Tag Archives: Top Story Right

CEA-Leti and its partners in the European FP7 project PLAT4M today announced they have built three silicon photonics platforms. The four-year project, which launched in 2013, aims at building a European-based supply chain in silicon photonics and speeding industrialization of the technology. PLAT4M, which is funded by a European Commission grant of 10.2 million euros, includes 15 leading European R&D institutes and CMOS companies, key industrial and research organizations in design and packaging, as well as end users in different application fields, to build the complete supply chain.

Midway through the project, the consortium has developed advanced technologies and tools by building a coherent design flow, demonstrating manufacturability of elementary devices and process integration, and developing a packaging toolkit. The supply chain is based on technology platforms of Leti, imec and STMicroelectronics, supported by a unified design environment. The high level of maturity of the technology offered by these platforms makes them readily accessible to a broad circle of users in a fabless model.

Imec’s silicon photonics platform, based on 200mm substrates, has matured thanks to the PLAT4M project. The platform is based on SOI substrates with 220nm crystalline silicon on a 2,000nm buried oxide. During this project the existing fabrication processes and integration flow have been fine tuned to have stable and repeatable performance for all photonics building blocks (couplers, waveguides, phase shifters, photodetectors). This feeds the process design kit’s robust performance specifications and guarantees quality and first-time-right designs for the platform’s fabless users for high data-rate telecom and non-telecom applications. PLAT4M partners Thales, Polytec and TNO already are using the technology.

Beyond the 200mm platform, imec has pushed the limits of silicon photonics, exploiting advanced optical lithography with its 193nm immersion lithography scanner. It also has demonstrated very low propagation loss (~0.6dB/cm) for fully etched waveguides with excellent within-wafer linewidth control (standard deviation

Using the imec platform, Thales demonstrated a coherent combination of laser beams (CBC). Ultimately, this application aims at producing high-power, high-energy laser sources for sensing, industry or fundamental physics. The CBC rationale is to push the limits of single laser emitters (typically fiber amplifiers) by using a large number of amplifiers and coherently adding the output beams. The coherent addition requires locking the phase of all the amplifying channels. With the number of channels, potentially very large (from tens to thousands), an integrated technology is a major concern in terms of possible industrial products. The first generation CBC demonstrator of PLAT4M, which was packaged by Tyndall UCC, included a one-to-16 channel splitter tree, plus 16 independent thermal phase modulators. The CBC experiment showed the successful coherent addition of 16 laser beams at 1.55µm.

cea-leti supply chain

Leti has developed a new photonic platform based on 200mm SOI wafers. This process offers multilevel silicon patterning that allows the design of various passive and active devices (e.g. modulator and photodiode) with thermal tuning capability. Two AlCu levels are available for routing. A process design kit (PDK) is available for circuit design and an MPW service will be proposed in 2016. State-of-the-art performances have been demonstrated: insertion losses are below 2dB/cm for monomode waveguide and below 0.2dB/cm for multimode devices. Germanium photodiode responsivity is > 0.75A/W for a bandwidth >30GHz. Mach-Zehnder modulator VpLp is in the 2V.cm range for 2V operation with an E/O bandwidth > 25GHz. Moreover, Leti and III-V Lab have developed integrated hybrid III-V lasers and electro-absorption modulators (EAM) on silicon using a wafer-bonding technique. The hybrid lasers operate in the single-mode regime and the EAMs exhibit an extinction ratio higher than 20 dB with a drive voltage lower than 2V. Clear eye diagram has been achieved at a bit-rate of 25 Gb/s, confirming strong potential for telecom applications.

During the project, ST developed an additional silicon-photonic platform in 300mm technology to be used as an R&D tool for proof-of-concept purposes. The technology, called DAPHNE (Datacom Advanced PHotonic Nanoscale Environment), is designed for evaluating new devices and subsystems for demonstration. DAPHNE is a flexible platform that perfectly fits R&D needs. While developing it, ST demonstrated wavelength-division-multiplexing solutions using arrayed waveguide gratings, echelle gratings, cascaded Mach-Zehnder interferometers and side-coupled integrated spaced sequence of resonators. Some of the configurations are designed for the 100GBase-LR4 standard, and the experimental characterization results show insertion losses below 0.5dB and channel cross-talks above 25dB for a band flatness of 2nm. Furthermore, proper operation of receiver-and-transmitter blocks to be interfaced to optical devices above them has been demonstrated at 28Gbps, making use of 65nm-node technologies.

