Tag Archives: letter-ap-top

By Dr. Dan Tracy, Senior Director, Industry Research and Statistics, SEMI

With the recent release of Apple’s 6s and the form factors of internet enabled mobile devices and the emergence of the IoT (Internet of Things), advanced packaging is clearly the enabling technology providing solutions for mobile applications and for semiconductor devices fabricated at 16 nm and below process nodes. These packages are forecasted to grow at a compound annual growth rate (CAGR) of over 15% through 2019.  In addition, the packaging technologies have evolved and continue to evolve so to meet the growing integration requirements needed in newer generations of mobile electronics. Materials are a key enabler to increasing the functionality of thinner and smaller package designs and for increasing the functionality of system-in-package solutions.

Figure 1:  Packaging Technology Evolution – Great Complexity in Smaller, Thinner Form Factors, courtesy of TechSearch International, Inc.

Figure 1: Packaging Technology Evolution – Great Complexity in Smaller, Thinner Form Factors, courtesy of TechSearch International, Inc.

The observations related to mobile products include:

  • New package form factors to satisfy high-performance, high-bandwidth, and low power consumption requirements in a thinner and smaller package.
  • Packaging solutions to deliver systems-in-package capabilities while satisfying low-cost requirements.
  • Shorter lifetimes and differing reliability requirements. For example, high-end smartphones and tablets, the key high reliability requirement is to pass the drop test; and packaging material solutions are essential to delivering such reliability.
  • Shorter production ramp times to meet time-to-market demands of end product. This is becoming critical and causes redundancy in capacity to be required, capacity that is underutilized for part of the year

Packaging must provide a low-cost solution and have an infrastructure in place to meet steep ramps in electronic production. The move towards bumping and flip chip has only accelerated with the growth in mobile electronics, though leadframe and wirebond technologies remain as important low-cost alternatives for many devices. Wafer bumping has been a major packaging market driver for over a decade, and with the growth in mobile the move towards wafer bumping and flip chip has only accelerated with finer pitch copper pillar bump technology ramping up. Mobile also drives wafer-level packaging (WLP) and Fan-Out (FO) WLP. New wafer level dielectric materials and substrate designs are required for these emerging package form factors.

Going forward, the wearable and IoT markets will have varying packaging requirements depending on the application, the end use environment, and reliability needs. Thin and small are a must though like other applications cost versus performance will determine what package type is adopted for a given wearable product, so once more leadframe and wirebonded packages could be the preferred solution. And in many wearable applications, materials solutions must provide a lightweight and flexible package.

Such packaging solutions will remain the driver for materials consumption and new materials development, and the outlook for these packages remain strong. Materials will make possible even smaller and thinner packages with more integration and functionality.  Low cost substrates, matrix leadframe designs, new underfill, and die attach materials are just some solutions to reduce material usage and to improve manufacturing throughput and efficiencies.

SEMI and TechSearch International are once again partnering to prepare a comprehensive market analysis of how the current packaging technology trend will impact the packaging manufacturing materials demand and market.  The new edition of “Global Semiconductor Packaging Materials Outlook” (GSPMO) report is a detailed market research study in the industry that quantifies and highlights opportunities in the packaging material market. This new SEMI report is an essential business tool for anyone interested in the plastic packaging materials arena. It will benefit readers to better understand the latest industry and economic trends, the packaging material market size and trend, and the respective market drivers in relation to a forecast out to 2019. For example, FO-WLP is a disruptive technology that impacts the packaging materials segment and the GSPMO addresses this impact.

 

November 2, 2015 — Tsinghua Unigroup Ltd., a Chinese government-owned chipmaker will make a $600 million investment in Powertech Technology of Taiwan, according to multiple reports. Powertech Technology, which specializes in chip packaging and testing, will hand over 25% of the company in exchange, after new shares are issued.

According to the Wall Street Journal, Powertech will use the funds to “help it expand its assembly capacity in Taiwan, develop advanced production processes and recruit talent. It would also become Tsinghua Unigroup’s major chip assembly and testing partner.”

Tsinghua is the largest chip design company in China, and earlier this year attempted to acquire Micron Technology with a $23 billion bid. That bid ultimately failed, but it hasn’t stopped Tsinghua from investing in other US companies in the industry, including Western Digital ($3.78 billion for 15%) and Hewlett-Packard’s data-networking business (51%, $2.3 billion).

