Category Archives: Wafer Level Packaging

November 7, 2012 – Deca Technologies has introduced a new chip-scale packaging (CSP) product line offering a rugged, fully molded packaging technology in ball-grid array (BGA) style formats that eliminate the need for laminate substrates.

A year ago Deca launched its inaugural wafer-level chip-scale packaging (WLCSP) technology "derivatives," developed with help from solar tech firm SunPower, promising a combination of speed, low cost, and flexibility. Much of the technology behind its work, though, was customized and deeply proprietary, with few details made available.

Nonetheless, industry response to the WLCSP offering "has been very strong," with multiple customers now in production and many more undergoing qualification, claims Tim Olson, Deca president/CEO.

The company’s new M-Series CSP line, geared for applications where the WLCSP option isn’t a good fit, features an "Adaptive Patterning" design/patterning process that allows features such as vias and redistribution traces to dynamically align to shifting die within an embedded device structure — creating a unique design for each device during the manufacturing process. The company says the methodology integrates a fixed design pattern with an adaptive region to resemble classic wirebond, but realized through a wafer-level build-up flow. With an additional "dimensional inspection" step and processing through an automated design software, a unique design is created for every device within a molded panel, removing the barrier of a cost-effective embedded flow, the company claims.

The M-Series CSP is now sampling "to a limited set of customers," with broader availability planned for 2013, the company says.

Dr. Phil Garrou, SST‘s resident expert and blogger about all things advanced packaging, is digging into the details of Deca’s new CSP and "adaptive patterning" offering — look to his Insights from the Leading Edge (IFTLE) blog for an analysis in the coming days.

November 1, 2012 – X-Fab Silicon Foundries says it has become the majority shareholder in German MEMS Foundry Itzehoe GmbH (MFI), the latest in a series of recent moves to raise its profile as a top MEMS foundry.

The MFI business, renamed X-Fab MEMS Foundry Itzehoe, complements X-Fab’s capabilities in its MEMS foundry in Erfurt, adding technologies for microsensors, actuators, micro-optical structures and hermetic wafer-level packaging processes. X-Fab originally signed MFI as a contract MEMS manufacturing partner in Feb. 2011, a deal that expanded its capabilities across a range of 200mm MEMS technologies. Its ownership stake in MFI is now 51%, up from 25.5%.

X-Fab MEMS Foundry Itzehoe will continue its long-term cooperation with the Frauhofer Institute for Silicon Technology‘s (ISIT) MEMS Group. MFI was spun out of ISIT in 2009 and is located within the same wafer fabrication facility in Itzehoe/Germany.

"Our customers will benefit from both an even wider spectrum of available MEMS technologies and from direct access to X-Fab’s manufacturing facilities for CMOS-compatible MEMS processes," stated Thomas Hartung, VP of marketing at X-Fab Group. "X-Fab MEMS Foundry Itzehoe will play an important role in the implementation of our MEMS strategy, and brings us closer to our goal of becoming one of the top three pure-play MEMS foundry providers."

"The rich combination of the versatile MEMS-specific technology portfolio at the Itzehoe-based MEMS foundry and the development expertise of Fraunhofer ISIT greatly expands the capabilities of X-Fab’s technology offering," added Peter Merz, managing director of X-Fab MEMS Foundry Itzehoe. "We are delighted to provide the full bandwidth of MEMS technologies including vacuum and optical wafer-level packaging or TSV backed by X-Fab’s existing and well-proven foundry services. This integration brings X-Fab customers bundled and accelerated product development and manufacturing cycles for micro-machined devices such as inertial sensors, micro-mirrors, and piezoelectric transducers."

Barely a month ago X-Fab pledged to invest $50M over the next three years to support projected growth and a goal of "becoming one of the top three worldwide suppliers of MEMS foundry services." (X-Fab placed 10th in Yole Développement’s 2011 MEMS foundry rankings, surging 33% to roughly $16M in revenues, about $31M shy of No.3 Silex Microsystems.) Among X-Fab‘s other recent MEMS accomplishments:

 

Keeping it Cool

Back in 2008 we addressed 3D cooling activities [see PFTLE 43, "Keeping it cool in the dog days of summer"] looking a the activities at IBM Zurich, GaTech, and CALCE (U Md) as the groups especially active in this area.