The PLAT4M WP2 work has led to a qualitative leap of the design flow for silicon photonics, allowing the photonics community to design more complex and more robust circuits. The electronics OpenAccess standard for data sharing between design-automation tools includes an extension for silicon photonics in a beta phase today. Simulation capabilities were leveraged thanks to an extensive characterization effort from the three partner fabs and thanks to the statistical data gathered for variability prediction. Paris-Sud University has studied theoretically the behavior of different phase shifters and photodetectors for a time-efficient and precise modeling. Mentor Graphics and PhoeniX Software partners have improved phase-aware routing and tool interoperability. Verification and manufacturability have reached industry-requirement standards thanks to the development of new techniques based upon the Mentor Graphics Calibre platform that delivers layout-versus-schematic comparison (Calibre nmLVS), photonic rule checks (PRC) and curvilinear-aware design-rule checks (Calibre nmDRC). Mask preparation is also improving with better pattern-density control and mask correction.

By Dr. Dan Tracy, Senior Director, Industry Research and Statistics, SEMI

With the recent release of Apple’s 6s and the form factors of internet enabled mobile devices and the emergence of the IoT (Internet of Things), advanced packaging is clearly the enabling technology providing solutions for mobile applications and for semiconductor devices fabricated at 16 nm and below process nodes. These packages are forecasted to grow at a compound annual growth rate (CAGR) of over 15% through 2019.  In addition, the packaging technologies have evolved and continue to evolve so to meet the growing integration requirements needed in newer generations of mobile electronics. Materials are a key enabler to increasing the functionality of thinner and smaller package designs and for increasing the functionality of system-in-package solutions.

Figure 1:  Packaging Technology Evolution – Great Complexity in Smaller, Thinner Form Factors, courtesy of TechSearch International, Inc.

Figure 1: Packaging Technology Evolution – Great Complexity in Smaller, Thinner Form Factors, courtesy of TechSearch International, Inc.

The observations related to mobile products include:

  • New package form factors to satisfy high-performance, high-bandwidth, and low power consumption requirements in a thinner and smaller package.
  • Packaging solutions to deliver systems-in-package capabilities while satisfying low-cost requirements.
  • Shorter lifetimes and differing reliability requirements. For example, high-end smartphones and tablets, the key high reliability requirement is to pass the drop test; and packaging material solutions are essential to delivering such reliability.
  • Shorter production ramp times to meet time-to-market demands of end product. This is becoming critical and causes redundancy in capacity to be required, capacity that is underutilized for part of the year

Packaging must provide a low-cost solution and have an infrastructure in place to meet steep ramps in electronic production. The move towards bumping and flip chip has only accelerated with the growth in mobile electronics, though leadframe and wirebond technologies remain as important low-cost alternatives for many devices. Wafer bumping has been a major packaging market driver for over a decade, and with the growth in mobile the move towards wafer bumping and flip chip has only accelerated with finer pitch copper pillar bump technology ramping up. Mobile also drives wafer-level packaging (WLP) and Fan-Out (FO) WLP. New wafer level dielectric materials and substrate designs are required for these emerging package form factors.

Going forward, the wearable and IoT markets will have varying packaging requirements depending on the application, the end use environment, and reliability needs. Thin and small are a must though like other applications cost versus performance will determine what package type is adopted for a given wearable product, so once more leadframe and wirebonded packages could be the preferred solution. And in many wearable applications, materials solutions must provide a lightweight and flexible package.

Such packaging solutions will remain the driver for materials consumption and new materials development, and the outlook for these packages remain strong. Materials will make possible even smaller and thinner packages with more integration and functionality.  Low cost substrates, matrix leadframe designs, new underfill, and die attach materials are just some solutions to reduce material usage and to improve manufacturing throughput and efficiencies.

SEMI and TechSearch International are once again partnering to prepare a comprehensive market analysis of how the current packaging technology trend will impact the packaging manufacturing materials demand and market.  The new edition of “Global Semiconductor Packaging Materials Outlook” (GSPMO) report is a detailed market research study in the industry that quantifies and highlights opportunities in the packaging material market. This new SEMI report is an essential business tool for anyone interested in the plastic packaging materials arena. It will benefit readers to better understand the latest industry and economic trends, the packaging material market size and trend, and the respective market drivers in relation to a forecast out to 2019. For example, FO-WLP is a disruptive technology that impacts the packaging materials segment and the GSPMO addresses this impact.

 

One thing seems clear about the semiconductor market: consolidation is showing no signs of slowing down.

