Tag Archives: letter-ap-business

Lattice Semiconductor Corporation (NASDAQ: LSCC), a provider of customizable smart connectivity solutions, announced the appointment of Glenn O’Rourke as the Company’s Corporate Vice President, Global Operations, effective immediately. Mr. O’Rourke brings extensive business and technical experience, and expertise in supplier management, technology, product quality, and cost optimization to his new role. Prior to Lattice, Mr. O’Rourke was Corporate Vice President of Supplier Management, Technology & Product Cost Center at Xilinx, Inc.

Jim Anderson, President and Chief Executive Officer, said, “We are excited to welcome Glenn O’Rourke to Lattice’s leadership team, as we continue to attract key talent to our team. Glenn’s deep understanding of the FPGA industry and all facets from strategic planning through manufacturing and quality make him a perfect fit as we work to better optimize Lattice’s operations to support our strategic goals and customers’ multi-year product roadmaps.”

Mr. O’Rourke said, “I am excited to be part of Lattice’s leadership team. Having worked in the FPGA industry for many years I know the strength of the Company’s FPGA portfolio, global customer base and talented employees. I look forward to leveraging my expertise to help the Company enhance the capability, efficiency and profitability of its operations to enable exceptional growth.”

Glenn O’Rourke brings to the role 30 years of FPGA technology and semiconductor industry experience. Over the last 15 years, he has been responsible for Xilinx Inc.’s supplier strategy, management and sourcing; foundry, package, assembly and reliability engineering; and product cost center and gross margin. He most recently served as Corporate Vice President of Supplier Management, Technology and Product Cost Center at Xilinx, Inc. He was previously Vice President of Technology, Product Quality and Reliability for all Xilinx processes and products, after serving as Senior Director of Product Development Engineering. Earlier in his career Mr. O’Rourke was Senior Group Manager Product and Test Engineering at Lattice Semiconductor, and was a Product Development Manager / Program Manager at STMicroelectronics. He holds a Bachelor of Science in Electrical Engineering from Mississippi State University.

MagnaChip Semiconductor Corporation (“MagnaChip”) (NYSE: MX), a designer and manufacturer of analog and mixed-signal semiconductor platform solutions, today announced that volume production has commenced for an IGBT product for power module targeted to high-voltage industrial applications. IGBT is one of a MagnaChip family of Power standard products called Insulated Gate Bipolar Transistors.

The new IGBT P-series (“MBW100T120PHF”) has both high current and high voltage capabilities of 1200V and 100A, and has achieved a low saturation voltage Vce(sat) of 1.71V and low switching losses by using Field-Stop Trench technology. MBW100T120PHF allows designers to operate devices at an improved switching frequency, which enables reducing the size and cost of capacitors and inductive devices in circuits.

To product designers, this translates into high power density, small size and low material cost of products. MBW100T120PHF is operable up to four times the rated current, and with a wide SOA (Safe Operating Area) well-suited for industrial applications which require high power. In addition, by optimizing the resistance embedded inside the chip, MBW100T120PHF enables a parallel structure design, which allows multiple chips to operate simultaneously.

MBW100T120PHF is expected to improve overall system stability and energy efficiency of applications by reducing the power loss from DC-AC power conversions for high-voltage industrial applications, such as 10kW+ 3-phase motor and photovoltaic inverter systems.

“We are pleased to launch our newest IGBT P-series product for industrial power modules, with high-voltage and high-current capabilities of 1200V and 100A,” said YJ Kim, CEO of MagnaChip. “The introduction of this IGBT P-series product will further expand our IGBT power product portfolio and enhance our reputations as a market leader of high-voltage power standard products.”

With Korea expected to remain the world’s largest consumer of semiconductor equipment, building on its 18 percent share in 2018, SEMICON Korea 2019 is poised to connect global electronics manufacturing companies to new opportunities. More than 450 companies will gather at SEMICON Korea 23 – 25 January 2019, at the COEX in Seoul – for the latest microelectronics developments and trends from industry leaders and visionaries. Registration is now open.

SEMICON Korea, the premier event in Korea for electronics manufacturing, features key insights in artificial intelligence (AI), SMART manufacturing, talent and other critical industry issues. SEMICON Korea brings companies together to “Connect, Collaborate, and Innovate” as the event is poised to set a record of more than 2,000 booths.

  • CONNECT to business and technology leaders to uncover new industry relationships
  • COLLABORATE with industry experts across the electronics manufacturing supply chain
  • INNOVATE to drive new technologies and business

SEMICON Korea 2019 highlights include the following:

AI Summit – AI is powering the next phase of semiconductor industry growth with applications across automotive, manufacturing, and more. Summit attendees will meet industry leaders to discuss new AI collaborations and emerging business opportunities.