Since then we have looked further at the liquid cooling activities of Bakir at GaTech [see IFTLE 83, "Orange County IEEE CPMT 3DIC Workshop"] and Brunschwiler at IBM Zurich [see "IBM to use water cooling for future 3D IC processors"] and the fact that one of the drivers for 2.5D is that it offers better thermal performance that current 3D stack solutions [ see IFTLE 97, "DATE in Dresden, Synopsys 3D EDA solution"]. For the most part, though, IFTLE has taken the position that thermal would not be the roadblock for 3DIC and that initial products would be ones where the thermal solution was not driving the technology.

Now that we are quickly approaching full commercial production of a number of products, it’s probably a good time to focus more on proposed thermal solutions for the future. To update yourself on where things stand, I suggest Herman Oprins’ article "Modeling and experimental characterization of hot spot dissipation in 3D stacks." He concludes that thermal management issues in these 3D stacks are one of the main challenges for 3D integration since the use of polymer adhesives with low thermal conductivity, the presence of interconnection structures, back end of line (BEOL), redistribution layers (RDL), and through-Si vias (TSVs) increases the complexity of the conductive heat transfer paths in a 3D stack.

Oprins concludes that hot spot power dissipation results in significantly higher temperatures in 3D stacked chips compared to the same power dissipation in single 2D chips. This temperature increase is mainly due to the reduced thermal spreading in the thinned dies on the one hand, and to the use of adhesives with low thermal conductivity for the vertical integration of the chips on the other hand. To limit the temperature increase in 3D-ICs, "too thin chips should be avoided" because the thinner the silicon substrate, the higher the thermal spreading resistance is in the case of hot spots. Simulations show that a minimum die thickness of 50

October 16, 2012 – SEMI has extended the call for papers for the 2013 China Semiconductor Technology International Conference (CSTIC) to October 22. Paper abstract guidelines are listed here, and SEMI says there remain "just a few openings" for proposed talks on semiconductor technology and manufacturing. Original and overview papers from integrated device manufacturers (IDMs), equipment/materials suppliers, and academic and research institutes are welcomed.

The CSTIC (March 17-18 in Shanghai), held in conjunction with SEMICON China (March 19-21), is the largest annual semiconductor technology conference for the industry in China. (Last year’s CSTIC featured 100 technical lectures, 300 speakers, and nearly 1000 attendees.) Confirmed plenary speakers for CSTIC 2013 are RPI prof and Nobel Laureate Ivar Giaever, and "father of SOI technology" Ghavam Shahidi, IBM Fellow and director of Silicon Technology at IBM.

The CSTIC program offers 10 symposia covering all aspects of semiconductor technology and manufacturing, including a just-announced new track covering "circuit design, system integration and applications." Other tracks include: device engineering and technology; lithography and patterning; dry & wet etch and cleaning; thin-film technology; CMP, wafer substrate polishing and post-polish cleaning; materials and process integration for device and interconnection; packaging and assembly; metrology, reliability and testing; emerging semiconductor technologies; and advances in MEMS and sensor technologies.

SEMI and ECS are the organizers along with China’s High-Tech Expert Committee (CHTEC) with co-sponsors IEEE, MRS, and the China Electronics Materials Industry Association.

October 12, 2012 – The advent of leading-edge semiconductor packaging technologies dictates efficient use of capital, and only the top-tier companies will have the financial wherewithal to develop required expertise and capacity. That means consolidation needs to happen in the semiconductor assembly and test services (SATS), according to a recent report from Gartner.

IDMs started moving packaging plants into the Asia-Pacific region in the 1980s, and by the early 1990s outsourced packaging had bloomed, and gained speed with the emergence of the fabless/foundry model, explains Gartner analyst Jim Walker in a recent report ("Competitive Pressures Will Bring Consolidation to the SATS Market"). Over the past 10 years outsourcing has accelerated with proliferation of customized, application-specific packaging demand, and today the market has quintupled since 1997 to $25B, with nearly all the 130 SATS companies still in the greater Asia-Pacific region (including Japan).

Right now the SATS market is on a 8% CAGR trajectory from 2011-2016, but growth on an annual basis is slowing, Walker notes. The top five SATS companies currently comprise 50% of the market and will expand to nearly 60% by 2012 — that’s five out of more than 130 suppliers. The top 20 SATS companies comprise more than three-fourths of the market.

Top 10 SATS companies in 2011, sales as a percentage of total market. (Source: Gartner)

Consolidation is not only inevitable, it is sorely needed. Several factors will push these firms together:

  • Slower growth, due to market saturation. Crossing the 50% outsourcing saturation mark in 2011 implies that the total market available for packaging services from IDM, OEM, and fabless companies is shrinking, and will be more tied to industry unit growth and new business sectors.
  • Increasing competition at leading-edge technology nodes, and in niche markets. The process node migration continues (28nm, 20nm, 14nm, eventually 10nm and below), as does increased demand for mobile devices, which together necessitate more packaging technology and capacity for capabilities including WLP, flip-chip, through-silicon via (TSV), and redistribution layers. Those who can stomach the capital requirements for these, will stay on top — and those who cannot will find themselves on the losing end.