On the heels of two additional acquisitions in the space around semiconductors — LAM Research acquiring KLA-Tencor and Western Digital buying SanDisk — rumors have abounded this week that there is more to come.

First, Bloomberg reported that Texas Instruments, the world’s largest maker of analog chips, is in talks to buy Maxim Integrated. TI is said to have competition for Maxim from a competitor in the analog chip space, Analog Devices.

According to the Bloomberg report, Maxim may be holding out for a hefty premium, if it does, in fact, sell.

“When asked on an Oct. 22 conference call about a possible takeover by a larger company such as Texas Instruments, Maxim Chief Financial Officer Bruce Kiddoo said the company is big enough and profitable enough to survive on its own,” Bloomberg reported. “Maxim also has the resources to do its own acquisitions, he said.”

For Texas Instruments’ part, CFO Kevin March weighed in on potential acquisitions on October 21. Bloomberg quotes him as saying: “If we were to look at an acquisition, it would probably be a company that’s going to be broad in catalog, have a diverse customer base, have a large percentage of its revenue coming from industrial and automotive, probably have a very talented R&D team. So we really do focus on the numbers that that acquisition might lead us to.”

Following the Bloomberg story, the Chicago Tribune issued a report saying STMicroelectronics is considering a bid for Fairchild Semiconductor. STMicro is Europe’s biggest chipmaker, and would be looking to “increase growth and shore up its digital products business” with the purchase, according to the report.

For its part, Fairchild, which is one of the oldest chipmakers in the US, has hired Goldman Sachs to help it find a buyer. In recent months the company has conducted talks with ON Semicondor and Infineon Technologies about being purchased, according to the Tribune.

It is still uncertain whether anything will come of either report, but it seems clear that the merger madness in the semiconductor industry is far from over.

To help readers follow this constantly changing situation, Solid State Technology is keeping a running scorecard of all the significant transactions in the semiconductor market here: Historic era of consolidation for chipmakers.

 

Growing Conference Business at Extension Media Brings Experienced Events Producer Onboard

SAN FRANCISCO, October 28, 2015 – Extension Media announced today the addition of Sally L. Bixby as Senior Events Director for Extension Media’s fast-growing conference division. She will be based in the downtown Portland, Oregon office where Extension Media has editorial staff.

Ms. Bixby is an accomplished corporate events producer with nearly 16 years of in-depth experience in operations and marketing, holding senior staff positions in multiple events projects. To date, she has managed more than 450 business conferences in North America alone and produced several internationally as well. She brings to the role a significant track record of increasing event attendance, managing large- and small-scale budgets and driving lead generation for companies such as: AMD, Avnet, Curtiss-Wright, Intel, Kontron, MathWorks and more. Throughout her career, Ms. Bixby has cultivated relationships in the embedded systems, semiconductor and medical electronics industries, as well as academia and several professional organizations, building mutually beneficial and long-term business relationships.

“We are thrilled that Sally is leading the conference operations management team and will also be focusing her energy on growing the conference and exhibition side of our business, adding several events aimed at the embedded and growing IoT market segments as well as the semiconductor manufacturing and design market,” said Vince Ridley, president and founder of Extension Media. “Her professionalism and passion for delivering successful events will benefit both Extension Media and our clients. Sally’s attention to exceeding expected goals make her an ideal fit.”

“I look forward to expanding the conference business at Extension Media, connecting knowledgeable, responsive leaders and influencers,” said Ms. Bixby. “Recent experience creating a successful China-U.S. IoT Summit for a Fortune 100 company – that resulted in 120% of the attendee goal and a 10.5% budget savings – has me looking forward to helping our clients achieve impressive results.”

Prior to joining Extension Media, Ms. Bixby was an independent senior events producer running her own company, EventBelle Productions. In 2014 and 2015, she managed all operations, budgets and the VIP program for The ConFab, the preeminent semiconductor manufacturing conference and networking event for leaders and decision-makers addressing the economics of semiconductor manufacturing.

About Extension Media
Extension Media is a privately held company operating more than 50 B2B magazines, engineers’ guides, email newsletters, web sites and conferences that focus on high-tech industry platforms and emerging technologies such as: chip design, semiconductor and electronics manufacturing, embedded systems, software, architectures and industry standards.

Extension Media produces industry leading events including The ConFab, the Internet of Things Developers Conference (IoT DevCon) and the Multicore Developers Conference (Multicore DevCon), and publishes Embedded Systems Engineering, EECatalog.com, Embedded Intel® Solutions, EmbeddedIntel.com, Chip Design, ChipDesignMag.com, Solid State Technology, Solid-State.com and SemiMD.com.

