle registration metrology data can be used to monitor the outgoing quality of reticles from the mask shop, but it can also be fed forward to the scanner to help reduce reticle-related sources of patterning errors. Utilizing an intelligent combination of feedforward and feedback control loops, in conjunction with fab-wide, comprehensive metrology measurements, can help fabs reduce variation and ultimately obtain better processing results, helping reduce rework and scrap.

Fig 3

Figure 3. Multiple data loops to help optimize fab-wide processes. Existing feedback loops (blue) have existed for several design nodes and detect and compensate for process variations. New, optimized feedback loops (green) provide earlier detection of process changes. Innovative feed forward loops (orange) utilize metrology systems to measure variations at the source, then feed that data forward to subsequent process steps.

Earlier excursion detection reduces waste

Fabs are also reducing process excursions by adding process control steps. Figure 4 shows two examples of deploying an inspection tool in a production fab. In the first case (left), inspection points are set such that a lot is inspected at the beginning and end of a module, with four process steps in between. If a process excursion that results in yield loss occurs immediately after the first inspection, the wafers will undergo multiple processing steps, and many lots will be mis-processed before the excursion is detected. In the second case (right), inspection points are set with just two process steps in between. The process excursion occurring after the first inspection point is detected two days sooner, resulting in much faster time-to-corrective action and significantly less yield loss and material wasted.

Furthermore, in Case 1, the process tools at four process steps must be taken off-line; in Case 2, only half as many process tools must be taken offline. This two-day delta in detection of a process excursion in a 100k WSPM fab with a 10 percent yield impact results in a savings of approximately 0.3 million kWh of power, 3.7K liters of water and 3500 kg of waste. While these environmental benefits were obtained by sampling more process steps, earlier excursion detection and improved environmental performance can also be obtained by sampling more sites on the wafer, sampling more wafers per lot, or sampling more lots. When a careful analysis of the risks and associated costs of yield loss is balanced with the costs of additional sampling, an optimal sampling strategy has been attained [6-7].

Figure 4. Adding an additional inspection point to the line will reduce the material at risk should an excursion occur after the first process step.

Figure 4. Adding an additional inspection point to the line will reduce the material at risk should an excursion occur after the first process step.

Conclusion

As semiconductor manufacturers focus more on their environmental performance, yield management serves as a critical tool to help reduce a fab’s environmental impact. Fabs can obtain several environmental benefits by implementing higher quality process control tools, combinations of feedback and feedforward control loops, optimal process control sampling, and faster cycles of learning. A comprehensive process control solution not only helps IC manufacturers improve yield, but also reduces scrap and rework, reducing the fab’s overall impact on the environment.

References

  1. Examples:
    1. https://newsroom.intel.com/news-releases/intels-arizona-campus-takes-the-leed/
    2. http://www.tsmc.com/english/csr/green_building.htm
    3. http://www.ti.com/corp/docs/manufacturing/RFABfactsheet.pdf
    4. http://www.globalfoundries.com/about/vision-mission-values/responsibility/environmental-sustainability-employee-health-and-safety
  1. Moyer, “Feed It Forward (And Back),” Electronic Engineering Journal, September 2014. http://www.eejournal.com/archives/articles/20140915-klat5d/
  2. Lee et al, “Improvement of Depth of Focus Control using Wafer Geometry,” Proc. of SPIE, Vol. 9424, 942428, 2015.
  3. Tran et al, “Process Induced Wafer Geometry Impact on Center and Edge Lithography Performance for Sub 2X nm Nodes,” 26th Annual SEMI Advanced Semiconductor Manufacturing Conference, 2015.
  4. Morgenfeld et al, “Monitoring process-induced focus errors using high resolution flatness metrology,” 26th Annual SEMI Advanced Semiconductor Manufacturing Conference, 2015.
  5. Process Watch: Sampling Matters,” Semiconductor Manufacturing and Design, September 2014.
  6. Process Watch: Fab Managers Don’t Like Surprises,” Solid State Technology, December 2014.
  7. Reducing Environmental Impact with Yield Management,” Chip Design, July 2012.