This continues the unprecedented consolidation that has come to the semiconductor industry in 2015. A trend that has shown no signs of slowing as we enter 2016.

##

To help readers follow this constantly changing situation, Solid State Technology is keeping a running scorecard of all the significant transactions in the semiconductor market here: Historic era of consolidation for chipmakers.

 

 

One thing seems clear about the semiconductor market: consolidation is showing no signs of slowing down.

On the heels of two additional acquisitions in the space around semiconductors — LAM Research acquiring KLA-Tencor and Western Digital buying SanDisk — rumors have abounded this week that there is more to come.

First, Bloomberg reported that Texas Instruments, the world’s largest maker of analog chips, is in talks to buy Maxim Integrated. TI is said to have competition for Maxim from a competitor in the analog chip space, Analog Devices.

According to the Bloomberg report, Maxim may be holding out for a hefty premium, if it does, in fact, sell.

“When asked on an Oct. 22 conference call about a possible takeover by a larger company such as Texas Instruments, Maxim Chief Financial Officer Bruce Kiddoo said the company is big enough and profitable enough to survive on its own,” Bloomberg reported. “Maxim also has the resources to do its own acquisitions, he said.”

For Texas Instruments’ part, CFO Kevin March weighed in on potential acquisitions on October 21. Bloomberg quotes him as saying: “If we were to look at an acquisition, it would probably be a company that’s going to be broad in catalog, have a diverse customer base, have a large percentage of its revenue coming from industrial and automotive, probably have a very talented R&D team. So we really do focus on the numbers that that acquisition might lead us to.”

Following the Bloomberg story, the Chicago Tribune issued a report saying STMicroelectronics is considering a bid for Fairchild Semiconductor. STMicro is Europe’s biggest chipmaker, and would be looking to “increase growth and shore up its digital products business” with the purchase, according to the report.

For its part, Fairchild, which is one of the oldest chipmakers in the US, has hired Goldman Sachs to help it find a buyer. In recent months the company has conducted talks with ON Semicondor and Infineon Technologies about being purchased, according to the Tribune.

It is still uncertain whether anything will come of either report, but it seems clear that the merger madness in the semiconductor industry is far from over.

To help readers follow this constantly changing situation, Solid State Technology is keeping a running scorecard of all the significant transactions in the semiconductor market here: Historic era of consolidation for chipmakers.

 

Growing Conference Business at Extension Media Brings Experienced Events Producer Onboard

SAN FRANCISCO, October 28, 2015 – Extension Media announced today the addition of Sally L. Bixby as Senior Events Director for Extension Media’s fast-growing conference division. She will be based in the downtown Portland, Oregon office where Extension Media has editorial staff.

Ms. Bixby is an accomplished corporate events producer with nearly 16 years of in-depth experience in operations and marketing, holding senior staff positions in multiple events projects. To date, she has managed more than 450 business conferences in North America alone and produced several internationally as well. She brings to the role a significant track record of increasing event attendance, managing large- and small-scale budgets and driving lead generation for companies such as: AMD, Avnet, Curtiss-Wright, Intel, Kontron, MathWorks and more. Throughout her career, Ms. Bixby has cultivated relationships in the embedded systems, semiconductor and medical electronics industries, as well as academia and several professional organizations, building mutually beneficial and long-term business relationships.

“We are thrilled that Sally is leading the conference operations management team and will also be focusing her energy on growing the conference and exhibition side of our business, adding several events aimed at the embedded and growing IoT market segments as well as the semiconductor manufacturing and design market,” said Vince Ridley, president and founder of Extension Media. “Her professionalism and passion for delivering successful events will benefit both Extension Media and our clients. Sally’s attention to exceeding expected goals make her an ideal fit.”

“I look forward to expanding the conference business at Extension Media, connecting knowledgeable, responsive leaders and influencers,” said Ms. Bixby. “Recent experience creating a successful China-U.S. IoT Summit for a Fortune 100 company – that resulted in 120% of the attendee goal and a 10.5% budget savings – has me looking forward to helping our clients achieve impressive results.”