Extension Media Contacts
Vince Ridley
[email protected]
415-255-0390
Sally L. Bixby
[email protected]
503-705-8651

SAN JOSE, Calif. — mCube, provider of MEMS motion sensors, today announced the industry’s first 3-axis accelerometer which is less than a cubic millimeter in total size (0.9mm3). The MC3571 is only 1.1×1.1×0.74mm in size making it 75% smaller than current 2x2mm accelerometers on the market today, enabling developers to design high-resolution 3-axis inertial solutions for products that require ultra-small sensor form factors.

mCube_MC3571_AccelerometerThe MC3571 features a Wafer Level Chip Scale Package (WLCSP), making it smaller than a grain of sand. This achievement marks a major innovation milestone in the MEMS sensor industry and opens up new design possibilities for the next generation of sleek new mobile phones, surgical devices, and consumer products.

“The new MC3571 truly represents mCube’s vision of delivering a high-performance motion sensor in less than a cubic millimeter size,” said Ben Lee, president and CEO, mCube. “This advancement demonstrates how our monolithic technology can unleash amazing possibilities for designers to create exciting new products that could never be possible with today’s standard 2x2mm sensors.”

“mCube is the first company we’ve seen with a 1.1×1.1mm integrated MEMS+CMOS accelerometer and stretches once again the limits of miniaturization establishing new standards for the industry,” said Guillaume Girardin, Technology & Market Analyst MEMS & Sensors at Yole Développement (Yole). And his colleague, Thibault Buisson, Technology & Market Analyst, Advanced Packaging added: “Clearly, there is a growing trend among consumer companies to transition to wafer-level CSP packaging designs and with the MC3571 inertial motion sensor, mCube is at the forefront of this market evolution and at Yole, we are curious to see how competition will react.”

The high-resolution 14-bit, 3-axis MC3571 accelerometer is built upon the company’s award-winning 3D monolithic single-chip MEMS technology platform, which is widely adopted in mobile handsets with over 100 million units shipped. With the mCube approach, the MEMS sensors are fabricated directly on top of IC electronics in a standard CMOS fabrication facility. Advantages of this monolithic approach include smaller size, higher performance, lower cost, and the ability to integrate multiple sensors onto a single chip.

About the MC3571 Accelerometer

MC3571 is a low-noise, integrated digital output 3-axis accelerometer, which features the following:

  • 8, 10, or 14-bit resolution;
  • Output Data Rates (ODR) up to 1024Hz;
  • Selectable interrupt modes via an I2C bus;
  • Requires only a single external passive component, compared to competitive offerings requiring 2 or more.

Samples of the world’s smallest 1.1×1.1mm WLCSP accelerometer are available to select lead customers now with volume production scheduled for the second quarter of 2016.

 

A report that resulted from a workshop funded by Semiconductor Research Corporation (SRC) and National Science Foundation (NSF) outlines key factors limiting progress in computing—particularly related to energy consumption—and novel device and architecture research that can overcome these barriers. A summary of the report’s findings can be found at the end of this article; the full report can be accessed here.

The findings and recommendations in the report are in alignment with the nanotechnology-inspired Grand Challenge for Future Computing announced on October 20 by the White House Office of Science and Technology Policy. The Grand Challenge calls for new approaches to computing that will operate with the efficiency of the human brain. It also aligns with the National Strategic Computing Initiative (NSCI) announced by an Executive Order signed by the President on July 29.

Energy efficiency is vital to improving performance at all levels. This includes from devices and transistors to large IT systems, as well from small sensors at the edge of the Internet of Things (IoT) to large data centers in cloud and supercomputing systems.

“Fundamental research on hardware performance, complex system architectures, and new memory/storage technologies can help to discover new ways to achieve energy-efficient computing,” said Jim Kurose, the Assistant Director of the National Science Foundation (NSF) for Computer and Information Science and Engineering (CISE). “Partnerships with industry, including SRC and its member companies, are an important way to speed the adoption of these research findings.”

Performance improvements today are limited by energy inefficiencies that result in overheating and thermal management issues. The electronic circuits in computer chips still operate far from any fundamental limits to energy efficiency, and much of the energy used by today’s computers is expended moving data between memory and the central processor.

At the same time as increases in performance slow, the amount of data being produced is exploding. By 2020, an estimated 44 zettabytes of data (1 zettabyte equals 1 trillion gigabytes) will be created on an annual basis.