    Similarly, as the outsourcing sector aligns to industry unit growth, SATS companies focusing on specific markets (e.g. memory) are more exposed to narrow, commodity-like and price-sensitive market forces. Such companies need to expand on their own into other markets, or consolidate with bigger and broader SATS companies. See recent expansion/divestment news from PTI, Power ASE, SPIL, and ChipMOS. (In fact this trend could spell the end of memory-specific packaging and test services market, Walker notes.)

  • Continued efforts by IDMs and OEMs to outsource backend processes. Technology investments and capacity additions are a hard sell when utilization rates are low (or aren’t at full strength). The proliferation of packaging options (Gartner cites >2000 unique packages) is forcing OEMs/IDMs to rethink sharing capital investments, deciding to leave it to the outsourced "experts."
  • Increasing importance of a China market strategy. Most top 10 SATS companies have at least one Chinese manufacturing facility, initially taking advantage of cost savings and incentives. But now, recognizing China’s swelling appetite for electronics components and systems, SATS firms want and need those domestic capabilities to satisfy demand. ASE, for example, has led the way in defining a strategy that straddles operations in both Taiwan and China, including $1.2B to build up operations in Shanghai and Pudong.

Continued emergence and development of wafer-based packaging process technologies requires both wafer fabrication and semiconductor packaging manufacturing equipment, processes, and expertise — meaning foundries can do some of them too, such as wafer bumping and underbump metallization. Similarly, 3D package stacking, embedded components, and system-in-package (SiP) devices require both processes and technologies for packaging and printed circuit board assembly — and technologies such as system-on-package will further blur these roles. SATS firms should expect to see increased competition from the foundry market, Walker notes. They also need to expand their services to include test capabilities, package design, and module offerings. And perhaps most importantly, they need to get virtual or vertical — develop an acquisition plan or partnerships/joint ventures with foundries, EMS/ODM firms, and/or materials and equipment companies, he advises.

October 10, 2012 – Nanium says it has shipped its 200 millionth embedded wafer-level ball grid array technology (eWLB) component, a milestone reached in less than two years. The achievement represents a 10% year-over-year productivity increase, and reflects full conversion to the company’s eWLB overmold technology that allows both thinner and more robust packages, according to the company.

The shipment milestone "demonstrates that eWLB technology is a robust low-cost solution delivering both high reliability and high yields for manufacturing advanced electronic products with high I/O density in a small form-factor," stated Armando Tavares, president of NANIUM

Devan Iyer, director of Semiconductor Packaging in Texas Instrument’s Manufacturing Group, has joined the advisory board of The ConFab, a conference and networking event hosted by Solid State Technology and PennWell, focused on the economics of semiconductor manufacturing. As Director of TI’s worldwide semiconductor packaging operations, Dr. Mahadevan "Devan" Iyer oversees a global team that drives a process to determine the packaging design and technologies that best meet the requirements of TI’s customers in measures of miniaturization, performance, cycle time and cost.

With more than 25 years of experience in microelectronics and packaging, Iyer is a recognized authority on packaging technologies. He has published more than 180 technical publications, has 28 patents to his credit and is a frequent invited speaker at industry meetings and conferences.

The ConFab has a long history of covering advanced packaging and 3D integration, and welcomes Dr. Iyer’s insights.

In 2013, The ConFab will be held June 23-26 at The Encore at The Wynn in Las Vegas.

Four of the leading micro- and nanoelectronics regions in Europe are joining forces to form a cluster alliance called “Silicon Europe.” The four groups, Silicon Saxony (Dresden/Germany), DSP Valley (Belgium), Minalogic (Grenoble/France) and Point One (Eindhoven/Netherlands), will be cooperating in research, development and business expertise.

Together they represent about 800 research institutes and companies, which account for more than 150,000 jobs; among the companies are global market leaders such as Philips, NXP, Globalfoundries, Infineon, STMicroelectronics, Schneider Electric und Thales.

This is a three year effort, as shown in the diagram. “We want to set up a joint action plan that is organized between the four clusters,” said Frank Bösenberg, in charge of administration of Silicon Europe, speaking at a press conference in Dresden. “Not only this, in the third year, we also want to start implementing this action plan. It’s not only about creating paper, but doing some action. In addition to this, we want to involve if possible additional European players.”


