Tag Archives: materials

Electronic Materials Specifications and Markets

At SEMICON West this year, July 14-16 in San Francisco, the Chemical and Gas Manufacturers Group (CGMG) Committee of SEMI have organized an excellent program covering “Contamination Control in the Sub-20nm Era” to occur in the afternoon of the 14th as part of the free TechXPOT series. Recent high-volume manufacturing (HVM) developments have shown much tighter IC control specifications in terms of particles, metal contaminants, and organic contaminants. The session will present a comprehensive picture of how the industry value chain participants are collaborating to address contamination control challenges:
1. IDM / foundry about the evolving contamination control challenges and requirements,
2. OEM process and metrology/defect inspection tools to minimize defects, and
3. Materials and sub-component makers eliminating contaminants in the materials manufacturing, shipment, and dispensing process before they reach the wafer.

Updated reports about the markets for specialty electronic materials have recently been published by the industry analysts at TechCet, including topics such as ALD/CVD presursors, CMP consumables, general gases, PVD targets, and silicon wafers. Strategic inflection points continue to appear in different sub-markets for specialty materials, as specifications evolve to the point that a nano-revolution is needed. One example is TechCet’s recent reporting that 3M’s fixed-abrasive pad for CMP has been determined to be unable to keep up with defect demands below 20nm, and is undergoing an orderly withdrawal from the market.

As in prior years, SEMICON West includes many free and paid technology sessions and workshops, the Silicon Innovation Forum and other business events, as well as a profusion of partner events throughout the week.

—E.K.

Nakamura on blue light history and future

Nobel Laureate Shuji Nakamura provided the keynote address to the attendees at the 57th annual Electronic Materials Conference held this week in Columbus, Ohio. His talk on “The History and Developments of InGaN-based LEDs and Laser Diodes” informed and entertained the audience of materials researchers, particularly since he followed first-principles of materials science and his natural inspiration to create the world’s first commercially viable blue LEDs over 20 years ago.
Nakamura-sensei is now legendary for showing excellent GaN-based blue LED functionality in an era when ZnSe was the main material explored by almost all scientists in the world due to six orders of magnitude superior defectivity level for the latter material (due to near zero lattice mismatch between ZnSe and GaAs, instead of the extreme mismatch between GaN and sapphire). In the 57th EMC keynote, he confessed that the only reason he began work on GaN was that almost everyone else was ignoring it so he could easily get papers published on the way to earning a Ph.D., and he initially had no plans to try to create a blue LED with the material.
However, when he bought a new MOCVD reactor to grow GaN on sapphire substrates he found the capabilities of the tool to be lacking so he began daily hardware modifications and test runs, and after some months began to get surprisingly strong data. Soon his group at Nichia was reporting world record GaN optoelectronic properties, and had developed both n- and p-type GaN. However, from first principles it was known that a double-heterojunction (DH) structure would allow for band-gap and hence wavelength tuning, so he then developed the world’s first useful InGaN MOCVD process and by 1993 was able to issue a press release claiming 1000 mcd LED output. “Indium gallium nitride is the most important material, but the Nobel committee didn’t say anything about Indium gallium nitride,” reminded Nakamura.
Most of the rest of the story is well known by now, including his precedent-setting lawsuit with Nichia, move to UCSB, and founding of Soraa.
Nakamura’s vision for the the future of blue (and through integration with phosphors “white”) light can be summed up as LEDs are good but lasers are better. Relatively speaking, with lasers the current density can by many times higher, and BMW and Audi have prototype laser headlamps that can reach 2-3x farther down the road compared to the best lamps today. The challenges today are to improve efficiency and cost. Efficiency for blue LEDs are now 50-60% while lasers are only ~30%. Also, blue laser production cost is now ~10x higher than that for blue LEDs.
—E.K.

ALD of Crystalline High-K SHTO on Ge

Alternative channel materials (ACM) such as germanium (Ge) will need to be integrated into future CMOS ICs, and one part of the integration was shown at the recent Materials Research Society (MRS) spring meeting by John Ekerdt, Associate Dean for Research in Chemical Engineering at the University of Texas at Austin, in his presentation on “Atomic Layer Deposition of Crystalline SrHfxTi1-xO3 Directly on Ge (001) for High-K Dielectric Applications.”

Strontium hafnate, SrHfO3 (SHO), and strontium titanate, SrTiO3 (STO), with dielectric constants of ~15 and ~90 (respectively) can be grown directly on Ge using atomic layer deposition (ALD). Following a post-deposition anneal at 550-590°C for 5 minutes, the perovskite films become crystalline with epitaxial registry to the underlying Ge (001) substrate. Capacitor structures using the crystalline STO dielectric show a k~90 but also high leakage current. In efforts to optimize electrical performance including leakage current and dielectric constant, crystalline SrHfxTi1-xO3 (SHTO) can be grown directly on Ge by ALD. SHTO benefits from a reduced leakage current over STO and a higher k value than SHO. By minimizing the epitaxial strain and maintaining an abrupt interface, the SHTO films are expected to reduce dielectric interface-traps (Dit) at the oxide-Ge interface.