Prior to joining Extension Media, Ms. Bixby was an independent senior events producer running her own company, EventBelle Productions. In 2014 and 2015, she managed all operations, budgets and the VIP program for The ConFab, the preeminent semiconductor manufacturing conference and networking event for leaders and decision-makers addressing the economics of semiconductor manufacturing.

About Extension Media
Extension Media is a privately held company operating more than 50 B2B magazines, engineers’ guides, email newsletters, web sites and conferences that focus on high-tech industry platforms and emerging technologies such as: chip design, semiconductor and electronics manufacturing, embedded systems, software, architectures and industry standards.

Extension Media produces industry leading events including The ConFab, the Internet of Things Developers Conference (IoT DevCon) and the Multicore Developers Conference (Multicore DevCon), and publishes Embedded Systems Engineering, EECatalog.com, Embedded Intel® Solutions, EmbeddedIntel.com, Chip Design, ChipDesignMag.com, Solid State Technology, Solid-State.com and SemiMD.com.

Extension Media Contacts
Vince Ridley
[email protected]
415-255-0390
Sally L. Bixby
[email protected]
503-705-8651

SAN JOSE, Calif. — Integrated Device Technology, Inc. (IDT) today announced an agreement to acquire privately held ZMDI (Zentrum Mikroelektronik Dresden AG) for total consideration of $310M in cash. The acquisition provides IDT with a highly regarded Automotive & Industrial business, and extends their technology leadership in high performance programmable power devices and timing & signal conditioning.

Automotive & Industrial provides a significant new growth opportunity. IDT gains immediate leverage for new designs in Wireless Charging, Power Management, and Timing & Signal Conditioning. ZMDI’s business is already well established and positioned for growth, and benefits immediately from IDT’s scale and technology.

“This move accelerates progress to our $800M annual revenue goal within our industry benchmark financial performance by over a year,” said Gregory Waters, IDT President & CEO. “IDT’s strategy is unchanged, but our product and technology position is significantly expanded. Our target market segments of Consumer, Communications, and High Performance Computing all benefit from additional product, revenue, and customer relationships that bolster our commitment to outgrow the semiconductor market by at least a factor of two.”

IDT extends their rapidly growing line of programmable power devices, with new high-power products addressing Communications Infrastructure and Data Center applications. This creates a new industry franchise for high performance, scalable power management solutions that cover applications ranging from Wireless Charging to Solid State Drives to Data Centers & 4G/5G basestations.

“We gain an exceptional group of talented people and intellectual property from ZMDI, who join one of the technology industry’s fastest growing companies. With the added benefit of IDT’s cost structure and high volume manufacturing capability, we expect ZMDI revenues to achieve a similar financial model as IDT’s existing business in the first year of combined operations,” Waters added.

ZMDI’s signal conditioning products provide an elegant interface between microcontrollers and analog components, such as sensors. This is extremely complimentary to IDT’s Advanced Timing products, and will enable intelligent systems that are aware of their surroundings, and can adjust system performance, timing, and power management automatically.

“We’re enthusiastic to join with IDT, and create the best positioned product innovation team in the mixed-signal semiconductor industry,” said Thilo von Selchow, President and CEO of ZMDI. “It’s rare to see such a potent combination that not only provides a powerful financial result, but more importantly establish the product and technology teams that will lead the industry in innovative new products and growth for this decade.”

The transaction has been unanimously approved by the board of directors of both companies, with closing expected before calendar end.

A report that resulted from a workshop funded by Semiconductor Research Corporation (SRC) and National Science Foundation (NSF) outlines key factors limiting progress in computing—particularly related to energy consumption—and novel device and architecture research that can overcome these barriers. A summary of the report’s findings can be found at the end of this article; the full report can be accessed here.

The findings and recommendations in the report are in alignment with the nanotechnology-inspired Grand Challenge for Future Computing announced on October 20 by the White House Office of Science and Technology Policy. The Grand Challenge calls for new approaches to computing that will operate with the efficiency of the human brain. It also aligns with the National Strategic Computing Initiative (NSCI) announced by an Executive Order signed by the President on July 29.

Energy efficiency is vital to improving performance at all levels. This includes from devices and transistors to large IT systems, as well from small sensors at the edge of the Internet of Things (IoT) to large data centers in cloud and supercomputing systems.