 “Global competition is tough and investments into European microelectronics are declining”, says Jean Chabbal, Chief Representative and CEO at the French Cluster Minalogic (Grenoble/France). In 2007 only 10% of all worldwide investments into microelectronics, around 28 billion Euro, went to Europe, while about 48% went to Asia. Since 2000 Europe’s market share in the semiconductor industry has dropped from 21 to 16 percent, yet the European microelectronics sector still employs 135,000 people directly along with another 105,000 in its supplier industries. “Europe is home to a number of the world’s best known, and most active regions in the micro- and nanoelectronics industry and the semiconductor industry, more specifically. These clusters, established over many years, with strong consolidated structures from industry, research and local governments, serve all application fields of micro- and nanoelectronics and have access to the most advanced research and key competencies – the European micro- and nanoelectronics sector must take advantage of this leading position and further expand upon it. This is the only way for Europe to maintain its role as a world-renowned leader in technology research and development”, continues Jean Chabbal.

Silicon Saxony (Dresden) is a unique conglomeration of companies with know-how in micro- and nanoelectronics, photovoltaic, organic and printed electronics, energy efficient systems, communications technology and sensor networks. More than 300 cluster partners employ 48,000 people. 

At the cluster Minalogic (Grenoble) 204 cluster partners with more than 39,000 employees develop modern micro- and nanoelectronics and integrated system-on-chip technologies. Their work applies to the sectors energy efficiency, connectivity and mobility, health systems and traditional industries. 

Point-One (Eindhoven) connects 170 cluster partners, who jointly develop solutions for mechatronics, integrated systems, photonics and micro-and nanoelectronics. Their solutions apply to lighting systems, to semiconductor and photovoltaic production and also the mobility, logistics and security branches. 

The 75 partners of the technology cluster DSP Valley (Leuven) are focusing on the development of hardware and integrated software technology for digital signal processing and system-on-chip solutions. 

Silicon Europe calls for a European ICT-Summit

 “Our activities and plans will not end at national borders as they did before – Silicon Europe stands for the common interest of the European microelectronics industry”, explains Peter Simkens, Managing Director at the Belgian Cluster DSP Valley. “However, to be successful in the long run, Silicon Europe and European microelectronics need active political support. We are appealing to all national governments to increase the synchronization of their economic and innovation policy with the European Commission and its guidelines. In order to realize this we are calling for a European micro- and nanoelectronics summit, which – similar to the German IT summit – shall bring together leading actors and decision makers from the European Commission, the national governments and all relevant branch organizations and associations. The European economy needs to expand on its strengths now, if it wants to remain competitive in the global market for the long run.”

Transnational Cluster Alliance as a new impetus

“Silicon Europe stands for a new quality of an European industry policy”, says Thomas Reppe, General Manager of the German Cluster Silicon Saxony. “In close cooperation with regional development agencies and institutes we transfer the cluster concept of Saxony’s Research Cluster for Energy Efficiency ‘Cool Silicon’ – the strong cooperation across organizational and institutional borders – onto a transnational level. Through this new and strong cluster alliance we are securing not only Europe’s current know-how in production of KET relevant technologies, but we are also working together on a strategic technology roadmap, which can serve the European Commission as a template and development guide for future programs.”

Silicon Europe offers a platform for active exchange among the clusters and their nearly 800 members, including internationally leading corporations; more than 75 percent of all partners are small and medium sized businesses. By performing a detailed analysis of each of the four cluster’s main research topics and by synchronizing their activities, previously unused synergies are being utilized.

Europe 2020

By intensifying transnational cooperation of regional research-oriented competence clusters, Silicon Europe will make a substantial contribution to “Europe 2020”, the EU growth strategy for the coming decade. The program’s focus is the advancement of research and development as a basis for a modern and strengthened European society. “With their activities, the European Commission aims at a digital and resource-efficient development – for both of these core goals micro- and nanoelectronics are a decisive factor”, says Eelco van der Eijk, contact person for the high-tech industry at the Dutch Ministry of Economic Affairs.  One of the key words for these activities is ‘smart specialization’ – the EU’s control mechanism to tailor and efficiently distribute development funds in the European technology regions.