MEMS and Sensors Summit – Data acquisition from the edge is essential for IoT and AI to flourish, driving growth of the MEMS and sensor industry. Industry-leading MEMS and sensors companies will share their visions, technology roadmaps and business models for enabling IoT and AI.

SMART Manufacturing Forum – Manufacturing adaptability is a key enabler of advanced technologies and applications. Industry leaders will gather to explore what’s needed to leverage advanced analytics, improve the use of real-time simulation and cyber-physical systems and better integrate the supply chain to drive greater manufacturing flexibility.

Workforce Development – The new Workforce Pavilion at SEMICON Korea extends SEMI’s efforts to help tackle the industry’s vital need for talent. The Pavilion offers university students interviews with industry experts and tutorials on semiconductor production to help students explore career paths. SEMICON Korea will also launch a mentoring program to help students enter careers in semiconductor manufacturing.

SEMICON Korea 2019 will also feature its popular business matching program with seven device makers and original equipment manufacturers (OEMs) meeting with 100 potential customers.

“SEMICON Korea 2019 provides programs that help power industry growth,” said H.D. Cho, president of SEMI Korea. “We continue to expand our event offerings to offer new ways for the industry to “Connect, Collaborate and Innovate.”

For more event information, please click here.

Micron Technology, Inc., (Nasdaq: MU) today announced at Electronica 2018 that it will collaborate with the BMW Group to further advance the development of automotive memory solutions used in vehicles. Memory and storage are key components in accelerating the intelligence and user experience of next-generation systems in vehicles, including in-cabin infotainment as well as advanced driver-assistance systems (ADAS) technology, which together play an important role in making self-driving autonomous cars a reality.

Micron and the BMW Group will intensify their existing efforts toward testing and development of automotive memory solutions at Micron’s state-of-the-art lab in Munich, Germany. Using the Test Automation Framework of the BMW Group as a car emulator platform, the two companies will work together to define and validate memory and storage solutions for next-generation platforms. The collaborative effort will leverage Micron’s memory and storage technology expertise, along with its broad portfolio of DRAM, NAND, and NOR technologies, including LPDRAM, e.MMC, UFS and SSD storage solutions.

As a proven memory partner for automotive manufacturers, Micron recognizes the importance of validating and testing new automotive memory technologies for robustness and reliability before releasing them into the market. Micron’s customer lab expertise in developing innovative automotive memory technologies will enable the BMW Group to raise the quality of the driving experience in automobiles of the future.

“The incorporation of new features and capabilities in advanced in-vehicle infotainment (IVI) and ADAS, such as voice recognition, hand gesturing and image recognition, are driving an explosive growth in both volatile and nonvolatile memory embedded in vehicles, accelerating intelligence at the edge,” said Giorgio Scuro, vice president of Micron’s automotive division. Micron has a long-standing record working with automotive industry partners, and this joint initiative with the BMW Group is a testament to our expertise in bringing innovative automotive memory technologies to market.”

As a leading memory partner with more than 25 years of experience, Micron provides advanced automotive memory solutions that meet stringent quality, reliability and compliance requirements. Micron’s broad portfolio of volatile and nonvolatile memory products are optimized for automotive and supported by a formal product longevity program.

Spin Memory, Inc. (Spin Memory), the MRAM developer, today announced a commercial agreement with Applied Materials, Inc. (Applied) to create a comprehensive embedded MRAM solution. The solution brings together Applied’s deposition and etch capabilities with Spin Memory’s MRAM process IP.

Key elements of the offering include Applied innovations in PVD and etch process technology, Spin Memory’s revolutionary Precessional Spin Current™ (PSC™) structure (also known as the Spin Polarizer), and industry-leading perpendicular magnetic tunnel junction (pMTJ) technology from both companies. The solution is designed to allow customers to quickly bring up an embedded MRAM manufacturing module and start producing world-class MRAM-enabled products for both non-volatile (flash-like) and SRAM-replacement applications. Spin Memory intends to make the solution commercially available from 2019.

“In the AI and IoT era, the industry needs high-speed, area-efficient non-volatile memory like never before,” said Tom Sparkman, CEO at Spin Memory. “Through our collaboration with Applied Materials, we will bring the next generation of STT-MRAM to market and address this growing need for alternative memory solutions.”

“Our industry is driving a new wave of computing that will result in billions of sensors and a dramatic increase in data generation,” said Steve Ghanayem, senior vice president of New Markets and Alliances at Applied Materials. “As a result, we are seeing a renaissance in hardware innovation, from materials to systems, and we are excited to be teaming up with Spin Memory to help accelerate the availability of a new memory.”

Semiconductor Research Corporation (SRC), today announced that SK hynix, a global leader in producing semiconductors including DRAM and NAND Flash memory, has signed an agreement to join SRC’s research consortium. SK hynix will participate in multiple SRC research initiatives including; Global Research Collaboration (GRC) and the New Science Team (NST) project.