“New devices, and new architectures based on those devices, could take computing far beyond the limits of today’s technology. The benefits to society would be enormous,” said Tom Theis, Nanoelectronics Research Initiative (NRI) Executive Director at SRC, the world’s leading university-research consortium for semiconductor technologies.

Inspired by the neural architecture of a macaque brain, this neon swirl is the wiring diagram for a new kind of computer that, by some definitions, may soon be able to think. (Credit: Emmett McQuinn, IBM Research - Almaden)

Inspired by the neural architecture of a macaque brain, this neon swirl is the wiring diagram for a new kind of computer that, by some definitions, may soon be able to think. (Credit: Emmett McQuinn, IBM Research – Almaden)

In order to realize these benefits, a new paradigm for computing is necessary. A workshop held April 14-15, 2015 in Arlington, Va., and funded by SRC and NSF convened experts from industry, academia and government to identify key factors limiting progress and promising new concepts that should be explored. The report being announced today resulted from the workshop discussions and provides a guide to future basic research investments in energy-efficient computing.

The report builds upon an earlier report funded by the Semiconductor Industry Association, SRC and NSF on Rebooting the IT Revolution.

To achieve the Nanotechnology Grand Challenge and the goals of the NSCI, multi-disciplinary fundamental research on materials, devices and architecture is needed. NSF and SRC, both individually and together, have a long history of supporting long-term research in these areas to address such fundamental, high-impact science and engineering challenges.

Report Findings

Broad Conclusions

Research teams should address interdisciplinary research issues essential to the demonstration of new device concepts and associated architectures. Any new device is likely to have characteristics very different from established devices. The interplay between device characteristics and optimum circuit architectures therefore means that circuit and higher level architectures must be co-optimized with any new device. Devices combining digital and analog functions or the functions of logic and memory may lend themselves particularly well to unconventional information processing architectures. For maximum impact, research should focus on devices and architectures which can enable a broad range of useful functions, rather than being dedicated to one function or a few particular functions.

Prospects for New Devices

Many promising research paths remain relatively unexplored. For example, the gating of phase transitions is a potential route to “steep slope” devices that operate at very low voltage. Relevant phase transitions might include metal-insulator transitions, formation of excitonic or other electronic condensates, and various transitions involving structural degrees of freedom. Other promising mechanisms for low-power switching may involve transduction. Magnetoelectric devices, in which an external voltage state is transduced to an internal magnetic state, exemplify the concept. However, transduction need not be limited to magnetoelectric systems.

In addition to energy efficiency, switching speed is an important criterion in choice of materials and device concepts. For example, most nanomagnetic devices switch by magnetic precession, a process which is rather slow in the ferromagnetic systems explored to date. Magnetic precession switching in antiferromagnetic or ferrimagnetic materials could be one or more orders of magnitude faster. Other novel physical systems could be still faster. For example, electronic collective states could, in principle, be switched on sub-picosecond time scales.

More generally, devices based on computational state variables beyond magnetism and charge (or voltage) could open many new possibilities.

Another relatively unexplored path to improved energy efficiency is the implementation of adiabatically switched devices in energy-conserving circuits. In such circuits, the phase of an oscillation or propagating wave may represent digital state; devices and interconnections must together constitute circuits that are non-dissipative. Nanophotonic, plasmonic, spin wave or other lightly damped oscillatory systems might be well-suited for such an approach. Researchers should strive to address the necessary components of a practical engineering solution, including mechanisms for correction of unavoidable phase and amplitude errors.

Networks of coupled non-linear oscillators have been explored for non-Boolean computation in applications such as pattern recognition. Potential technological approaches include nanoelectromechanical, nanophotonic, and nanomagnetic oscillators. Researchers should strive for generality of function and should address the necessary components of a practical engineering solution, including devices, circuits, and architectures that allow reliable operation in the presence of device variability and environmental fluctuations.

Prospects for New Architectures

While appropriate circuits and higher level architectures should be explored and co-developed along with any new device concept, certain novel device concepts may demand greater emphasis on higher-level architecture. For example, hysteretic devices, combining the functions of non-volatile logic and memory, might enhance the performance of established architectures (power gating in microprocessors, reconfiguration of logic in field programmable gate arrays), but perhaps more important, they might play an enabling role in novel architectures (compute in memory, weighting of connections in neuromorphic systems, and more). As a second example, there has been great progress in recent years in the miniaturization and energy efficiency of linear and non-linear photonic devices and compact light emitters. It is possible that these advances will have their greatest impact, not in the ongoing replacement of metal wires by optical connections, but rather in enabling new architectures for computing. Computation “in the network” is one possible direction. In general, device characteristics and architecture appear to be highly entwined in oscillatory or energy-conserving systems. Key device characteristics may be inseparable from the coupling (connections) between devices. For non-Boolean computation, optimum architectures and the range of useful algorithms will depend on these characteristics.