Much of the recent conference has been archived, and can now be accessed online.

—E.K.

CMP Slurry Trade-offs in R&D

As covered at SemiMD.com, the CMP Users Group (of the Northern California Chapter of The American Vacuum Society) recently held a meeting in Albany, New York in collaboration with CNSE, SUNY Polytechnic Institute, and SEMATECH. Among the presentations were deep dives into the inherent challenges of CMP slurry R&D.
Daniel Dickmann of Ferro Corporation discussed trade-offs in designing CMP slurries in his presentation, “Advances in Ceria Slurries to Address Challenges in Fabricating Next Generation Devices.” Adding H2O2 to ceria slurry dramatically alters the zeta-potential of the particles and thereby alters the removal rates and selectivities. For CMP of Shallow Trench Isolation (STI) structures, adding H2O2 to the slurry allows for lowering of the particle concentration from 4% to <2% while maintaining the same removal rate. Reducing the average ceria particle size from 130nm to 70nm results in a reduction in scratch defects while maintaining the same removal rate by tuning the chemistry, but the company has not yet found chemistries that allow for reasonable removal rates with 40nm diameter particles. The ceria morphology is another variable that must be controlled according to Dickmann, “It can seem counter-intuitive, but we’ve seen that non-spherical particles can demonstrate superior removal-rates and defectivities compared to more perfect spheres.”
Selectivity is one of the most critical and difficult aspects of the CMP process, and arguably the key distinction between CMP and mere polishing. The more similarity between the two or more exposed materials, the more difficult to design high selectivity in a slurry. Generally, dielectric:dielectric selectivity is difficult, and how to develop a slurry that is highly selective to nitride (Si3N4) instead of TEOS-oxide (PECVD SiO2 using tetra-ethyl-ortho-silicate precursor) was discussed by Takeda-san of Fujimi Corporation. In general, dielectric CMP is dominated by mechanical forces, so the slurry chemistry must be tuned to achieve selectivity. Choosing <5 pH for the slurry allows for reducing the oxide removal rate while maintaining the rate of nitride removal. Legacy nitride slurries have acceptable selectivities but unacceptable edge-over-erosion (EOE) – the localized over-planarization often seen near pattern edges. Reducing the particle size reduces the mechanical force across the surface such that chemical forces dominate the removal even more, while EOE can be reduced because negatively charged particles are attracted to the positively charged nitride surface resulting in local accumulation.
—E.K.

Micro-Buckled 3D Silicon Scaffolds

3Dsilicon_CompressiveBucklingA new silicon microstructural solution announced this month is so powerful in creating 3D patterns from 2D surface machining that I just have to share. The figure shows 3D silicon microstructures formed by compressive buckling. The method can be used to create objects with features as small as 100 nm that could be useful for developing new technologies for medicine, energy storage and even brain-like electronic networks. Note that the silicon is surface-machined using standard MEMS processes, and that all manner of silicon circuitry and thin-film sensors could be integrated into this silicon.

Colleagues from the University of Illinois at Urbana-Champaign, Northwestern University, Zhejiang University, East China University of Science and Technology, and Hanyang University created the new 2D-to-3D fabrication technique. Their trick is that after all other surface machining they chemically modify the square anchors in the surface pattern such that they are sticky. After the 2D pattern is released it is transferred onto a sheet of stretched silicone rubber. Allowing the rubber to relax back to its natural shape draws the squares toward each other, while the rest of the silicon buckles upwards. Using this type of controlled buckling, the team managed to produce a variety of elaborate 3D shapes.

The researchers even produced structures with multiple levels of elevation by designing shapes in which the relief of stress in the initial 2D shape would create further buckling, raising another part of the shape further. John Rogers of the University of Illinois at Urbana-Champaign, who is part of the micro-buckling team looks forward to an electronic cell or tissue scaffold, “A lot of the people that we talk to are enthusiastic about what you can do when you go from a passive scaffold to something that embeds full electronic functionality.”

The research is published in Science.

—E.K.

Ferromagnetic Room Temperature Switching

Bismuth-ferrite could make spin-valves that use 1/10th the power of STT

A research team led by folks at Cornel University (along with University of California, Berkeley; Tsinghua University; and Swiss Federal Institute of Technology in Zurich) have discovered how to make a single-phase multiferroic switch out of bismuth ferrite (BiFeO3) as shown in an online letter to Nature. Multiferroics, allowing for the control of magnetism with an electric field, have been investigated as a potential solid-state memory cell for many years but this is the first time that reversible room-temperature switching has been reportedly achieved at room temperature. Most importantly, the energy per unit area required to switch these new cells is approximately an order of magnitude less than that needed for spin-transfer torque (STT) switching.