GRC, a worldwide research program with 17 industrial sponsors is comprised of nine design and process technology disciplines. SK hynix will participate in SRC’s Nanomanufacturing Materials and Processes and Logic & Memory Devices research programs that focus on new device structures, memory alternatives, materials, and processes.

The NST project, a consortium consisting of 12 industrial sponsors and three government agencies is a 5-year, $300 million SRC initiative launched this January. NST consists of two complementary research programs: JUMP (Joint University Microelectronics Program) and nCORE (nanoelectronics Computing Research), which will advance new technologies focused on high- performance, energy-efficient microelectronics for communications, computing and storage needs for 2025 and beyond.

“The entire SRC team joins me in welcoming SK hynix to our distinguished membership of industry leaders from around the world”, said Ken Hansen, President and CEO of SRC. “SK hynix has an impressive history that showcases how ingenuity and innovative thinking can advance technology at a progressive pace. We look forward to a long, successful relationship with SK hynix as we push the limits of imagination and innovation.”

“SK hynix’s fundamental objective to surpass technological boundaries through propelling innovation has brought us to this association with SRC”, said Jinkook Kim, Head of R&D at SK hynix. “We recognize the significant impact that collaborative research programs such as those underway at SRC have in moving our industry forward. Strategic partnerships in research and development will help drive the Fourth Industrial Revolution with AI and autonomous vehicles leading the way.”

Today’s announcement is significant as the top 5 global semiconductor companies are now members of SRC. SK hynix represents the 8th non-U.S. headquartered company to join SRC as it seeks to expand its global presence. Industry sponsors are invited to explore the possibilities at SRC.

Pinnacle Imaging Systems, a developer of high dynamic range (HDR) Image Signal Processors (ISP) and HDR video solutions and ON Semiconductor, a provider of HDR capable image sensors, today jointly announced a new lower cost HDR video surveillance solution capable of capturing high contrast scenes (120 dB) with 1080p and 30 frames per second (fps) output. The new HDR video platform, running on the Xilinx Zynq 7030 SoC, meets the requirements to capture the highlight and shadow details of high contrast scenes, providing the market’s most-expansive dynamic range for surveillance and machine vision applications. The new surveillance solution will be demonstrated during the VISION trade fair (November 6-9, 2018). Camera, AI developers and media interested in seeing live product demonstrations can visit Avnet Silica /Avnet EMG GmbH booth (Hall 1 Stand 1C82) and talk to Pinnacle Imaging representatives.

The Pinnacle Imaging Systems Denali-MC HDR ISP IP Core has been ported to run on Xilinx technology and paired with ON Semiconductor’s AR0239 CMOS image sensor, maximizing the capability of the sensor’s unique three-exposure HDR. The Xilinx hardware-programmable SoC architecture enabled Pinnacle Imaging to develop a new custom sensor interface to support the AR0239 at a fraction of the cost and development time of other SoC or ASIC-based ISPs. Denali-MC’s advanced motion compensation algorithms minimize motion artifacts often associated with multi-exposure HDR capture and Pinnacle’s locally adaptive tone mapping algorithms accurately reproduce color and tonal gradations of high contrast scenes. With Pinnacle Imaging’s proprietary Ultra HDRTM technology, camera placement is no longer a concern. These powerful capabilities also provide camera and AI developers more accurate image data, increasing recognition system accuracy, making the solution ideal for surveillance cameras and machine vision systems, intelligent traffic systems, smart city, autonomous surveillance systems and more.

“As a technology partner, ON Semiconductor has been instrumental in providing the critical support necessary to bring this project to fruition,” said Alfred Zee, CEO of Pinnacle Imaging Systems. “The high dynamic range capabilities of the ON Semiconductor AR0239 sensor, coupled with the performance of the Xilinx Zynq SoC, make an ideal foundation for our Ultra HDR Surveillance Platform. Working closely with the ON Semiconductor team, we’ve been able to achieve the best possible HDR and low light performance from the AR0239 CMOS image sensor.”

Pinnacle Imaging also worked closely with the ON Semiconductor engineers to develop a new sensor interface to support the three-exposure HDR capture mode of the AR0239 CMOS image sensor.

“Pinnacle Imaging’s HDR merge and locally adaptive tone mapping IP achieve the best results from our AR0239 sensor not just in dynamic range but also with respect to accurate color and contrast reproduction,” said Gianluca Colli, VP and General Manager, Consumer Solutions Division of Intelligent Sensing Group at ON Semiconductor. “The flexibility of the Xilinx hardware programmable SoC architecture enabled them to be first-to-market to support our new three-exposure sensor design and serves as an important reference design going forward.”

The Pinnacle Imaging team further optimized its Denali-MC HDR ISP IP to fit into the smaller, cost-optimized Xilinx Zynq 7030 SoC, enabling competitive new markets for smart security and surveillance cameras.