“Fundamental research on hardware performance, complex system architectures, and new memory/storage technologies can help to discover new ways to achieve energy-efficient computing,” said Jim Kurose, the Assistant Director of the National Science Foundation (NSF) for Computer and Information Science and Engineering (CISE). “Partnerships with industry, including SRC and its member companies, are an important way to speed the adoption of these research findings.”

Performance improvements today are limited by energy inefficiencies that result in overheating and thermal management issues. The electronic circuits in computer chips still operate far from any fundamental limits to energy efficiency, and much of the energy used by today’s computers is expended moving data between memory and the central processor.

At the same time as increases in performance slow, the amount of data being produced is exploding. By 2020, an estimated 44 zettabytes of data (1 zettabyte equals 1 trillion gigabytes) will be created on an annual basis.

“New devices, and new architectures based on those devices, could take computing far beyond the limits of today’s technology. The benefits to society would be enormous,” said Tom Theis, Nanoelectronics Research Initiative (NRI) Executive Director at SRC, the world’s leading university-research consortium for semiconductor technologies.

Inspired by the neural architecture of a macaque brain, this neon swirl is the wiring diagram for a new kind of computer that, by some definitions, may soon be able to think. (Credit: Emmett McQuinn, IBM Research - Almaden)

Inspired by the neural architecture of a macaque brain, this neon swirl is the wiring diagram for a new kind of computer that, by some definitions, may soon be able to think. (Credit: Emmett McQuinn, IBM Research – Almaden)

In order to realize these benefits, a new paradigm for computing is necessary. A workshop held April 14-15, 2015 in Arlington, Va., and funded by SRC and NSF convened experts from industry, academia and government to identify key factors limiting progress and promising new concepts that should be explored. The report being announced today resulted from the workshop discussions and provides a guide to future basic research investments in energy-efficient computing.

The report builds upon an earlier report funded by the Semiconductor Industry Association, SRC and NSF on Rebooting the IT Revolution.

To achieve the Nanotechnology Grand Challenge and the goals of the NSCI, multi-disciplinary fundamental research on materials, devices and architecture is needed. NSF and SRC, both individually and together, have a long history of supporting long-term research in these areas to address such fundamental, high-impact science and engineering challenges.

Report Findings

Broad Conclusions

Research teams should address interdisciplinary research issues essential to the demonstration of new device concepts and associated architectures. Any new device is likely to have characteristics very different from established devices. The interplay between device characteristics and optimum circuit architectures therefore means that circuit and higher level architectures must be co-optimized with any new device. Devices combining digital and analog functions or the functions of logic and memory may lend themselves particularly well to unconventional information processing architectures. For maximum impact, research should focus on devices and architectures which can enable a broad range of useful functions, rather than being dedicated to one function or a few particular functions.

Prospects for New Devices

Many promising research paths remain relatively unexplored. For example, the gating of phase transitions is a potential route to “steep slope” devices that operate at very low voltage. Relevant phase transitions might include metal-insulator transitions, formation of excitonic or other electronic condensates, and various transitions involving structural degrees of freedom. Other promising mechanisms for low-power switching may involve transduction. Magnetoelectric devices, in which an external voltage state is transduced to an internal magnetic state, exemplify the concept. However, transduction need not be limited to magnetoelectric systems.

In addition to energy efficiency, switching speed is an important criterion in choice of materials and device concepts. For example, most nanomagnetic devices switch by magnetic precession, a process which is rather slow in the ferromagnetic systems explored to date. Magnetic precession switching in antiferromagnetic or ferrimagnetic materials could be one or more orders of magnitude faster. Other novel physical systems could be still faster. For example, electronic collective states could, in principle, be switched on sub-picosecond time scales.

More generally, devices based on computational state variables beyond magnetism and charge (or voltage) could open many new possibilities.

Another relatively unexplored path to improved energy efficiency is the implementation of adiabatically switched devices in energy-conserving circuits. In such circuits, the phase of an oscillation or propagating wave may represent digital state; devices and interconnections must together constitute circuits that are non-dissipative. Nanophotonic, plasmonic, spin wave or other lightly damped oscillatory systems might be well-suited for such an approach. Researchers should strive to address the necessary components of a practical engineering solution, including mechanisms for correction of unavoidable phase and amplitude errors.

