Tag Archives: foundry

RFID Playing Cards “Best Product” at Printed Electronics Europe

Cartamundi, imec and Holst Centre (set up by imec and TNO) recently won the Best Product Award at Printed Electronics Europe for their ultra-thin plastic RFID technology integrated into Cartamundi’s playing cards. In each card, the RFID chip has a unique code that communicates wirelessly to an RFID reader, giving the cards in the game a unique digital identity. The jury recognized the potential of this technology to enhance printed electronics applications for the Internet-of-Things (IoT), as well as being a gamechanger <RIMSHOT> for the gaming industry.

Cartamundi-imec_RFID_PrintedChris Van Doorslaer, CEO of Cartamundi, said, “The new technology will connect traditional game play with electronic devices like smartphones and tablets. As Cartamundi is committed to creating products that connect families and friends of every generation to enhance the valuable quality time they share during the day, this technology is a real enabler.” Imec and Cartamundi engineers will now explore up-scaling of the technology using a foundry production model.

“This is a thrilling development to demonstrate our TOLAE electronic technology integrated in the product of a partner company. TOLAE stands for Thin, Oxide and Large-Area Electronics”, stated Paul Heremans, department director of thin-film electronics at imec and technology director at the Holst Centre. “Our prototype thin-film RFID is thinner than paper—so thin that it can be invisibly embedded in paper products, such as playing cards. This key enabling technology will bring the cards and traditional games of our customer in direct connection with the Cloud. This achievement also opens up new applications in the IoT domain that we are exploring, to bring more data and possibilities to applications such as smart packaging, security paper, and maybe even banknotes.”

—E.K.

Silex’ Strategic Acquisition by China

A secretive investment holding company out of Hong Kong named GAE Ltd has acquired 98% of the shares in Silex Microsystems AB (Jarfalla, Sweden). The transaction took place on July 13th of this year when the former major shareholders agreed to sell all of their respective holdings, while Silex founder and CEO Edvard Kalvesten retains 2% of the shares in the company and continues his role as CEO and board member of Silex. No changes are made to the organizational structure or business operations of Silex, while the new owners plan to build a new high-volume manufacturing line near Beijing that clones the equipment and processes in Sweden with first wafers out by mid-2017 (as reported at EETimes).

Silex claims to be the “world’s number one Pure Play MEMS Foundry”, has worked with AMFitzgerald&Assoc. on RocketMEMS shuttle wafers to reduce MEMS development time by 6-12 months, and has developed multiple Through-Silicon Via (TSV) technologies to allow for efficient 3D integration of MEMS and CMOS.

Almost lost as a footnote in the news is that Silex holds IP on lead-zirconium-titanate (PZT) thin-film technology that allows for efficient piezo-electric energy-harvesting chips. MicroGen Systems is currently in the market with aluminum-nitride (AlN) piezo-cantilever micro-power generator system to power IoT nodes by scavenging either single-frequency or multi-frequency vibrations, working with X-Fab in Germany as foundry partner. If PZT-based piezo-cantilever energy harvesters can compete with AlN-based devices then the former could constitute much of the product volume in the new Silex Beijing fab. In 2014, Yole Developpement forecast “the integration of IoT-dedicated electronic components to result in a market volume of 2B units for these devices by 2021;” if 30% will use energy harvesting then this represents 600M units globally.

—E.K.