“To be able to offer best in class solutions to our customers we evaluate many ISPs from different vendors. Pinnacle Imaging System’s Denali-MC ISP demonstrated exceptional image quality and HDR tone mapping results and we are excited to have Pinnacle using Xilinx,” said Christoph Fritsch, Senior Director, Industrial IoT Scientific and Medical Business Unit, Xilinx.

SkyWater Technology Foundry, the industry’s most advanced U.S.- based and U.S.-owned Trusted Foundry, today announced that Tom Legere has been appointed as Senior Vice President of Operations. In this role Legere will focus on evolving and enhancing SkyWater’s operations as they drive world-class foundry efficiency and customer support in support of the company’s long-term growth objectives.

“I’m extremely excited to have Tom join us at SkyWater as we accelerate our technology foundry transformation and work to blend best-in-class operational efficiency with a highly differentiated technology portfolio.” said Thomas Sonderman, President, SkyWater Technology Foundry. “Tom brings a unique set of operations leadership experiences across the semiconductor industry and the industry segments we serve. This deep understanding of our customers will be critical as we look to scale our business in 2019 and beyond.”

Legere brings an ideal combination of leadership and operational talent to the SkyWater executive team with extensive industry experience in aerospace and defense, life sciences, security, MEMS, renewable energy and semiconductors. He has led both mature and start-up organizations with extensive implementation experience in Design for Manufacturability (DFM), lean and six sigma principles, supply chain management and customer engagement. Over the last three decades Legere has held senior operational roles at a diverse range of companies, most notably Aurora Semiconductor, Sonavation, eSolar, SVTC, Cypress Semiconductor and Atmel.

Added Legere, “SkyWater brings a truly differentiated proposition to semiconductor industry, blending innovative advanced technology development with the ability to manufacture at scale. I’m excited to join the team as we look to further scale the business with an operationally efficient, customer-first approach.”

Renesas Electronics Corporation (TSE:6723, “Renesas”), a supplier of advanced semiconductor solutions, today announced that it has resolved at the Meeting of Board of Directors held on October 31, 2018 to consolidate its wholly-owned subsidiary Renesas Semiconductor Package & Test Solutions Co, Ltd. (“Renesas Semiconductor Package & Test Solutions”) through an absorption-type merger (“Merger”).Certain disclosure items and details have been omitted due to the Merger being an absorption-type merger of a wholly-owned subsidiary.

Purpose of Merger

With an aim to build a business structure that can generate consistent profitability, Renesas reorganized its domestic manufacturing subsidiaries and business units in April 2014 to simplify and boost the efficiency of its organization and these efforts have steadily delivered tangible results. Nevertheless, Renesas must build a flexible production system based on quick decision-making to be able to respond to the rapid changes in the semiconductor industry. Renesas therefore decided to consolidate Renesas Semiconductor Package & Test Solutions, which is responsible overall for the back-end production business, effective January 1, 2019, to further simplify the organization and decision-making process within the semiconductor production business and enable rapid and consistent decision-making. The Merger will enable Renesas to build a manufacturing structure optimized for responding to changes in the business environment and accelerate further growth.

Two leading French and Taiwanese research institutes today announced their new collaboration to facilitate a scientific and technological exchange between France and Taiwan.

Leti, a research institute of CEA Tech in Grenoble, France, and the Taiwanese National Applied Research Laboratories (NARLabs), two key nanotechnology research providers in their respective countries, will explore opportunities for joint research-and-development projects in high-performance computing and networks, photonics, bio-medical nanotechnologies and brain-computer interface. Their scientists will meet in a series of workshops to initiate joint R&D projects. This agreement also includes access to each other’s unique equipment and platforms, and will offer opportunities to researchers with a specific exchange program.

The agreement was signed by CEA-Leti CEO Emmanuel Sabonnadière and NARLabs President Yeong-Her Wang during the recent Leti Day Taiwan in Hsinchu.

“CEA-Leti and NARLabs have the same goals: to create differentiating technologies and transfer them to industry,” Sabonnadière said. “This cooperation agreement will be the starting point for a strategic research cooperation between our organizations that will strengthen R&D and inspire microelectronics innovation in both Taiwan and France.”

“The National Chip Implementation Center (CIC) and the National Nano Device Laboratories (NDL) of National Applied Research Laboratories (NARLabs) have fostered close ties with CEA-Leti since 2017,” said NARLabs Vice President Wu Kuang-Chong. “Around the Leti Day Taiwan, we held seminars together, and our researchers were able to meet and exchange ideas. Topics included silicon photonics, intelligent image sensors, RF technology, 3D IC+ and device fabrication technology, among others. We believe that with this memorandum of understanding, CEA-Leti and NARLabs will continue to collaborate together to complement and to enlighten each other to formulate innovative research projects.”