About the Authors:

Dr. David W. Price, Dr. Douglas Sutherland, and Ms. Kara L. Sherman are Senior Director, Principal Scientist, and Director, respectively, at KLA-Tencor Corp. Over the last 10 years, this team has worked directly with more than 50 semiconductor IC manufacturers to help them optimize their overall inspection strategy to achieve the lowest total cost. This series of articles attempts to summarize some of the universal lessons they have observed through these engagements

By Paul Trio (SEMI); Dalia Vernikovsky (Applied Seals NA)

Evolving Industry Priorities

As the microelectronics industry becomes more mature and products become more advanced, there is greater emphasis on improving process control deeper within the supply chain. Whereas much of the attention has historically been at the fab as well as on equipment and materials, the spotlight is now focused on components and subcomponents.

As the industry prepares for 7nm and beyond, there is a realization that high-volume manufacturing at these advanced process nodes will be gated by equipment parts performance. With device manufacturers refining advanced process recipes pushing equipment, components, and subcomponents to the fringes of their performance envelopes, control is paramount. Industry standards will be as important in providing consistent parameters to enable users to compare similar parts and assess performance differences.

The Seal Situation

The subcomponent industry challenge outlined above certainly rings true for elastomeric seals. “Seals were invented near the end of the 19th century and the disturbing fact is that their manufacturing, material composition, and overall position in the vast industry is industrial in nature,” said Dalia Vernikovsky (Applied Seals North America), SCIS co-chair,  “Unless this industry comes together to forge guidelines or standards that correlate to SEMI’s stringent applications, and we bring the awareness that seal language still correlates to the mechanical make-up (thus the metal adders and constituents of things such as magnesium ferrous oxides), not the cleanliness specifications required, 7nm manufacturing will see defects traced to those components long after they are incorporated.”

Sealed with a Standard

With a myriad of applications and a variety of options, it is often difficult for users to select appropriate sealing materials. This problem is further compounded when O-ring suppliers use different criteria for quantifying O-ring performance coupled with inconsistent parameters and test methods. Control is key: making the right choice is essential for improving equipment uptime and reducing operational costs.

SEMI F51, Guide for Elastometric Sealing Technology, has been in publication since early 2000. This Document is a basic guide for the use of seals in semiconductor fabrication equipment. However, in order to meet the latest customer requirements, the standard needed an overhaul.

In 2014, the F51 Revision Task Force, under the North America Facilities Technical Committee Chapter was chartered to bring the standard to current industry specs. After a few ballot attempts, the task force’s 5080B proposal passed technical committee review at SEMICON West 2015 (July). By fall, the 5080B Ratification Ballot met the required acceptance conditions as well as clearing the necessary procedural reviews by the ISC Subcommittee on Audits & Reviews. The latest version of SEMI F51was published in November 2015 is now available for purchase from SEMI. It defines the criteria by which sealing performance can be judged in comparable measurements and seal materials can be chosen.

Behind the Scenes: A SEMI Special Interest Group

Determining how the SEMI F51 Standard would be revised didn’t happen overnight. Even before the F51 Revision Task Force was chartered, another SEMI group architected the characterization of seals parameters required at these advanced process nodes.

The Seals Group first identified seal performance criteria in several applications or process areas. The performance criteria was mainly divided into two groups: sealing requirements (e.g., etch rate, sealing force retention) and impurities (e.g., leachable, ash, outgassing, total organic carbon [TOC] testing). Process areas included: wet etch, etch, CVD/PVD, diffusion, and sub-fab.

Once the parameters were identified, the group prioritized which characteristics it needed to focus on. These included TOC, surface extractable metal contamination, and ash metal analysis. The Seals Group then developed test methodologies for measuring each performance. If test methods or standards already existed, the group simply referenced them.