In addition to the examples above, many other areas of architectural research might leverage emerging device concepts to obtain order of magnitude improvements in the energy efficiency of computing. Research topics might include architectures for heterogeneous systems, architectures that minimize data movement, neuromorphic architectures, and new approaches to Stochastic Computing, Approximate Computing, Cognitive Computing and more.

We are in a historic era for consolidation among semiconductor manufacturers. Included in the announced mergers and acquisitions this year alone are:

Semiconductor Market Consolidation. (Slide from: Dr. Rutger Wijburg, Sr. Vice President and General Manager, GLOBALFOUNDRIES; keynote at Semicon Europa

Semiconductor Market Consolidation. (Slide from: Dr. Rutger Wijburg, Sr. Vice President and General Manager, GLOBALFOUNDRIES; keynote at Semicon Europa)

According to a recent article in the Wall Street Journal by Don Clark, the reasons for this market consolidation are relatively new to the industry: slowing growth and rising costs.

In the past, chip makers used acquisitions to obtain new technology. But, Clark writes that a different reason is becoming more prominent: “Many recent deals resemble consolidation waves in older industries, motivated mainly by trimming costs in areas like manufacturing, sales and engineering.”

For example, Avago projects that it can gain $750 million in annual savings starting in 2017 after it integrates Broadcom, according to Clark.

The article cites figures from Dealogic stating that the industry has seen $100.6 Billion in mergers and acquisitions in 2015 so far, compared to $37.7 Billion for all of 2014.

And that total is poised to go higher.

“Bloomberg reported last week that four chip companies — Analog Devices Inc., Maxim Integrated Products Inc., SanDisk Corp. and Fairchild Semiconductor International Inc. — were in talks concerning different deal options… ‘It’s buy or be sold,’ summed up Alex Lidow, chief executive of Efficient Power Conversion Corp., a startup he co-founded in 2007 after 30 years leading chip maker International Rectifier Corp,” Clark writes.

When University of Oregon associate professor Ramesh Jasti began making tiny organic circular structures using carbon atoms, the idea was to improve carbon nanotubes being developed for use in electronics or optical devices. He quickly realized, however, that his technique might also roll solo.

In a new paper, Jasti and five University of Oregon colleagues show that his nanohoops — known chemically as cycloparaphenylenes — can be made using a variety of atoms, not just those from carbon. They envision these circular structures, which efficiently absorb and distribute energy, finding a place in solar cells, organic light-emitting diodes, or as new sensors or probes for medicine.

Though barely one-nanometer, nanohoops offer a new class of structures for use in energy or light devices. (Courtesy of Ramesh Jasti)

Though barely one-nanometer, nanohoops offer a new class of structures for use in energy or light devices. (Courtesy of Ramesh Jasti)

The research, led by Jasti’s doctoral student Evan R. Darzi, was described in a paper placed online ahead of print in ACS Central Science, a journal of the American Chemical Society. The paper is a proof-of-principle for the process, which will have to wait for additional research to be completed before the full impact of these new nanohoops can be realized, Jasti said.

These barely one-nanometer nanohoops offer a new class of structures — sized between those made with long-chained polymers and small, low-weight molecules — for use in energy or light devices, said Jasti, who was the first scientist to synthesize these types of molecules in 2008 as a postdoctoral fellow at the Molecular Foundry at the Lawrence Berkeley National Laboratory.

“These structures add to the toolbox and provide a new way to make organic electronic materials,” Jasti said. “Cyclic compounds can behave like they are hundreds of units long, like polymers, but be only six to eight units around. We show that by adding non-carbon atoms, we are able to move the optical and electronic properties around.”

Nanohoops help solve challenges related to materials with controllable band gaps — the energies that lie between valance and conduction bands and is vital for designing organic semiconductors. Currently long materials such as those based on polymers work best.

“If you can control the band gap, then you can control the color of light that is emitted, for example,” Jasti said. “In an electronic device, you also need to match the energy levels to the electrodes. In photovoltaics, the sunlight you want to capture has to match that gap to increase efficiency and enhance the ability to line up various components in optimal ways. These things all rely on the energy levels of the molecules. We found that the smaller we make nanohoops, the smaller the gap.”

