Tag Archives: GaN

Nakamura on blue light history and future

Nobel Laureate Shuji Nakamura provided the keynote address to the attendees at the 57th annual Electronic Materials Conference held this week in Columbus, Ohio. His talk on “The History and Developments of InGaN-based LEDs and Laser Diodes” informed and entertained the audience of materials researchers, particularly since he followed first-principles of materials science and his natural inspiration to create the world’s first commercially viable blue LEDs over 20 years ago.
Nakamura-sensei is now legendary for showing excellent GaN-based blue LED functionality in an era when ZnSe was the main material explored by almost all scientists in the world due to six orders of magnitude superior defectivity level for the latter material (due to near zero lattice mismatch between ZnSe and GaAs, instead of the extreme mismatch between GaN and sapphire). In the 57th EMC keynote, he confessed that the only reason he began work on GaN was that almost everyone else was ignoring it so he could easily get papers published on the way to earning a Ph.D., and he initially had no plans to try to create a blue LED with the material.
However, when he bought a new MOCVD reactor to grow GaN on sapphire substrates he found the capabilities of the tool to be lacking so he began daily hardware modifications and test runs, and after some months began to get surprisingly strong data. Soon his group at Nichia was reporting world record GaN optoelectronic properties, and had developed both n- and p-type GaN. However, from first principles it was known that a double-heterojunction (DH) structure would allow for band-gap and hence wavelength tuning, so he then developed the world’s first useful InGaN MOCVD process and by 1993 was able to issue a press release claiming 1000 mcd LED output. “Indium gallium nitride is the most important material, but the Nobel committee didn’t say anything about Indium gallium nitride,” reminded Nakamura.
Most of the rest of the story is well known by now, including his precedent-setting lawsuit with Nichia, move to UCSB, and founding of Soraa.
Nakamura’s vision for the the future of blue (and through integration with phosphors “white”) light can be summed up as LEDs are good but lasers are better. Relatively speaking, with lasers the current density can by many times higher, and BMW and Audi have prototype laser headlamps that can reach 2-3x farther down the road compared to the best lamps today. The challenges today are to improve efficiency and cost. Efficiency for blue LEDs are now 50-60% while lasers are only ~30%. Also, blue laser production cost is now ~10x higher than that for blue LEDs.
—E.K.

Nakamura Co-Wins Nobel for Blue LEDs

The Nobel Prize in Physics 2014 was awarded jointly to Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura “for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources”. In the late 1980s red and green LEDs had been around for decades, but despite large programs in both academia and industry there had been almost no R&D progress in blue LEDs (this editor did process R&D in an LED fab in that era). Then Akasaki and Amano at the University of Nagoya showed work on improved p-doping in GaN due to electron irradiance, leading to p-n junctions to make diodes.

Structure of a blue LED with a InGaN/AlGaN double heterojunction [Source: S. Nakamura, T. Mukai & M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)].

Structure of a blue LED with a InGaN/AlGaN double heterojunction (Source: S. Nakamura, T. Mukai & M. Senoh, Appl. Phys. Lett. 64, V1687, 1994).

From 1989 to 1994, Shuji Nakamura worked at Nichia Chemicals in Tokushima, Japan where he led a small team of co-workers to achieve a quantum efficiency of 2.7% using a double heterojunction InGaN/AlGaN (see Figure). With these important first steps, the path was cleared towards the development of efficient blue LEDs and solid-state white lighting. Nakamura-sensei is now a Professor of Physics at the University of California, Santa Barbara, and co-founder of Soora Corp. where GaN-on-GaN technology is used to increase efficiency through the elimination of the buffer-layers needed with saphhire substrates. The “Tales of Nakamura” article at IEEE Spectrum provides an excellent summary of this extraordinary man’s life story, including the US$600M payout from Nichia that was reduced to US$8M by a higher court.
Incandescent light bulbs lit the 20th century; the 21st century will be lit by LED lamps with high lm/W efficiency. The most recent record is just over 300 lm/W, which can be compared to 16 for regular light bulbs and close to 70 for fluorescent lamps. As about one fourth of world electricity consumption is used for lighting purposes, the LEDs contribute to saving the Earth’s resources.
Shine on!
—E.K.

IBM Shows Graphene as Epi Template

Last month in Nature Communications (doi:10.1038/ncomms5836) IBM researchers Jeehwan Kim, et al. published “Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene.” They show the ability to grow sheets of graphene on the surface of 100mm-diameter SiC wafers, the further abilitity to grow epitaxial single-crystalline films such as 2.5-μm-thick GaN on the graphene, the even greater ability to then transfer the grown GaN film to any arbitrary substrate, and the complete proof-of-manufacturing-concept of using this to make blue LEDs.

(Source: IBM)

(Source: IBM)

The figure above shows the basic process flow. The graphenized-SiC wafer can be re-used to grow additional transferrable epi layers. This could certainly lead to competition for the Leti/Soitec/ST “SmartCut” approach to layer-transfer using hydrogen implants into epi layers.
No mention is made of the kinetics of growing 100mm-diameter sheets of single-crystalline GaN on graphene. Supplemental information in the online article mentions 1 hour at 1250°C to cover the full wafer, but the thickness grown in that time is not mentioned. From first principles of materials engineering, they must either:

A) Go slow at first to avoid independent islands growing to form a multicrystalline layer, or
B) Initially grow a multicrystalline layer and then zone anneal (perhaps using a scanned laser) to transform it into a single-crystal.
In either case, we would expect that after just a few single-crystalline atomic layers had been either slowly grown or annealed, that a 2nd much-higher speed epi process would be used to grow the remain microns of material. More details can be seen in the EETimes write up.
—E.K.