Networks of coupled non-linear oscillators have been explored for non-Boolean computation in applications such as pattern recognition. Potential technological approaches include nanoelectromechanical, nanophotonic, and nanomagnetic oscillators. Researchers should strive for generality of function and should address the necessary components of a practical engineering solution, including devices, circuits, and architectures that allow reliable operation in the presence of device variability and environmental fluctuations.

Prospects for New Architectures

While appropriate circuits and higher level architectures should be explored and co-developed along with any new device concept, certain novel device concepts may demand greater emphasis on higher-level architecture. For example, hysteretic devices, combining the functions of non-volatile logic and memory, might enhance the performance of established architectures (power gating in microprocessors, reconfiguration of logic in field programmable gate arrays), but perhaps more important, they might play an enabling role in novel architectures (compute in memory, weighting of connections in neuromorphic systems, and more). As a second example, there has been great progress in recent years in the miniaturization and energy efficiency of linear and non-linear photonic devices and compact light emitters. It is possible that these advances will have their greatest impact, not in the ongoing replacement of metal wires by optical connections, but rather in enabling new architectures for computing. Computation “in the network” is one possible direction. In general, device characteristics and architecture appear to be highly entwined in oscillatory or energy-conserving systems. Key device characteristics may be inseparable from the coupling (connections) between devices. For non-Boolean computation, optimum architectures and the range of useful algorithms will depend on these characteristics.

In addition to the examples above, many other areas of architectural research might leverage emerging device concepts to obtain order of magnitude improvements in the energy efficiency of computing. Research topics might include architectures for heterogeneous systems, architectures that minimize data movement, neuromorphic architectures, and new approaches to Stochastic Computing, Approximate Computing, Cognitive Computing and more.

Lam Research Corporation (LRCX) and KLA-Tencor Corporation (KLAC) today announced that they have entered into a definitive agreement for Lam Research to acquire all outstanding KLA-Tencor shares in a cash and stock transaction. The move, unanimously approved by the boards of directors of both companies, will create a combined company with approximately $8.7 billion in pro forma annual revenue.

The combined company expects to realize $250 million in cost savings within 18 to 24 months of closing, and anticipates gaining approximately $600 million in incremental revenue by 2020 through improved differentiation of each company’s products and creation of new capabilities.

“This is just what the doctor ordered,” Srini Sundararajan, Semiconductor and Semicaps Analyst for W.R. Hambrecht + Co./Summit Research, wrote in an analysis of the move. “It removes excessive dependence of LRCX on memory and excessive dependence of KLAC on foundry/logic.”

According to the LRCX press release, “the combination will create unmatched capability in process and process control, delivering optimized results in partnership with its customers by reducing variability and accelerating yield, ultimately helping the semiconductor industry extend Moore’s Law and performance scaling generally.”

“The pairing of Lam Research and KLA-Tencor brings industry leadership in process and process control together, accelerating our capability to address our customers’ most difficult challenges as they scale to meet the market demands of lower power, higher performance, and smaller form factors,” said Martin Anstice, Lam’s president and chief executive officer. “Lam Research and KLA-Tencor’s shared commitment to collaboration and building strong customer trust, along with our respective track records of innovation, product leadership, and operational excellence, position us as a combined company to deliver the higher levels of technology differentiation and speed to solutions that are critical to our customers’ long-term success.”

“I strongly believe that this transaction represents a great outcome for all of KLA-Tencor’s key stakeholders,” said Rick Wallace, president and chief executive officer of KLA-Tencor. “The combined company will be uniquely positioned to work collaboratively with our customers to help them meet the challenges of FinFET, multi-patterning and 3D NAND development.  Given the complementary nature of the two companies’ product offerings and technologies as well as the lack of product overlap, the combination will create an industry leader with greater opportunities for our respective employees for professional development and growth. Lastly, this transaction will benefit our stockholders who will receive compelling upfront value, in addition to the opportunity to own a meaningful stake in an industry leader and participate in the upside potential created by the combination.”

According to the press release, the transaction is expected to close in mid-calendar year 2016, pending customary regulatory approvals. The transaction is also subject to customary closing conditions, including the adoption by KLA-Tencor’s stockholders of the merger agreement and the approval by Lam Research’s stockholders of the issuance of shares in the transaction. Given their complementary product lines and the industry benefits the transaction will enable, the companies believe that they will be able to obtain the requisite regulatory approvals on a timely basis.

