Tag Archives: package

CSP Market Forecast – Strong

Chip-Scale Packages (CSP) continue to be in strong demand for IC needing the smallest form-factors for applications including automotive, industrial applications to mobile phones and wearable electronics, according to leading market research firm TechSearch International. TechSearch’s latest CSP market forecast shows a 8% CAGR from 2015 to 2020, despite a slowing growth rate for smartphones.

One of the categories with the strongest growth is the quad flat no-lead (QFN) package with a CAGR of 8.6%. QFNs are a low-cost, low-profile package found in a wide range of products from automotive and power devices. An analysis of the Out-Sourced Assembly and Test (OSAT) market in China provides insight into expansion plans and market shares.

Fan-Out Wafer-Level Packages (FO-WLP) with many variations are now winning slots in many new mobile devices. New advanced packages such as JCAP’s FO-WLP are highlighted in the latest Advanced Packaging Update, along with the use of TSMC’s FO-WLP for Apple’s A10 application processor. The report also examines trends in stacked die CSPs, laminate-substrate CSPs, and package-on-package (PoP) with a market forecast for each. See:  http//www.techsearchinc.com.

—E.K.

Apple Fab Speculation

Apple Corp. recent purchased an old 200mm-diameter silicon wafer fab in San Jose capable of creating as small as 90nm device features. Formerly owned and operated by Maxim, the US$18.2M purchase reportedly includes nearly 200 working fab tools. Some people outside the industry have speculated that Apple might use this fab to do R&D on the A10 or other advanced logic chips, but this old tool-set is completely incapable of working on <45nm device features so it’s useless for logic R&D.

As reported at EETimes, this old fab could be used for the R&D of “mixed-signal devices, MEMS and image sensors and for work on packaging.” Those who know do not speak, while those who speak do not know…I do not know so I’m free to join the public speculation. Mixed-signal and MEMS processing would require major re-tooling of the line, but this 15-20 year-old tool-set is nearly turn-key for wafer-level packaging (WLP). With minimal re-tooling, this line could produce through-silicon vias (TSV) or through-mold vias (TMV) as part of Fan-Out WLP (FO-WLP).

Our friends at ChipWorks have published a detailed tear-down analysis of the System-in-Package (SiP) used in the first generation Apple Watch; it contains 30 ICs and many discretes connected by a 4-layer printed circuit board (PCB). Significant power and performance improvements in mobile devices derive from stacking chips in such dense packages, and even greater improvements can found in replacing the PCB with a silicon interposer. With Apple pushing the limits on integrating new functionalities into all manner of mobile devices, it would be strategic to invest in WLP R&D in support of application-specific SiP design.

—E.K.

Thermoplastically Deformable Electronic Circuits

Philips is testing a technology developed by imec and CMST (imec’s associated lab at Ghent University) to create low-cost 3D LED packages. As shown at last month’s International Microelectronics Assembly and Packaging Society (IMAPS 2015) meeting, these thermoplastically deformable electronic circuits are already being integrated by Philips into LED lamp carriers, a downlight luminaire, and a omnidirectional light source.

Miniature dome test vehicle with integrated low power LEDs, (a) circuit before forming, and (b) circuit after vacuum forming using a 40mm half-sphere mold. (Source: imec)

Miniature dome test vehicle with integrated low power LEDs, (a) circuit before forming, and (b) circuit after vacuum forming using a 40mm half-sphere mold. (Source: imec)

The technology is based on meander-shaped interconnects, which are patterned using  standard printed circuit board (PCB) production equipment and then sandwiched between 2D thermoplastic polymer (e.g. polycarbonate) sheets. The Figure shows one example in final form after vacuum thermoforming into a 40mm half-sphere mold.
This is a glorious example of “elegant engineering” where a clever combination of materials and processes has been integrated with highly desirable characteristics:  low tooling cost, low direct material cost, easily scalable from lab to fab, low product weight, and high product resilience. This seems to represent almost a new industrial product category that combines a “package” and a PCB.

 

—E.K.