Tag Archives: China

XMC becomes YRST or Changjiang Storage

As reported by Digitimes, a major enterprise in Wuhan, China has broken ground on the first of three mega-fabs to produce 3D-NAND chips. The final fab name-plate may ultimately read XMC or YMTC or YRST or possibly Changjiang Storage (not to be confused with GuangDong ChangJiang Storage Battery), but it is over half owned by the Chinese government’s Tsinghua Unigroup.

Total investment in XMC/YRST by Tsinghua Unigroup is reported by Digitimes to be US$24 billion. In 2015 Tsinghua Unigroup bid US$23 billion to buy Micron Technology Corp, but the company was not for sale.

In 2013 as reported at EETimes, the fab re-branded itself as XMC from the former Wuhan XinXin Semiconductor Manufacturing (WXIC). Dr. Simon Yang was CEO of WXIC/XMC from 2012 to last November when he resigned to become the CEO of Yangtze Memory Technologies Co. Ltd.

Two months later the new company is reportedly to be called Yangtze River Storage Technology (YRST), according to DIGITIMES. Meanwhile, Nikkei Asian Review reports that YRST is also known as Changjiang Storage.

High-Volume Manufacturing (HVM) in the first fab is planned for 2018, and the third fab on the campus is expected to bring 300k 300mm wafer-starts-per-month online by 2020. Rick Tsai the ex-CEO of Taiwan Semiconductor Manufacturing (TSMC) and Shih-Wei Sun the ex-CEO of United Microelectronics (UMC) have both reportedly joined Tsinghua Unigroup.

—E.K.

China to be 15% of World Fab Capacity by 2018

Currently there are eight Chinese 300mm-diameter silicon IC fabs in operation as 2016 comes to a close. Chinese IC fab capacity now accounts for approximately 7% of worldwide 300mm capacity, as reported by VLSIresearch in a recent edition of its Critical Subsystems report (https://www.vlsiresearch.com/public/csubs/). This will expand rapidly, as ten are now under construction and two more have been announced. China’s 300mm fabs are located in ten cities.

“Total Chinese capacity is expected to be around 13 million by end 2018,” said John West of VLSI Research. Worldwide 300mm wafer fabrication capacity will exceed 85 million wafers per year in 2018, putting China in control of 15% of worldwide 300mm capacity in 2018. While new Chinese fabs have yet to prove they can produce leading edge silicon ICs with high yields, it should be only a matter of time before they prove they stand among the world’s great semiconductor production regions.

West recently presented a China market outlook for semiconductors, original equipment manufacturers (OEM), and critical subsystems at the recent Critical Materials Council (CMC) Seminar (http:cmcfabs.org/seminars) held in Shanghai. At the same event, representatives from Intel and TI discussed supply-chain dynamics in China, and Secretary General Ingrid Shi of the Integrated Circuit Materials Industry Technology Innovative Alliance (ICMITIA) presented on “The China Materials Supply Consortium and China’s 5 Year Technology Plan.”

The 2016 CMC Seminar also saw a presentation of China’s first semiconductor-grade 300mm silicon wafer supplier:  the recently unveiled Zing Semiconductor (www.zingsemi.com). Founder and CEO Richard Chang, co-founder of SMIC, has assembled a team and funding to start creating wafers in the Pudong region of Shanghai. He showed a photo of his company’s first 300mm silicon boule at the event.

[DISCLOSURE:  Ed Korczynski is also Marketing Director for TECHCET CA, an advisor firm that administers the Critical Materials Council and CMC events.]

—E.K.

Silex’ Strategic Acquisition by China

A secretive investment holding company out of Hong Kong named GAE Ltd has acquired 98% of the shares in Silex Microsystems AB (Jarfalla, Sweden). The transaction took place on July 13th of this year when the former major shareholders agreed to sell all of their respective holdings, while Silex founder and CEO Edvard Kalvesten retains 2% of the shares in the company and continues his role as CEO and board member of Silex. No changes are made to the organizational structure or business operations of Silex, while the new owners plan to build a new high-volume manufacturing line near Beijing that clones the equipment and processes in Sweden with first wafers out by mid-2017 (as reported at EETimes).

Silex claims to be the “world’s number one Pure Play MEMS Foundry”, has worked with AMFitzgerald&Assoc. on RocketMEMS shuttle wafers to reduce MEMS development time by 6-12 months, and has developed multiple Through-Silicon Via (TSV) technologies to allow for efficient 3D integration of MEMS and CMOS.

Almost lost as a footnote in the news is that Silex holds IP on lead-zirconium-titanate (PZT) thin-film technology that allows for efficient piezo-electric energy-harvesting chips. MicroGen Systems is currently in the market with aluminum-nitride (AlN) piezo-cantilever micro-power generator system to power IoT nodes by scavenging either single-frequency or multi-frequency vibrations, working with X-Fab in Germany as foundry partner. If PZT-based piezo-cantilever energy harvesters can compete with AlN-based devices then the former could constitute much of the product volume in the new Silex Beijing fab. In 2014, Yole Developpement forecast “the integration of IoT-dedicated electronic components to result in a market volume of 2B units for these devices by 2021;” if 30% will use energy harvesting then this represents 600M units globally.

—E.K.