To prove their approach could work, Darzi synthesized a variety of nanohoops using both carbon and nitrogen atoms to explore their behavior. “What we show is that the charged nitrogen makes a nanohoop an acceptor of electrons, and the other part becomes a donator of electrons,” Jasti said.

“The addition of other elements like nitrogen gives us another way to manipulate the energy levels, in addition to the nanohoop size. We’ve now shown that the nanohoop properties can be easily manipulated and, therefore, these molecules represent a new class of organic semiconductors — similar to conductive polymers that won the Nobel Prize in 2000,” he said. “With nanohoops, you can bind other things in the middle of the hoop, essentially doping them to change properties or perhaps sense an analyte that allows on-off switching.”

His early work making nanohoop compounds was carbon-based, with the idea of making them different diameters and then combining them, but his group kept seeing unique and unexpected electronic and optical properties.

Jasti, winner of a National Science Foundation Career Award in 2013, brought his research from Boston University to the UO’s Department of Chemistry and Biochemistry in 2014. He said the solar cell research being done by his colleagues in the Materials Science Institute, of which he is a member, was an important factor in his decision to move to the UO.

“We haven’t gotten very far into the application of this,” he said. “We’re looking at that now. What we were able to see is that we can easily manipulate the energy levels of the structure, and now we know how to exchange any atom at any position along the loop. That is the key discovery, and it could be useful for all kinds of semiconductor applications.”

Co-authors with Darzi and Jasti were: former BU doctoral student Elizabeth S. Hirst, who now is a postdoctoral fellow at the U.S. Army Natick Soldier Research, Development and Engineering Center; UO doctoral student Christopher D. Weber; Lev N. Zakharov, director of X-ray crystallography in the UO’s Advanced Materials Characterization in Oregon center; and Mark C. Lonergan, a professor in the Department of Chemistry and Biochemistry.

The NSF (grant CHE-1255219), Department of Energy (DE-SC0012363), Sloan Foundation and Camille and Henry Dreyfus Foundation supported the research.

Research reported in the Japanese Journal of Applied Physics by researchers at Mitsubishi Electric Corporation describes the development of a new power module made from a SiC metal-oxide-semiconductor field-effect transistor and a SiC Schottky barrier diode. The team successfully trialed the module in a train traction inverter — a device used to convert the direct current from the power source to three-phase alternating current suitable for driving the propulsion motors — with promising results.

Power electronics: Silicon carbide gains traction
Next-generation power electronics capable of reducing energy consumption are in high demand, particularly in the transportation industries. A key way of saving energy in electronics is by reducing the losses inherent in switching processes and power conversion. Much attention is now being given to a compound form of silicon and carbon called silicon carbide (SiC) for electronic components, a material whose properties outperform conventional silicon in terms of thermal conductivity, loss reduction and the ability to withstand high voltages.

Researchers in Japan have developed new power modules comprising all silicon carbide (SiC) MOSFETs (a) and SBDs (b). The power modules show great promise in improving the performance and efficiency of traction inverters for trains, reducing switching losses by 55% compared with conventional inverters.

Researchers in Japan have developed new power modules comprising all silicon carbide (SiC) MOSFETs (a) and SBDs (b). The power modules show great promise in improving the performance and efficiency of traction inverters for trains, reducing switching losses by 55% compared with conventional inverters.

Satoshi Yamakawa and co-workers at Mitsubishi Electric Corporation have developed a new power module made from a SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and a SiC Schottky barrier diode (SBD). The team successfully trialed the module in a train traction inverter – a device used to convert the direct current from the power source to three-phase alternating current suitable for driving the propulsion motors — with promising results.

For a power module in a traction inverter, low power loss, miniaturization, high voltage rating, and high temperature environmental resistance are required.

Yamakawa and his team prepared the SiC MOSFET for the power module by n-type doping the junction field-effect transistor region: this reduced on-resistance of the device at high temperatures. By combining the SiC MOSFET with a SiC SBD — a diode which allows for fast and efficient switching — the team created a power module for a traction inverter rated at 3.3kV/1500A.

A new traction inverter system equipped with their power module is stable, highly efficient and reduces switching losses by 55% compared with conventional silicon-based inverters.