Analyst Sundararajan agrees: “We expect minimal opposition to this deal from the various jurisdictions, rather easily handled.”

However, Robert Maire of Semiconductor Advisors thinks approval could potentially be more difficult. “We think this is going to be the obvious biggest issue after the failed AMAT & TEL merger.  We think there will likely be opposition in the semi industry but probably less so than we heard the screaming related to AMAT/TEL,” he wrote. “While maybe not overjoyed, the combination makes a lot of sense for customers and feels a lot less negative than the failed AMAT/TEL.”

According to the press release, some of the benefits the combined company expects to see are:

  • Creates Premier Semiconductor Capital Equipment Company: Strengthened platform for continued outperformance, combining Lam’s best-in-class capabilities in deposition, etch, and clean with KLA-Tencor’s leadership in inspection and metrology
  • Accelerated Innovation: Increased opportunity and capability to address customers’ escalating technical and economic challenges
  • Broadened Market Relevance: Comprehensive and complementary presence across market segments provides diversity, scale and value creating innovation opportunities
  • Significant Cost and Revenue Synergies: Approximately $250 million in expected annual on-going pre-tax cost synergies within 18-24 months of closing the transaction, and $600 million in annual revenue synergies by 2020
  • Accretive Transaction: Increased non-GAAP EPS and free cash flow per share during the first 12 months post-closing
  • Strong Cash Flow: Complementary memory and logic customer base, operational strength, and meaningful installed base revenues strengthen cash generation capability

According to Sundararajan, the move could have negative impacts for some other companies in the industry. “This deal is quite negative for Applied Materials (AMAT) and Hermes Microvision and perhaps for ASML also,” he wrote. “In the case of AMAT, their process diagnostics and control division being based in Israel does not allow of meshing of capabilities, and product synergies really don’t exist.  In the case of Hermes Microvision, since etch is the pre-dominant user of e-beam inspection due to testing of contacts, a combination of KLAC and LRCX with both e-beam and etch capabilities can be lethal.”

Maire also foresees difficulties for competitors: “The combined LAM and KLA creates a powerhouse in the semicap industry, which is looking a lot more like a duopoly.”

Lam president and CEO Anstice concluded, “We have tremendous respect for the company KLA-Tencor employees have built over nearly 40 years — their culture, technology, and operating practices. I have no doubt that our combined values, focus on the customer, and complementary technologies will create a trusted leader in our industry, capable of creating significant opportunity for profitable growth and in turn delivering tremendous value to all of our stakeholders. This is the right time for the right combination in our industry.”

Slideshow: 2015 IEDM Preview


October 20, 2015
The 2015 IEDM Conference will be held in Washington DC.

The 2015 IEDM will be held in Washington DC.

This year marks the 61st annual IEEE International Electron Devices Meeting (IEDM). It is arguably the world’s pre-eminent forum for reporting technological breakthroughs in semiconductor and electronic device technology, design, manufacturing, physics, and modeling. The conference focuses not only on devices in silicon, compound and organic semiconductors, but also in emerging material systems.

As usual, Solid State Technology will be reporting insights from bloggers and industry partners during the conference. This slideshow provides an advance look at some of the most newsworthy topics and papers that will be presented at this year’s meeting, which will be held at the Washington, D.C. Hilton from December 7-9, 2015.

Click here to start the slideshow

Check back here for more articles and information about IEDM 2015:

Helpful conference links:

The first all-optical permanent on-chip memory has been developed by scientists of Karlsruhe Institute of Technology (KIT) and the universities of Münster, Oxford, and Exeter. This is an important step on the way towards optical computers. Phase change materials that change their optical properties depending on the arrangement of the atoms allow for the storage of several bits in a single cell. The researchers present their development in the journal Nature Photonics.

Light determines the future of information and communication technology: With optical elements, computers can work more rapidly and more efficiently. Optical fibers have long since been used for the transmission of data with light. But on a computer, data are still processed and stored electronically. Electronic exchange of data between processors and the memory limits the speed of modern computers. To overcome this so-called von Neumann bottleneck, it is not sufficient to optically connect memory and processor, as the optical signals have to be converted into electric signals again. Scientists, hence, look for methods to carry out calculations and data storage in a purely optical manner.