Relative Importance of Seal Performance Criteria in Several Applications/Process Areas (1 – most important, 5 – least important) Figure 1

The Seals Group is part of a SEMI Special Interest Group (SIG) focused on Semiconductor Components, Instruments, and Subsystems (SCIS)SEMI SIGs provide a forum that fosters discussion and aligns stakeholders on industry-critical issues. SCIS represents companies that produce, package and/or distribute any of the following used in semiconductor or related industries:

  • Components such as seals, filters, mass flow controllers, valves, sensors, ion beam sources, etc.
  • Instruments for in-line and off-line data measurement, collection, and monitoring
  • Sub-systems that support process tools such as vacuum, robotics, power conversion, abatement, chillers, etc.

SCIS participation encompass Subcomponent-OEM-IDM stakeholders, including: Applied Seals NA; ASM; Brooks Automation; Busch Vacuum; Ebara; Edwards Vacuum; Entegris; Festo; GLOBALFOUNDRIES; Greene, Tweed; Horiba; Intel; KLA-Tencor; Lam Research; Pall; Parker; SMC; Swagelok; Texas Instruments; UltraClean Technology; VAT Valve.

SEMI SCIS SIG – Addressing Defectivity Problems in HVM

With defect and traceability playing a critical role in enabling high-volume manufacturing, SCIS is currently structured to focus on these problem areas. It aims to establish a framework that will enable industry partners to define:

  • Measurable defects for different components specific to intended process applications
  • Standardized test methods to measure the defects
  • Consistent methods for reporting the results

“Increased collaboration is required to establish new industry standards and parameters associated with semiconductor process control to meet the ever increasing yield, variability, and reliability challenges that comes with continued technology scaling,” said Gary Patton, CTO and SVP of WW R&D at GLOBALFOUNDRIES. “The SEMI SCIS group is playing a very crucial role in driving alignment between semiconductor manufacturers and equipment and sub-component suppliers on successful standards for sub-component defectivity and traceability needed for future technology nodes.”

The Seals Group is just one of four subteams under SCIS focused on defectivity. Subteams are established in the following areas:

  • Valves, Seals, and Pumps
  • Liquid and Gas Delivery
  • Critical Chamber Components and RF
  • Automation

As of this writing, each SCIS subteam has identified at least one process-critical component considered to be a primary contributor to defects:

Scope of Defectivity Components Figure 2

The subteams are now focusing on establishing a standard system of comparable metrics which will be used to rate, compare, and classify each of these identified components. This process is dictated by the following template:

SCIS Defectivity Template Figure 3

The Seals Group is not resting on its laurels with the latest revision to SEMI F51. The Seals team is now working on the next set of parameters including: sealing force retention, etch rate (range), permeation, and particles (size and range).

Visibility with Traceability

SCIS is also addressing the need for improved component parts traceability that will enable effective problem diagnosis and faster resolution.

Consider this rather common scenario: Fab yield excursion is traced to a batch of custom machined parts manufactured by Supplier A on a pump supplied by Supplier B on a process tool manufactured by Supplier C.  Fab engineer requests Supplier C to provide a list of all affected systems and spares to enable global containment planWithout a standardized traceability process in place, the list takes a week to compile, introducing delays to the corrective action. 

The Traceability Verification Subteam under SCIS is chartered to implement an industry standard parts traceability process that will:

  • Define standardized formats and protocols
  • Facilitate communication among suppliers, OEMs, and IDMs.
  • Enable efficient problem diagnosis and resolution

“The Traceable Verification Model ensures Key Characteristics are controlled with compliance information easily accessed via a cloud based application. Intellectual property is secured via pre-approved access levels. The model holds all suppliers accountable but also ensures proprietary information is not compromised.” said Lance Dyrdahl (Lam Research), Defect Traceability Subteam leader.

Full Circle Engagement

As with the F51 seals activity, output from these SCIS Subteams will feed in to the various committees and task forces under the SEMI International Standards Program. As these Standards are used by the industry, new requirements will emerge and it will be up to SEMI Members to address them.