“The advantage here is low energy consumption,” said Cornell postdoctoral associate John Heron, in a press release. “It requires a low voltage, without current, to switch it. Devices that use currents consume more energy and dissipate a significant amount of that energy in the form of heat.”

The trick that Heron and others discovered involves a two-step sequence of partial switching events—using only applied voltages—that add up to full magnetic reversal. Previous theory had shown that single-step switching was thermodynamically impossible, and no other groups had reported work on similar two-step switching. Also published in the News & Views section of Nature is “Materials science:  Two steps for a magnetoelectric switch” written by other researchers, which explores the possibilities of using this phenomenon in nanoscale memory chips.

While the thermodynamics of all of this seem incredibly positive, the kinetics of this two-step process have yet to be reported. Also, the effect seems to require specific crystal stuctures such as that of SrRuO3 in a particular orientation as electrical contacts, instead of the inherently less-expensive randomly oriented metal contacts to STT cells. Consequently, this could be inherently slow and expensive technology, and thus limited to niche applications.

—E.K.

NanoParticle Self-Assembly at UofM

Theory and Practice synergize R&D

UofM_Glotzer-Kotov_MRS2014awardSharon C. Glotzer and Nicholas A. Kotov are both researchers at the University of Michigan who were just awarded a MRS Medal at the Materials Research Society (MRS) Fall Meeting in San Francisco for their work on “Integration of Computation and Experiment for Discovery and Design of Nanoparticle Self-Assembly.” Due to the fact that surface atoms compose a large percent of the mass of nanoparticles, the functional properties of quasi-1D nanoparticles differ significantly from 2D thin-films and from 3D bulk materials. An example of such a unique functional property is seen in self-assembly of nanoparticles to form complex structures, which could find applications in renewable energy production, optoelectronics, and medical electronics.
While self-assembly has been understood as an emergent property of nanoparticles, research and development (R&D) has been somewhat limited to experimental trial-and-error due to a lack of theory. Glotzer and Kotov along with their colleagues have moved past this limit using a tight collaboration between computational prediction and experimental observation. The computational theorist Glotzer provides modeling on shapes and symmetric structures, while the experimentalist Kotov’s explores areas involving atomic composition and finite interactions. Kotov and his students create a nanoparticle and look for Glotzer and her group to explan the structure. Conversely, Glotzer predicts the formation of certain structures and has those predictions confirmed experimentally by Kotov.
One specific area the two scientists have explored is the formation of supraparticles—agglomerations of tightly packed nanoparticles that are self-limiting in size. The supraparticles are so regular in size and sphericality that they would actually pack to form face-centered-cubic (fcc) lattice-like structures. The theoretical and computational work, followed by experimental verification, further proved that these supraparticles could be formed from a vast variety of nanoparticles and even proteins, provided they were small enough and had significant van der Waals and electronic repulsion forces. This exciting development creates a whole new class of “bionic” materials that may combine biomaterials and inorganics.
—E.K.

IBM Shows Graphene as Epi Template

Last month in Nature Communications (doi:10.1038/ncomms5836) IBM researchers Jeehwan Kim, et al. published “Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene.” They show the ability to grow sheets of graphene on the surface of 100mm-diameter SiC wafers, the further abilitity to grow epitaxial single-crystalline films such as 2.5-μm-thick GaN on the graphene, the even greater ability to then transfer the grown GaN film to any arbitrary substrate, and the complete proof-of-manufacturing-concept of using this to make blue LEDs.

(Source: IBM)

(Source: IBM)

The figure above shows the basic process flow. The graphenized-SiC wafer can be re-used to grow additional transferrable epi layers. This could certainly lead to competition for the Leti/Soitec/ST “SmartCut” approach to layer-transfer using hydrogen implants into epi layers.
No mention is made of the kinetics of growing 100mm-diameter sheets of single-crystalline GaN on graphene. Supplemental information in the online article mentions 1 hour at 1250°C to cover the full wafer, but the thickness grown in that time is not mentioned. From first principles of materials engineering, they must either:

A) Go slow at first to avoid independent islands growing to form a multicrystalline layer, or
B) Initially grow a multicrystalline layer and then zone anneal (perhaps using a scanned laser) to transform it into a single-crystal.
In either case, we would expect that after just a few single-crystalline atomic layers had been either slowly grown or annealed, that a 2nd much-higher speed epi process would be used to grow the remain microns of material. More details can be seen in the EETimes write up.
—E.K.