Michael Kretschmer, Vice-Chairman of the CDU Parliamentary Group at the German Bundestag, member of the German Bundestag and member of the Committee on Education, Research and Technology Assessment explains his support for the initiative: “The Europe-Cluster of the micro- and nanoelectronics sites is a very important signal for both German and European politics. Together and across national borders we have to ensure that this key technology still has a home in Europe in the future. In the past, European clusters seldomly worked together – luckily, this is going to change now. I appreciate the Silicon Europe initiative and wish for it to find numerous supporters and advocates also in the German Bundestag and the German government. The high-tech nation Germany can simply not forego these technologies that by enabling innovations in various industries create jobs and prosperity”.

 

 

October 2, 2012 – Sand 9, a Cambridge, MA-based developer of precision microelectromechanical systems (MEMS) timing technology for wireless and wired applications, is partnering with GlobalFoundries for high-volume manufacturing of its technology, which incorporates silicon-on-insulator (SOI) and through-silicon vias (TSV).

"Partnering with GlobalFoundries allows Sand 9 to meet heightened market demand for the highest-volume mobile applications, including handsets, tablets and other consumer electronics," stated Vince Graziani, CEO of Sand 9. "Our collaboration will ensure a stable, reliable supply chain for all of our customers in mobile as well as in wireline communications infrastructure, cellular base station, and test and measurement markets."

The deal also highlights GlobalFoundries’ MEMS design and manufacturing capabilities, pointed out Raj Kumar, SVP for the foundry’s 200mm business unit & GM of its Fab 7 facility in Singapore (formerly Chartered Semiconductor). "For Sand 9, we have established a very cost-effective and novel MEMS process technology platform integrated with polysilicon through-silicon vias (TSVs) for wafer-level packaging," he noted.

Also read:
MEMS timing firm Sand 9 lands $3M investment from mobile gear giant Ericsson
Intel Capital leads Sand 9 funding round, joins board

Examining a Sand 9-provided white paper (circa 2010) reveals more details about its "temperature-compensated crystal oscillator" (TCMO) technology. A silicon-based MEMS resonator is suspended and acoustically decoupled from a silicon substrate using a "special engineered substrate" (an SOI wafer), with a predefined cavity hidden in the handle silicon layer. Through-silicon vias are formed inside that SOI substrate, then the backside routing is prepared for final solder bumping. DRIE etch through the device silicon layer releases the resonator structure — having the buried cavity enables this release to be done "very fast and clean" using dry etching, the company explains, since no sacrificial layer or wet etching chemistry means one less time-consuming material removal process and it also eliminates stiction effects. The CMOS IC wafer and MEMS wafer are then bonded to create interconnects and hermetic seal around the MEMS resonator, followed by deposition of underbump metallization and solder bumps. Electrical and thermal interconnects are made during the bonding process; the TSVs are directly routed through to the IC, not the MEMS resonator.

MEMS oscillators accounted for less than 1% of the $6.3B timing devices market $6.3B in 2011, according to Semico Research, but the firm projects a sparkling ~86% compound annual growth rate (CAGR) for both MEMS oscillator sales and unit shipments over the next five years (2011-2016), mostly thanks to demand from smartphones.

Visit the MEMS Channel of Solid State Technology, and subscribe to our MEMS Direct e-newsletter! And visit the Advanced Packaging Channel of Solid State Technology, and sign up for our Advanced Packaging News e-newsletter!

September 27, 2012 – Researchers at the Karlsruhe Institute of Technology (KIT) say they have developed a novel optical connection process for semiconductors using "photonic wire bonding" and femtosecond lasers, that achieves data transmission rates of several Tbit/sec.

Developing and integrating high-performance optical emitters and receivers onto semiconductors is already a reality, but it’s been harder to figure out how to actually bridge chips optically. "The biggest difficulty consists in aligning the chips precisely such that the waveguides meet," explains Christian Koos, professor at the KIT Institutes of Photonics and Quantum Electronics (IPQ) and of Microstructure Technology (IMT) as well as member of the Center for Functional Nanostructures (CFN).

So he and his team looked at the problem from the other side: arrange the chips and then structure a polymer-based optical waveguide. They developed a method for 3D structuring of an optical waveguide using high-resolution, two-photon polymerization — a femtosecond laser writes the freeform waveguide structure directly into a polymer on the surface of the silicon-on-insulator chips. (Specifically they used laser lithography from Nanoscribe, a KIT spinoff.) Importantly, this means the interconnection adapts to the chip’s position and orientation, so such restrictive alignment isn’t necessary from the beginning — making this process more suitable for industrial production scale-up.

Prototypes of the photonic wire bonds were said to have very small losses and very high transmission bandwidth in the range of IR telecommunications (1.55