Scientists of KIT, the University of Münster, Oxford University, and Exeter University have now developed the first all-optical, non-volatile on-chip memory. “Optical bits can be written at frequencies of up to a gigahertz. This allows for extremely quick data storage by our all-photonic memory,” Professor Wolfram Pernice explains. Pernice headed a working group of the KIT Institute of Nanotechnology (INT) and recently moved to the University of Münster. “The memory is compatible not only with conventional optical fiber data transmission, but also with latest processors,” Professor Harish Bhaskaran of Oxford University adds.

The new memory can store data for decades even when the power is removed. Its capacity to store many bits in a single cell of a billionth of a meter in size (multi-level memory) also is highly attractive. Instead of the usual information values of 0 and 1, several states can be stored in an element and even autonomous calculations can be made. This is due to so-called phase change materials, novel materials that change their optical properties depending on the arrangement of the atoms: Within shortest periods of time, they can change between crystalline (regular) and amorphous (irregular) states. For the memory, the scientists used the phase change material Ge2Sb2Te5 (GST). The change from crystalline to amorphous (storing data) and from amorphous to crystalline (erasing data) is initiated by ultrashort light pulses. For reading out the data, weak light pulses are used.

Permanent all-optical on-chip memories might considerably increase future performance of computers and reduce their energy consumption. Together with all-optical connections, they might reduce latencies. Energy-intensive conversion of optical signals into electronic signals and vice versa would no longer be required.

London, UK and San Jose, California – Dialog Semiconductor and Atmel Corporation announced today that Dialog has agreed to acquire Atmel in a cash and stock transaction for total consideration of approximately $4.6 billion. The acquisition creates a global leader in both Power Management (defined as power management solutions for mobile platforms including smartphones, tablets, portable PCs and wearable-type devices) and Embedded Processing solutions. The transaction results in a company that supports Mobile Power, IoT and Automotive customers. The combined company will address a market opportunity of approximately $20 billion by 2019.

Dialog will complement its position in Power Management ICs with a portfolio of proprietary and ARM (R) based Microcontrollers in addition to high performance ICs for Connectivity, Touch and Security. Dialog will also leverage Atmel’s established sales channels to diversify its customer base. Through realized synergies, the combination could deliver an improved operating model and enable new revenue growth opportunities.

“The rationale for the transaction we are proposing today is clear – and the potential this combination holds is exciting. By bringing together our technologies, world-class talent and broad distribution channels we will create a new, powerful force in the semiconductor space. Our new, enlarged company will be a diversified, high-growth market leader in Mobile Power, IoT and Automotive. We firmly believe that by combining Power Management, Microcontrollers, Connectivity and Security technologies, we will create a strong platform for innovation and growth in the large and attractive market segments we serve. This is an important and proud milestone in the evolution of our Dialog story,” said Jalal Bagherli, Dialog Chief Executive Officer.

“This transaction combines two successful companies and will create significant value for Atmel and Dialog shareholders, customers and employees. Adding Dialog’s world-class capabilities in Power Management with Atmel’s keen focus on Microcontrollers, Connectivity and Security will enable Dialog to more effectively target high-growth applications within the Mobile, IoT and Automotive markets,” said Steven Laub, Atmel President and Chief Executive Officer.

The transaction is expected to close in the first quarter of the 2016 calendar year. In 2017, the first full year following closing, the transaction is expected to be accretive to Dialog’s underlying earnings. Dialog anticipates achieving projected annual cost savings of $150 million within two years. The purchase price implies a total equity value for Atmel of approximately $4.6 billion and a total enterprise value of approximately $4.4 billion after deduction of Atmel’s net cash. Dialog expects to continue to have a strong cash flow generation profile and have the ability to substantially pay down the transaction debt approximately three years after closing.

The transaction has been unanimously approved by the boards of directors of both companies and is subject to regulatory approvals in various jurisdictions and customary closing conditions, as well as the approval of Dialog and Atmel shareholders. Jalal Bagherli will continue to be the Chief Executive Officer and Executive Board Director of Dialog. Two members of Atmel’s existing Board will join Dialog’s Board following closing. The transaction is not subject to a financing condition.