Reference and affiliation
Kenji Hamada1, Shiro Hino1,2, Naruhisa Miura1,2, Hiroshi Watanabe1,2, Shuhei Nakata1,2, Eisuke Suekawa3, Yuji Ebiike3, Masayuki Imaizumi3, Isao Umezaki3, and Satoshi Yamakawa1,2. 3.3kV/1500A power modules for the world’s first all-SiC traction inverter. Japanese Journal of Applied Physics  54 04DP07 (2015) http://dx.doi.org/10.7567/JJAP.54.04DP07

1. Advanced Technology R&D Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661, Japan
2. R&D Partnership for Future Power Electronics Technology (FUPET), Minato, Tokyo 105-0001, Japan
3. Power Device Works, Mitsubishi Electric Corporation, Fukuoka 819-0192, Japan

This research is featured in the September 2015 issue of the JSAP Bulletin.

IEEE S3S 2015 could be the turning point for monolithic 3D. From October 4-7 we will have the option to get a short course, invited and selected presentations from a broad range of the industry representatives. They include major vendors such as Qualcomm, Global Foundries, and Applied Materials; leading research organization like CEA Leti, Taiwan National Applied Research Labs, German IMS Chips, and NASA; leading Universities like Berkeley and Stanford; and start-ups like SiGen and MonolithIC 3D.

In its tutorial session, Qualcomm will explain why it is investing in and promoting 3D VLSI (3DV) as an alternative scaling technology, as is illustrated by the following two slides:

GameChang2-0_Fig1GameChange2-0_Fig2

Yet many people still have doubts, as reflected by the title of the panel we were invited to participate in — “Monolithic 3D: Will it Happen and if so…” — at the IEEE 3D-Test Workshop on October 9, 2015.

The doubts likely relate to the technology challenge that is illustrated in the following slide:

GameChange2-0_Fig3

The question, in short, is how we can add more transistors monolithically interconnected to the underlying transistors without exceeding the thermal budget for the underlying transistors and interconnect.

The current paths to monolithic 3D involve major changes to the front line process flow and require the development of a new logic transistors. The big concern is that leading edge vendors are too busy with dimensional scaling and if anything else could be done it seems that FD-SOI would be it, while trailing edge fabs are, in most cases, avoiding any major transistor process development. The recent failure of Suvolta could be an indication of this reality.

Hence the importance of Game-Changing 2.0, a major technology innovation to be unveiled on Wednesday by MonolithIC 3D in a paper titled: “Modified ELTRAN (R) – A Game Changer for Monolithic 3D”. The paper will present a novel use of the ELTRAN process developed by Canon about 20 years ago, primarily for SOI applications. Using ELTRAN (Epi. Layer Transfer) techniques, a substrate could be prepared enabling any fab to simply integrate a monolithic 3D device without the need to change its current front-line fab process. This flow is further simplified and could be integrated with the monolithic 3D flow introduced last year that leverages the emerging precision bonders, such as EVG’s Gemini (R) XT FB. This flow provides a natural path for product innovation and an unparalleled competitive edge to its adopters. In addition, this game-changing breakthrough offers a very cost-competitive flow. The following chart illustrates the original use of ELTRAN process for the fabrication of SOI wafers:

GameChange2-0_Fig4

In the “Invited Talks on M3DI” at the conference we will have an opportunity to learn from the inventor of the ELTRAN process, Dr. Takao Yonehara, currently with Applied Materials, in his “Epitaxial Layer Transfer Technology and Application” talk. Prior to Applied Materials, Dr. Yonehara worked with Solexel, a Silicon Valley startup, to deploy the ELTRAN process for low cost solar cell fabrication. Yonehara’s talk will be followed by Prof. Joachin Burghartz of Institute for Microelectronics in Stuttgart, discussing “Ultra-thin Chips for Flexible Electronics and 3D ICs” that uses a variation of such flow in small scale production.

The semiconductor industry is bifurcating these days into a segment that follows aggressive scaling for few super-value applications supported by very few vendors, while the bulk of the industry is enhancing old fabs targeting mainstream applications and the emerging IoT opportunities. Further enhancing these older fabs with monolithic 3D offers a most effective return on investment. Game-Changing 2.0 means that without a need for major process R&D efforts or new equipment, the path for 3D scaling is now open with enormous advantages for IoT. Accordingly, my answer to the original question above is summarized by the title of our invited talk at the IEEE 3D-Test Workshop: “Monolithic 3D is Already Here — the 3D NAND — and Now it would be Easy to Adapt it for Logic.”

In addition the other division, SOI and SubVt provide good complementing technology updates for the power-performance objectives that are so important for these emerging markets.

So, come to the S3S and enjoy unique key technologies update with the great wine and country pleasures of Sonoma Valley.