“Components standards should be effectively linked to the field performance for all-around benefits to component makers, OEMs and IDMs. The committee deliverables are structured to allow competitors to work together in driving commonality. Standardization and normalization methodology will provide IP-free participation.” said Ya-hong Neirynck (Intel), SCIS RF subteam co-leader. Lance Dyrdahl further pointed out, “Speedy ratification occurs when all participants agree on self-evident non-proprietary methods.”

The demands of the next-generation high-volume manufacturing will no doubt require a concerted effort among device manufacturers, OEMs, and suppliers. Diverse stakeholder participation is critical in solving these problems proactively. Failure to do so will certainly result in greater challenges (and pain) that will be shared by all.  “A piece of equipment or process line is only as strong as its weakest component,” said Sanchali Bhattacharjee (Intel), SCIS cochair.

Engaging in these SEMI SCIS initiatives provides a very strong value proposition for IDM-OEM-suppliers alike.

Engaging in SEMI SCIS Benefits All Industry Stakeholders Figure 4

The SEMI SCIS Special Interest Group is open to all SEMI Members. There will be an SCIS face-to-face meeting in conjunction with the SEMI Advanced Semiconductor Manufacturing Conference (ASMC) – May 16-19, 2016 – in Saratoga Springs, New York. Conference attendees are welcome to attend this face-to-face meeting. Future face-to-face meeting are also scheduled for SEMICON West 2016 (July) as well as the SEMI Strategic Materials Conference (SMC) in September. SCIS subteams meet via teleconference in between these face-to-face meetings. For more information or to join the SCIS SIG, please contact Paul Trio at SEMI ([email protected]).

The Semiconductor Industry Association (SIA) today announced worldwide sales of semiconductors reached $26.0 billion for the month of February 2016, a decrease of 3.2 percent compared to the previous month’s total of $26.9 billion and 6.2 percent lower than the February 2015 total of $27.7 billion. Sales into the Americas fell sharply, decreasing 19.3 percent year-to-year, while year-to-year sales into China increased 3.5 percent. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

Global semiconductor sales slipped somewhat in February, due to normal seasonal trends, demand softening, and unfavorable macroeconomic conditions,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Most regional markets have struggled to overcome these headwinds, and sales have dipped across the majority of semiconductor product categories.”

Regionally, sales decreased nearly across the board: China (-4.6 percent month-to-month/+3.5 percent year-to-year), Europe(-0.9 percent/-6.3 percent), Japan (-0.8 percent/-3.5 percent), Asia Pacific/All Other (-0.7 percent/-6.3 percent), and the Americas (-7.0 percent/-19.3 percent).

Sales also decreased across most major semiconductor product categories, with the notable exception of microprocessors, which increased year-to-year by 3.4 percent.

February 2016

Billions

Month-to-Month Sales                               

Market

Last Month

Current Month

% Change

Americas

5.41

5.03

-7.0%

Europe

2.72

2.70

-0.9%

Japan

2.49

2.46

-0.8%

China

8.42

8.03

-4.6%

Asia Pacific/All Other

7.85

7.80

-0.7%

Total

26.89

26.02

-3.2%

Year-to-Year Sales                          

Market

Last Year

Current Month

% Change

Americas

6.23

5.03

-19.3%

Europe

2.88

2.70

-6.3%

Japan

2.55

2.46

-3.5%

China

7.76

8.03

3.5%

Asia Pacific/All Other

8.32

7.80

-6.3%

Total

27.74

26.02

-6.2%

Three-Month-Moving Average Sales

Market

Sep/Oct/Nov

Dec/Jan/Feb

% Change

Americas

6.07

5.03

-17.1%

Europe

2.93

2.70

-8.1%

Japan

2.68

2.46

-8.0%

China

8.67

8.03

-7.4%

Asia Pacific/All Other

8.53

7.80

-8.6%

Total

28.88

26.02

-9.9%